NCP1623ASNT1G [ONSEMI]

Critical Conduction Mode (CrM) Power Factor Correction Controller, Follower Boost;
NCP1623ASNT1G
型号: NCP1623ASNT1G
厂家: ONSEMI    ONSEMI
描述:

Critical Conduction Mode (CrM) Power Factor Correction Controller, Follower Boost

文件: 总20页 (文件大小:362K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Enhanced, High-Efficiency  
Power Factor Controller  
PACKAGE PICTURES  
8
1
NCP1623  
1
TSOP6  
(SOT236)  
SOIC8  
D SUFFIX  
Features  
SN SUFFIX  
CASE 318G02  
CASE 75107  
Valley Synchronized Frequency Foldback (VSFF):  
CrM at Heavy Load  
DCM at Light Load by Dead Time Control  
Valley Switching in Both CrM and DCM  
Ontime Modulation for High PFC in Both CrM and DCM  
MARKING DIAGRAMS  
8
Follower Boost Capability (NCP1623A Only)  
Lowered Output Voltage Regulation at Low Line  
HighEfficient Boost Stage and Downsized Inductor Design  
Skip Mode for Light Load Regulation  
1623x  
ALYW  
G
XXXAYWG  
G
1
1
x = A  
XXX = Specific Device Code  
Sleep Mode with Low Current Consumption (SOIC8 Only)  
A = Assembly Location  
L = Wafer Lot  
A
Y
W
G
= Assembly Location  
= Year  
Fast Line / Load Transient Control  
Dynamic Response Enhancer at Output Undershoot  
Soft OVP and Fast OVP at Output Overshoot  
Excessive Current Protection  
Y = Year  
= Work Week  
W = Work Week  
= PbFree Package  
G
= PbFree Package  
(Note: Microdot may be in either location)  
Over Current Protection (OCP)  
Over Stress Protection (OVS)  
PIN CONNECTIONS  
Brown Out Protection  
Second Over Voltage Protection (OVP2)  
These are PbFree Devices  
1
2
3
4
8
7
6
5
6
5
4
FB  
VCTRL  
NC  
1
2
3
VCTRL  
FB  
V
CC  
GND  
V
CC  
DRV  
CS/ZCD  
DIS  
CS/ZCD  
Typical Applications  
DRV  
GND  
USBPD  
(Top View)  
TSOP6  
(Top View)  
SOIC8  
Flat TV  
Industrial Power Supplies  
All Offline Appliances Requiring Power Factor Correction  
ORDERING INFORMATION  
See detailed ordering, marking and shipping information in the  
package dimensions section on page 16 of this data sheet.  
© Semiconductor Components Industries, LLC, 2021  
1
Publication Order Number:  
December, 2021 Rev. 0  
NCP1623/D  
NCP1623  
L
BST  
D
BST  
L
EMI  
Filter  
V
AUX  
C
IN  
C
Load  
BULK  
N
R
FB1  
C
P
FB  
6
VCTRL  
1
C
Z
R
Z
GND  
2
VCC  
5
R
NCP1623  
TSOP6  
FB2  
V
EXT  
V
DS  
CS/ZCD  
3
DRV  
4
R
CS2  
R
SENSE  
NCP1623  
SOIC8  
V
DS  
PFC  
ENABLE  
SIGNAL  
R
CS1  
Option 1: Drain ZCD sensing  
5
DIS  
V
AUX  
R
R
AUX  
CS1  
C
AUX  
C
DIS  
D
AUX  
opto  
Option 2: Auxiliary  
Disable circuit example  
winding ZCD sensing  
Figure 1. Application Schematic  
www.onsemi.com  
2
 
NCP1623  
I
I
VCTRL(START)  
VCTRL(DRE)  
I
FB(LL)  
OTA current  
detection  
PFCOK  
PFCOK  
DRE  
VCTRL  
LLINE  
FB  
VREF  
OFF  
Transconductance  
Error Amplifier  
BONOK  
DIS  
VCTRL  
Clamping  
Under Voltage  
Protection  
V
V
STATICOVP  
Detection  
CTRL(MAX)  
UVP  
V
V
FB(UVP)  
CTRL(MIN)  
CS/ZCD  
STATICOVP  
Dynamic  
Response  
Enhancer  
Over Current  
Protection  
DRE  
OCP  
V
FB(DRE)  
CS(OCP)  
Over Stress  
Protection  
O VS  
ZCD  
Soft OVP  
Fast OVP  
SOVP  
FOVP  
V
CS(OVS)  
V
FB(SOVP)  
Zero Cross  
Detection  
V
ZCD(THH/L)  
V
FB(FOVP)  
Line  
Detection  
VCC  
DRV  
LLINE  
BONOK  
OVP2  
V
CS/ZCD(HL/LL)  
UVLO  
V
/V  
CC(ON) CC(OFF)  
Brown Out  
Protection  
V
CS/ZCD(BO)  
Second  
OVP  
ZCD  
VCTRL  
VSFF  
Q
S
R
V
ZCD(OVP2)  
Driver  
SOIC8 Only  
Saw tooth  
Generator  
R
DIS  
LLINE  
DIS  
DIS  
Detection  
DIS  
V
DIS  
On time  
VCTRL  
VCTRL  
Modulation  
SKIP  
V
STATICOVP  
BONOK  
DIS  
CTRL(SKIP)  
GND  
OFF Mode  
Management  
(IC reset)  
OFF  
UVP  
OCP  
OVS  
OVP2  
SOVP  
FOVP  
UVLO  
STOP  
Thermal  
Shutdown  
TSD  
Figure 2. Simplified Block Diagram  
www.onsemi.com  
3
NCP1623  
PIN CONNECTIONS  
VCTRL  
GND  
6
FB  
1
2
FB  
8
7
6
VCTRL  
NC  
1
2
3
V
CC  
5
V
CC  
DRV  
CS/ZCD  
DIS  
5
GND  
4
4
DRV  
CS/ZCD  
3
(Top View)  
(Top View)  
SOIC8  
TSOP6  
Table 1. PIN DESCRIPTION  
Pin Number  
TSOP6  
Pin Number  
SOIC8  
Pin Name  
Description  
1
8
VCTRL  
The error amplifier output is connected to this pin. The regulation loop bandwidth is  
adjusted by the feedback compensation network connected between this pin and  
ground. When IC is reset at off mode, the NCP1623 grounds the VCTRL pin to provide  
a softstart function at a subsequent startup.  
2
3
4
6
GND  
Power Supply Ground  
CS/ZCD  
Based on a novel technique, this multifunctional pin is designed to monitor inductor  
current, ZCD signal and input/output voltage.  
4
3
DRV  
The highcurrent capability of the totem pole gate drive makes it suitable to drive high gate  
charge power FETs.  
5
6
2
1
V
IC operating current is supplied to this pin.  
CC  
FB  
The feedback pin is connected to the input of the error amplifier to monitor the PFC output  
voltage for regulation. Also, this pin detects the PFC output transient condition to enable  
DRE, SOVP and FOVP for overshootless and undershootless output regulation.  
A 250 nA sink current is builtin to trigger the UVP protection and disable the part if the  
feedback pin is accidently open.  
NCP1623A FB pin further sources a current (I  
of 25 mA typically) to adjust a lower  
FB(LL)  
output regulation level in lowline conditions for higher efficiency and downsized boost  
inductor design.  
5
7
DIS  
NC  
A high level or open circuit on this pin disables the controller and reduces I bias current  
CC  
for low standby power.  
No Connect (Note 1)  
1. True no connect. Printed circuit board traces are allowable.  
www.onsemi.com  
4
 
NCP1623  
Table 2. MAXIMUM RATINGS  
Parameter  
Symbol  
Value  
0.3 to 30  
0.3 to 11.5  
0.3 to 9  
0.3 to 9  
0.3 to 9  
Units  
Power Supply Input  
V
CC  
V
V
V
V
V
V
CS/ZCD Pin with 5 mA of Clamp Current  
Feedback Pin  
CS/ZCD  
FB  
V
CTRL  
Pin  
V
CTRL  
Disable Pin, SOIC8 Version  
DIS  
Driver Voltage  
DRV  
0.3 to V  
DRV(HIGH)  
(Note 2)  
Maximum Junction Temperature  
Storage Temperature Range  
Lead Temperature Soldering  
T
150  
°C  
°C  
°C  
J(MAX)  
T
60 to 150  
260  
STG  
T
SLD  
Reflow (SMD Styles Only), PbFree Versions (Note 3)  
ESD Capability, Human Body Model (Note 4)  
ESD Capability, Charge Device Model (Note 4)  
Moisture Sensitivity Level  
ESD  
ESD  
2
1
1
kV  
kV  
HBM  
CDM  
MSL  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
2. V  
is the DRV high clamp voltage if V is higher than V VDRV is V otherwise.  
DRV(HIGH)  
CC  
DRV(HIGH) CC  
3. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.  
4. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AECQ100002 (EIA/JESD22A114)  
ESD Machine Model tested per AECQ100003 (EIA/JESD22A115)  
Latchup Current Maximum Rating: 150 mA per JEDEC standard: JESD78  
THERMAL CHARACTERISTICS (Note 5)  
Parameter  
Symbol  
Value  
230  
Unit  
°C/W  
°C/W  
Thermal Characteristics, TSOP6  
Thermal Resistance, JunctiontoAir  
R
q
JA  
Thermal Characteristics, SOIC8  
Thermal Resistance, JunctiontoAir  
R
153  
q
JA  
2
5. Mounted on a JEDEC standard 513 (1s0p) test board, 100 mm copper area, 1 oz copper thickness.  
RECOMMENDED OPERATING RANGES  
Parameter  
Operating Junction Temperature Range  
Symbol  
Min  
Max  
Unit  
T
J
40  
125  
°C  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
www.onsemi.com  
5
 
NCP1623  
Table 3. ELECTRICAL CHARACTERISTICS  
(V = 18.5 V and T = 40°C to 125°C, unless otherwise noted)  
CC  
J
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
SUPPLY CIRCUIT  
V
V
V
V
TurnOn Voltage  
V
V
rising  
falling  
9.75  
8.5  
1.0  
6
10.50  
9.0  
1.5  
7
11.25  
9.5  
2.0  
8
V
V
CC  
CC  
CC  
CC  
CC(ON)  
CC  
TurnOff Voltage  
V
V
V
V
CC  
CC(OFF)  
CC(HYS)  
CC(RST)  
TurnOn/Off Hysteresis  
V
V
V
CC(ON) CC(OFF)  
Reset Voltage, I Drops to I  
V
CC  
falling  
= 7 V  
V
CC  
CC(START)  
IC StartUp Current  
I
V
20  
0.5  
2
50  
mA  
mA  
mA  
mA  
CC(START)  
CC  
IC Operating Current without Switching  
IC Operating Current when Switching  
IC Sleep Mode Current, SOIC8  
GATE DRIVE  
I
I
No switching  
1.0  
3
CC1  
f
= 50 kHz, No C load  
CC2  
SW  
L
I
DIS pin high  
100  
CC(DIS)  
DRV Rising Time  
t
C = 1 nF  
15  
10  
30  
20  
10  
7
90  
50  
20  
15  
14  
ns  
ns  
W
W
V
R
L
DRV Falling Time  
t
C = 1 nF  
L
F
DRV Source Resistance  
DRV Sink Resistance  
R
OH  
R
OL  
DRV(HIGH)  
DRV High Clamp Voltage  
ON–TIME CONTROL  
V
V
CC  
= 30 V, R = 33 kW  
10  
12  
L
Maximum OnTime at Low Line  
t
ms  
ms  
ON(MAXLL)  
t
ON(MAXHL)  
Ver. A  
Ver. C  
10.8  
13.5  
12.5  
16.5  
14.2  
19.5  
Maximum OnTime at High Line  
Ver. A  
Ver. C  
4.2  
5.6  
5.0  
6.6  
5.8  
7.6  
OnTime Ratio of Low and High Line  
Minimum On Time at LowLine  
Minimum On Time at HighLine  
FREQUENCY FOLDBACK AND SKIP  
DeadTime 1  
K
t
/t  
2.0  
100  
50  
2.5  
180  
100  
3.0  
250  
150  
TON(LLHL)  
ON(LL) ON(HL)  
t
ns  
ns  
ON(MINLL)  
t
ON(MINHL)  
t
t
V
V
= 0.63 V  
= 0.75 V  
13  
5.5  
18  
8.5  
23  
ms  
ms  
V
DT1  
CTRL  
DeadTime 2  
11.5  
2.29  
2.40  
120  
32  
DT2  
CTRL  
VCTRL Frequency Foldback Enter Voltage  
VCTRL Frequency Foldback Exit Voltage  
VCTRL Frequency Foldback Hysteresis  
Minimum Frequency  
V
V
V
falling  
rising  
1.87  
1.96  
75  
2.08  
2.18  
100  
28  
CTRL(FFEN)  
CTRL(FFEX)  
CTRL  
V
V
CTRL  
V
mV  
kHz  
V
CTRL(FFHYS)  
f
24  
MIN  
VCTRL Skip Enter Voltage  
V
V
V
falling  
rising  
0.50  
0.55  
40  
0.56  
0.62  
70  
0.62  
0.68  
100  
CTRL(SKIPEN)  
CTRL(SKIPEX)  
CTRL  
VCTRL Skip Exit Voltage  
V
V
CTRL  
VCTRL Skip Hysteresis  
V
mV  
CTRL(SKIPHYS)  
FEEDBACK REGULATION  
FB Regulation Reference Voltage  
FB Source Current at Low Line, Ver. A  
Error Amplifier Source Current  
Error Amplifier Sink Current  
Error Amplifier Gain  
V
2.44  
23.75  
15  
2.50  
25.00  
20  
2.56  
26.25  
25  
V
REF  
I
mA  
mA  
mA  
mS  
V
FB(LL)  
I
V
V
= 2.4 V  
= 2.6 V  
EA(SOURCE)  
FB  
I
25  
110  
4.0  
20  
200  
4.5  
15  
290  
5.0  
EA(SINK)  
FB  
G
EA  
CTRL(MAX)  
VCTRL Maximum Clamping Voltage  
VCTRL Minimum Clamping Voltage  
VCTRL Startup Source Current  
V
V
= 2 V  
= 3 V  
FB  
V
V
0.3  
0.5  
0.8  
V
CTRL(MIN)  
VCTRL(START)  
FB  
I
90  
120  
150  
mA  
www.onsemi.com  
6
 
NCP1623  
Table 3. ELECTRICAL CHARACTERISTICS (continued)  
(V = 18.5 V and T = 40°C to 125°C, unless otherwise noted)  
CC  
J
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
FEEDBACK DYNAMIC RESPONSE ENHANCER (DRE)  
FB DRE Enter Voltage Ratio  
FB DRE Exit Voltage Ratio  
FB DRE Hysteresis Ratio  
VCTRL DRE Source Current  
K
K
V
V
/ V  
/ V  
94.5  
96.5  
1
95.5  
97.5  
2
96.5  
98.5  
3
%
%
FB(DREEN)  
FB(DREEN)  
REF  
FB(DREEX)  
FB(DREEX)  
REF  
K
%
FB(DREHYS)  
I
180  
215  
250  
mA  
VCTRL(DRE)  
FEEDBACK SOFT AND FAST OVER VOLTAGE PROTECTION (SOVP AND FOVP)  
FB SOVP Enter Voltage Ratio  
K
V
/ V  
/ V  
103.5  
101.5  
1
105.0  
103.0  
2
106.5  
104.5  
3
%
%
%
%
%
%
%
%
%
%
%
%
FB(SOVPEN)  
FB(SOVPEX)  
FB(SOVPEN)  
FB(SOVPEX)  
REF  
FB SOVP Exit Voltage Ratio  
K
V
REF  
FB SOVP Hysteresis Ratio  
K
FB(SOVPHYS)  
FB SOVP Enter Voltage Ratio at Low Line, Ver. A  
FB SOVP Exit Voltage Ratio at Low Line, Ver. A  
FB SOVP Hysteresis Ratio at Low Line, Ver. A  
FB FOVP Enter Voltage Ratio  
K
K
V
V
/ V  
108.5  
106.5  
1
110.0  
108.0  
2
111.5  
109.5  
3
FB(SOVPENLL)  
FB(SOVPEXLL)  
FB(SOVPENLL)  
REF  
/ V  
FB(SOVPEXLL)  
REF  
K
FB(SOVPHYSLL)  
K
K
V
V
/ V  
REF  
105.5  
103.5  
1
107.0  
105.0  
2
108.5  
106.5  
3
FB(FOVPEN)  
FB(FOVPEX)  
FB(FOVPEN)  
FB FOVP Exit Voltage Ratio  
/ V  
REF  
FB(FOVPEX)  
FB FOVP Hysteresis Ratio  
K
FB(FOVPHYS)  
FB FOVP Enter Voltage Ratio at Low Line, Ver. A  
FB FOVP Exit Voltage Ratio at Low Line, Ver. A  
FB FOVP Hysteresis Ratio at Low Line, Ver. A  
K
V
V
/ V  
112.5  
110.5  
1
114.0  
112.0  
2
115.5  
113.5  
3
FB(FOVPENLL)  
FB(FOVPEXLL)  
FB(FOVPENLL)  
REF  
K
/ V  
FB(SOVPEXLL)  
REF  
K
FB(FOVPHYSLL)  
FEEDBACK UNDER VOLTAGE PROTECTION (UVP)  
FB UVP Enter Voltage  
V
V
V
falling  
rising  
falling  
rising  
240  
470  
1.1  
1.2  
50  
300  
530  
1.2  
360  
590  
1.3  
mV  
mV  
V
FB(UVPEN)  
FB  
FB UVP Exit Voltage  
V
FB(UVPEX)  
FB  
FB  
FB UVP Enter Voltage at Low Line, Ver. A  
FB UVP Exit Voltage at Low Line, Ver. A  
FB UVP Sink Current  
V
V
FB(UVPENLL)  
FB(UVPEXLL)  
V
V
1.3  
1.4  
V
FB  
I
250  
450  
nA  
FB(UVP)  
CURRENT SENSE AND ZERO CURRENT DETECTION  
CS OverCurrent Protection (OCP) Voltage  
CS OCP Leading Edge Blanking Time  
CS OCP to DRV Off Delay Time  
V
450  
320  
500  
400  
40  
550  
460  
200  
825  
350  
900  
75  
mV  
ns  
CS(OCP)  
OCP(LEB)  
OCP(DLY)  
t
t
dV  
/ dt = 10 V/ms  
ns  
CS/ZCD  
CS OverStress Protection (OVS) Voltage  
CS OVS Leading Edge Blanking Time  
CS OVS Watch Dog Timer  
V
675  
50  
750  
200  
800  
40  
mV  
ns  
CS(OVS)  
t
OVS(LEB)  
t
700  
5
ms  
OVS(WDG)  
ZCD High Threshold Voltage  
ZCD Low Threshold Voltage  
ZCD Low Threshold Hysteresis  
ZCD Blanking Time  
V
V
rising  
falling  
mV  
mV  
mV  
ns  
ZCD(THH)  
CS/ZCD  
V
V
75  
50  
40  
80  
5  
ZCD(THL)  
CS/ZCD  
V
110  
700  
ZCD(THHYS)  
t
500  
600  
ZCD(BLANK)  
ZCD to DRV On Delay Time  
t
ns  
ZCD(DLY)  
Ver. A  
Ver. C  
170  
250  
220  
310  
270  
370  
ZCD Watch Dog Timer  
t
80  
40  
200  
50  
320  
60  
ms  
ZCD(WDG)  
CS/ZCD Source Current  
for ShorttoGround Pin Detection  
I
mA  
ZCD(GND)  
CS/ZCD Threshold Voltage  
V
200  
8.0  
240  
9.5  
280  
mV  
V
ZCD(GND)  
for ShorttoGround Pin Detection  
CS/ZCD Clamp Voltage  
V
I
= 5 mA  
11.5  
CS/ZCD(CL)  
CS/ZCD  
www.onsemi.com  
7
NCP1623  
Table 3. ELECTRICAL CHARACTERISTICS (continued)  
(V = 18.5 V and T = 40°C to 125°C, unless otherwise noted)  
CC  
J
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
LINE RANGE DETECTION  
CS/ZCD High Line Detection Voltage  
ZCD Low Line Detection Voltage  
ZCD Line Detection Hysteresis  
V
V
rising  
falling  
1.65  
1.45  
200  
20  
1.80  
1.55  
300  
25  
1.95  
1.65  
400  
30  
V
V
CS/ZCD(HL)  
CS/ZCD  
V
V
CS/ZCD(LL)  
CS/ZCD(LDHYS)  
CS/ZCD  
V
mV  
ms  
ms  
CS/ZCD Line Detection Blanking Time  
CS/ZCD Line Detection Watch Dog Timer, Ver. A  
t
V
falling  
LD(BLANK)  
CS/ZCD  
t
430  
500  
560  
LD(WDG)  
BROWN–OUT (BO) DISABLED IN A AND C VERSION  
CS/ZCD BO Enter Voltage  
CS/ZCD BO Exit Voltage  
CS/ZCD BO Hysteresis  
CS/ZCD BO Blanking Time  
VCTRL BO Sink Current  
V
V
V
falling  
rising  
730  
860  
130  
35  
790  
940  
145  
50  
850  
1020  
160  
65  
mV  
mV  
mV  
ms  
mA  
CS/ZCD(BOEN)  
CS/ZCD(BOEX)  
CS/ZCD  
V
CS/ZCD  
V
CS/ZCD(BOHYS)  
t
I
BO(BLANK)  
VCTRL(BO)  
20  
30  
40  
SECOND OVER VOLTAGE PROTECTION (OVP2) C VERSION ONLY  
ZCD OVP2 Enter Voltage  
V
V rising  
CS/ZCD  
3.61  
0.8  
55  
3.77  
1.0  
75  
3.93  
1.2  
95  
V
ZCD(OVP2EN)  
ZCD OVP2 Blanking Time  
t
ms  
ms  
OVP2(BLANK)  
ZCD OVP2 Reset Time to Disable DRV  
THERMAL SHUTDOWN  
t
OVP2(RST)  
Thermal Shutdown Threshold (Note 6)  
Thermal Shutdown Hysteresis (Note 6)  
DISABLE MODE SOIC8 ONLY  
DIS Sleep Mode Enter Voltage  
DIS Sleep Mode Exit Voltage  
DIS Sleep Mode Hysteresis  
T
150  
°C  
°C  
LIMT  
H
50  
TEMP  
V
V
V
rising  
1.5  
0.8  
0.5  
1.8  
1.1  
0.7  
2.1  
1.4  
0.9  
V
V
V
DIS(EN)  
DIS  
V
DIS  
falling  
DIS(EX)  
V
DIS(HYS)  
DIS Sleep Mode Detection Blanking Time  
Ver. A  
Ver. C  
t
DIS(BLANK)  
16  
16  
25  
25  
34  
34  
ms  
ms  
DIS Pull*Up Resistance  
R
370  
530  
690  
kW  
DIS  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
6. Values based on design and/or characterization.  
www.onsemi.com  
8
 
NCP1623  
DEFINITIONS  
General  
Feedback Transient Control (SOVP, FOVP and DRE)  
Extremely compact, the NCP1623 is designed to optimize  
Since PFC stages exhibit low loop bandwidth, abrupt  
changes in the load or input voltage (e.g. at startup) may  
cause excessive over or under voltages. Firstly, the soft  
and fast over voltage protections (SOVP and FOVP)  
interrupt the power delivery when the output voltage is  
excessive. At output voltage undershoot, the circuit  
dramatically speeds up the regulation loop when the output  
voltage goes below the low detect threshold (dynamic  
response enhancer DRE).  
the efficiency of your PFC stage throughout the load range.  
It also incorporates protection features for a rugged  
operation. More generally, NCP1623 is ideal in systems  
where costeffectiveness, reliability, high power factor and  
efficiency ratios are key requirements:  
Low StartUp Current and Large VCC Range  
The A and C versions (V  
of 10.5 V typically) are  
CC(ON)  
preferred in applications where the controller is fed by an  
external power source (from an auxiliary power supply or  
from a downstream converter). Its maximum startup level  
Over Current and Over Stress Protection (OCP, OVS)  
The circuit senses the FET current and turns it off if the  
sensed current exceeds the OCP limit. In addition, the circuit  
pauses FET switching for 800 ms when the current reaches  
OVS threshold as result of an inductor saturation or a short  
of the bypass diode.  
(11.25 V, V ) eases circuit powering from traditional  
CC(ON)  
12V rails. After startup, the high V maximum rating  
CC  
allows a large V operation range from 9.5 V up to 30 V,  
CC  
thus easing the circuit feeding.  
Output Stage Totem Pole  
BrownOut Protection  
(BO, Disabled in A and C Version)  
The circuit detects too low ac line conditions and stops  
operation thus protecting the PFC stage from excessive  
stress.  
NCP1623 incorporates a 0.5 A / +0.8 A gate driver to  
efficiently drive most power FETs typically used in 70 to  
300 W power supplies. As V can be as high as 30 V, an  
CC  
internal clamp limits the DRV pin to 14 V max to be  
compatible with typical gatesource max ratings of industry  
MOSFETs.  
Second OverVoltage Protection  
(OVP2, C Version Only)  
CS/ZCD multifunctional pin is used to detect excessive  
output voltage levels and prevent a destructive output  
voltage runaway if the feedback network happens to be  
wrong. (incorrect resistors value, aging effects...)  
Valley Synchronized Frequency FoldBack  
NCP1623 classically operates in critical conduction mode  
(CrM) until the power drops below a threshold level where  
the PFC stage enters the discontinuous conduction mode  
(DCM) with a dead time prolonged as the load further  
decays (frequency foldback). This novel technique also  
provides stable valley turnon in both CrM and DCM for a  
maximized efficiency. In addition, the minimum frequency  
clamp (33 kHz typically) prevents audible frequencies and  
the ontime is modulated to ensure nearunity power factor  
in both CrM and DCM operations.  
UnderVoltage Protection (UVP)  
This circuit turns off FET switching when the FB pin  
voltage drops close to 0 V at low ac line or a failure in the  
feedback network (e.g., accidental short to ground / open  
failure of the FB pin).  
Thermal Shutdown (TSD)  
An internal thermal circuitry disables the gate drive when  
the junction temperature exceeds 150°C. The circuit  
resumes operation once the temperature drops below  
approximately 100°C (50°C hysteresis).  
Compactness  
The NCP1623 features the CS/ZCD multifunctional pin  
based on a novel technique for an enhanced control and a  
large bunch of protections in a small TSOP6 (or SOIC8)  
package with few external components. In addition, the  
NCP1623A forces a lower output regulation level in  
lowline condition to raise the PFC stage efficiency and  
reduce its size. This 2level Follower Boost technique best  
fits for applications where the downstream converter (like a  
flyback power supply) can withstand input voltage  
variations in a costeffective and efficient manner.  
Disable Function (SOIC8 Package Only)  
In case of SOIC8 package option, DIS pin is provided to  
disable most of the internal blocks in NCP1623 to minimize  
V
CC  
supply current.  
www.onsemi.com  
9
NCP1623  
APPLICATIONS INFORMATION  
FREQUENCY CONTROL  
voltage is not minimum. In other words, the deadtime is  
extended until the next valley is detected.  
Valley Synchronized Frequency Foldback (VSFF)  
The NCP1623 implements the Valley Synchronized  
Frequency Foldback (VSFF) which consists of operating  
the PFC stage in critical conduction mode (CrM) until the  
power drops below a threshold level. As the power is further  
reduced under the threshold, the PFC stage enters the  
discontinuous conduction mode (DCM) with a dead time  
which gets longer.  
Whether the frequency is reduced by VSFF, an ontime  
modulation in NCP1623 adjusts the DRV turnon time to  
compensate the deadtimes in DCM for unity power factor.  
Also, the minimum frequency clamp prevents the system  
from operating at audible frequencies.  
Minimum Switching Frequency  
The DCM deadtime is an increasing function of  
Practically, the output of the regulation error amplifier  
V
V . This frequency foldback function  
CTRL  
CTRL(FFEN)  
(V ) is used to select the operation mode and to adjust  
CTRL  
reduces the lightload switching frequency to optimize the  
efficiency. However, an internal minimum frequency logic  
limits the switching frequency above the audible frequency.  
the deadtime duration. More specifically, the circuit enters  
the DCM mode when V  
foldback enter voltage, V  
drops below a frequency  
CTRL  
and remains in this  
CTRL(FFEN)  
mode until V  
exceeds a frequency foldback exit  
CTRL  
Minimum frequency synchronized by ZCD  
voltage,  
V
with 100 mV hysteresis,  
CTRL(FFEX)  
V
. Figure 3 summarizes this functioning.  
CTRL(FFHYS)  
V
ZCD  
V
CTRL  
> V  
CTRL(FFEX)  
No deadtime  
CrM  
Deadtime by VSFF  
32 ms (31 kHz)  
V
CTRL  
< V  
CTRL(FFEN)  
36 ms (28 kHz)  
Short deadtime  
DCM  
V
V
DRV  
Deadtime  
V
CTRL  
<< V  
CTRL(FFEN)  
Minimum frequency without ZCD  
Longer deadtime  
deep DCM  
Deadtime  
ZCD  
Figure 3. Drain Voltage in VSFF  
Deadtime by VSFF  
32 ms (31 kHz)  
V
CTRL  
determines the turnon time (t ) in the voltage  
ON  
mode where V  
– V (0.5 V) sets t  
CTRL(MIN) ON  
CTRL  
36 ms (28 kHz)  
proportionally and V  
control range is up to  
CTRL  
V
DRV  
V
(4.5 V). Therefore, the input power is  
CTRL(MAX)  
determined by:  
Figure 4. Minimum Switching Frequency  
V2  
ǒ
Ǔ
tON(MAX) @ VCTRL * VCTRL(MIN)  
IN.RMS  
PIN  
+
@
2L  
VCTRL(MAX) * VCTRL(MIN)  
As shown by Figure 4, 32 ms switching period is counted  
and the DRV output will then turn on when the circuit detects  
the next valley. However, if no valley can be detected, DRV  
is forced high in 36 ms switching period whatever the  
drainsource voltage is. As a result, the minimum frequency  
is typically between 31 kHz (32 ms switching period) if a  
valley is immediately detected and 28 kHz (36 ms switching  
period) if no valley can be detected.  
Note that if the circuit cannot detect ZCD signal at all  
during DRV turnoff time, the circuit does not generate any  
DRV pulses until the 200 ms ZCD watchdog time has  
elapsed.  
(eq. 1)  
V
is typically 2.08 V for the A and C version  
CTRL(FFEN)  
so that the input power level entering frequency foldback is:  
V2  
PIN  
+
IN.RMS @ tON(MAX) @ 0.395  
2L  
(eq. 2)  
To further improve efficiency, the MOSFET turn on is  
delayed until its drainsource voltage is at its valley.  
Practically, the circuit forces the deadtime dictated by the  
V
CTRL  
level. However, the NCP1623 does not immediately  
generate a DRV pulse if it detects that the FET drainsource  
www.onsemi.com  
10  
 
NCP1623  
ONTIME MODULATION  
FEEDBACK REGULATION  
When the FET is on, the inductor current of a CrM/DCM  
PFC boost stage starts from zero and ramps up with the slope  
OTA and VCTRL Function  
A transconductance error amplifier (OTA) with access to  
the inverting input and output is provided as shown in  
Figure 6. It features a FB reference voltage for output  
voltage regulation of 2.5 V, a typical transconductance gain  
of 200 mS and a maximum capability of about 20 mA OTA  
output current. The VCTRL pin is the output of the error  
amplifier for external loop compensation. Typically,  
a type2 network is applied between the VCTRL pin and  
ground to set the regulation bandwidth below about 20 Hz.  
VCTRL basically controls turnon time, dead time in VSFF,  
skip mode and STATICOVP:  
of V /L where L is the inductor value as shown in Figure 5.  
IN  
At the end of the on time (t or t ), the inductor starts to  
1
ON  
demagnetize. The inductor current ramps down until it  
reaches zero. The duration of this phase is t . At that  
2
moment, a new switching cycle starts if the circuit operates  
in CrM. When in DCM, there is a dead time t that lasts until  
3
the next clock is generated.  
t
2
t
t
3
1
I
L
(= t  
)
ON  
Turnon time is proportional to V  
– V  
as  
CTRL  
CTRL(MIN)  
in eq. 5.  
V
IN  
/L  
Dead time (ZCD to DRV turnon delay time) is  
lengthened as V is lowered from V  
time  
.
CTRL(FFEN)  
CTRL  
T
V  
is pulled down by 30 mA I  
when  
CTRL  
VCTRL(BO)  
Figure 5. Inductor Current in DCM  
brownout or DIS sleep mode entering process starts. If  
is lower than 0.5 V V in the 30 mA  
V
CTRL  
CTRL(MIN)  
One can show that in both CrM and DCM, the input  
current is given by:  
current enable condition, STATICOVP is triggered and  
NCP1623 enters OFF mode.  
ǒ
Ǔ
ǒ
Ǔ
t1 @ t1 ) t2  
tON @ t1 ) t2  
IIN + VIN  
+ VIN  
Follower Boost A version only  
2 @ L @ T  
2 @ L @ T  
(eq. 3)  
At lowline, a Follower Boost reduces the output voltage  
to optimize the PFC stage efficiency and significantly shrink  
its size and cost. In particular, the boost inductance and the  
MOSFET losses can be dramatically reduced. Since, the  
output voltage must remain higher than the line voltage, the  
output voltage is lowered in low line only while it remains  
regulated to the default nominal level generally set to 400 V  
in highline conditions. Practically, the NCP1623A controls  
this 2level follower boost operation through the feedback  
where T = t + t + t , switching period (t being 0 in CrM).  
1
2
3
3
In the light of the eq. 3, we note that I is proportional to  
IN  
V
if t ·(t + t )/T is a constant. In the voltage mode without  
IN  
1 1 2  
Ontime Modulation, DRV turnon time (t or t in eq. 3)  
ON  
1
is set by:  
VCTRL * VCTRL(MIN)  
tON + tON(MAX)  
@
VCTRL(MAX) * VCTRL(MIN)  
(eq. 4)  
pin which sources the current I  
low line detection condition. I  
voltage as follows:  
(25 mA typically) in  
offsets the feedback  
FB(LL)  
FB(LL)  
where t  
is maximum turnon time and t  
at  
ON(MAX)  
ON(MAX)  
lowline is 2.5 times longer than highline condition by  
2level line feedforward.  
RFB2  
In order to keep t ·(t + t )/T constant, NCP1623 further  
VFB  
+
@ VOUT ) RFB1 ø RFB2 @ IFB(LL)  
1
1
2
RFB1 ) RFB2  
modulate t by the factor of T/(t + t ) information detected  
ON  
1
2
(eq. 7)  
from previous switching:  
where R  
and R  
are the upper and the lower resistors  
VCTRL * VCTRL(MIN)  
FB1  
FB2  
T
tON + tON(MAX)  
@
@
of the feedback bridge as shown in Figure 1.  
Finally, the output regulation voltage level is:  
t1 ) t2  
VCTRL(MAX) * VCTRL(MIN)  
(eq. 5)  
RFB1 ) RFB2  
(t + t )/T in eq. 3 is removed by T/(t + t ) in the modulated  
VOUT  
+
@ VREF * RFB1 @ IFB(LL)  
1
2
1
2
RFB2  
t
eq. 5 so that the input current is finally given by:  
ON  
(eq. 8)  
tON(MAX)  
VCTRL * VCTRL(MIN)  
Thus, the lowline regulation level depends on the  
feedback upper resistance, R . As an example, if is  
IIN + VIN  
@
2 @ L  
VCTRL(MAX) * VCTRL(MIN)  
FB1  
RFB1  
(eq. 6)  
6 MW and R  
is 37.7 kW:  
FB2  
Therefore, NCP1623 controls both CrM and DCM with  
no degradation in power factor and no discontinuity in the  
power delivery.  
6 M ) 37.7 k  
VOUT(HL)  
+
@ 2.5 + 400 V  
37.7 k  
VOUT(LL) + 400 V * 6 M @ 25 m + 250 V  
www.onsemi.com  
11  
 
NCP1623  
Low Line  
A version  
LL&A  
I
PFCOK  
R
S
Q
I
I
VCTRL(START)  
OFF  
FB(LL)  
VCTRL(DRE)  
DRE  
PFCOK  
VCTRL  
LL&A  
FB  
G
m
V
REF  
+
I
FB(UVP)  
V
Clamp BONOK DIS  
CTRL(MAX)  
+
4.5 V  
FASTOVP  
V
FB(FOVP)  
0
STATIC  
OVP Detection  
V
Clamp  
CTRL(MIN)  
V
V
FB(FOVPLL)  
1
STATICOVP  
0.5 V  
LL&A  
+
Switching control for regulation  
SOFTOVP  
V
FB(SOVP)  
0
1
Ontime  
Modulation  
FB(SOVPLL)  
LL&A  
Valley Sync.  
Freq. Foldback  
DRE  
+
V
PFCOK  
OVP2  
FB(DRE)  
SKIP  
+
V
VCTRL(SKIP)  
UVP  
V
+
FB(UVP)  
0
1
V
FB(UVPLL)  
LL&A  
Figure 6. Feedback Regulation and Transient Control  
FEEDBACK TRANSIENT CONTROL  
higher than a fast OVP threshold, V  
, switching is  
FB(FOVP)  
immediately disabled. At lowline condition with A version  
enabling follower boost, soft and fast OVP thresholds,  
Soft Start  
At startup,  
compensation capacitor properly for soft start. When FB  
voltage reaches close to V , the sourcing current of the  
OTA is reduced to 0 A where PFCOK signal is set to high  
level and I  
I
sources an external  
VCTRL(START)  
V
and V , are increased.  
FB(FOVPLL)  
FB(SOVPLL)  
Based on these control methods at output voltage transient  
condition, NCP1623 triggers DRE, soft OVP and fast OVP  
at below levels:  
REF  
is turned off.  
VCTRL(START)  
DRE:  
Dynamic Response Enhancer (DRE)  
V  
= 95.5%/97.5% x V  
FB(DRE)  
REF  
The NCP1623 embeds a “Dynamic Response Enhancer”  
(DRE) that deals with the undershoots of the output voltage  
at abrupt increases of the load current. An internal  
comparator monitors the FB pin and when this voltage is  
Soft OVP:  
V  
V  
= 105%/103% x V  
FB(SOVP)  
REF  
= 110%/108% x V  
FB(SOVPLL)  
REF  
Fast OVP:  
lower than 95.5% V , a 200 mA I  
is sourced  
REF  
VCTRL(DRE)  
V  
V  
= 107%/105% x V  
REF  
FB(FOVP)  
to speed up the charge of the compensation network as  
shown in Figure 6. Effectively this appears as a 10x increase  
in the loop gain. DRE is disabled during the startup  
sequence until the PFC stage has stabilized and PFCOK is  
high. DRE is also disabled when the OVP2 (Second Over  
Voltage Protection) is triggered.  
= 114%/112% x V  
FB(FOVPLL)  
REF  
where V  
and V  
are set at lowline  
FB(SOVPLL)  
FB(FOVPLL)  
with Follower Boost enabled in A version.  
Under Voltage Protection (UVP)  
If the FB pin is open, V is pulled down lower than an  
FB  
Soft / Fast Over Voltage Protection (SOVP, FOVP)  
In case of output overshoots, soft OVP is firstly triggered  
by comparing FB voltage and a soft OVP threshold,  
UVP threshold voltage (V  
stops. The output voltage of the PFC stage is scaled down by  
a resistor divider and monitored by the OTA inverting input  
) and DRV switching  
FB(UVP)  
V
as in Figure 6. Once the soft OVP is triggered, the  
(FB pin voltage). FB sink current, I  
for UVP, is  
FB(SOVP)  
FB(UVP)  
turnon time is gradually decreased in 4 to 5 switching  
periods to smoothly reduce powering. If FB voltage is even  
minimized less than 450 nA to allow the use of a high  
impedance feedback resistor network.  
www.onsemi.com  
12  
 
NCP1623  
CURRENT SENSE AND ZERO CROSS DETECTION  
auxiliary winding as shown in Figure 1. The direct V  
DS  
The NCP1623 uses CS/ZCD pin to detect a switching FET  
conduction current and drain voltage. The FET current is  
sensing is a simple solution with no auxiliary winding and  
the auxiliary winding based ZCD sensing is generally  
preferred to improve CS/ZCD noise immunity with lower  
standby power.  
As illustrated in Figure 7, the CS/ZCD pin provides the  
input signal for the following functions:  
detected by a current sense resistor (R ) inserted  
SENSE  
between the FET source and ground. The drain voltage is  
monitored by directly sensing V using a resistive bridge  
DS  
or by monitoring a reflected V , typically obtained from an  
DS  
SOURCE  
DRAIN  
R
SENSE  
R
R
CS1  
CS2  
CSZCD  
OCP blanking  
400 ns t  
OCP  
OCP(LEB)  
V
V
CS(OCP)  
Buffer  
H
OVS blanking  
200 ns t  
OVS(LEB)  
OVS  
ZCD  
CS(OVS)  
L
DRV  
ZCD blanking  
600 ns t  
OVS(LEB)  
Hysteresis  
+ V  
+ V  
if ZCD is high  
if ZCD is low  
Filter  
ZCD(THH)  
ZCD(THL)  
enable  
50 ms timer  
BONOK  
reset  
t
BD(BLANK)  
Hysteretic reference  
if BONOK is high  
V
SNS  
V
V
CS/ZCD(BOEX)  
Filter  
if BONOK is low  
CS/ZCD(BOEN)  
enable  
reset  
25 ms timer  
LL  
t
Hysteretic reference  
LD(BLANK)  
V
V
if LL is high  
if LL is low  
CS/ZCD(HL)  
CS/ZCD(LL)  
500 ms timer  
count  
done  
t
LD(WDG)  
OVP 2 blanking  
reset  
DRV  
1 ms t  
OVP2  
OVP2(BLANK)  
V
ZCD(OVP2EN)  
Figure 7. CS/ZCD Internal Circuit Block  
Excessive Current Protection (OCP and OVS)  
The NCP1623 turns off the FET when V  
compared with the sum of the filtered V  
and  
CS/ZCD  
reaches  
V
hysteresis to generate ZCD signal.  
CS/ZCD  
ZCD(THH/L)  
the overcurrent threshold (500 mV V  
) after OCP  
When no signal is received that triggers the ZCD  
comparator during the offtime, an internal 200 ms  
(t ) watchdog timer initiates the next drive pulse.  
CS(OCP)  
blanking time (400 ns t ) from DRV on. In addition,  
OCP(LEB)  
if V  
V
further exceeds the overstress level (750 mV  
) after OVS blanking time (200 ns t  
CS/ZCD  
ZCD(WDG)  
) from  
At the end of this delay, CS/ZCD pin sources 50 mA  
I and compare V with 240 mV V  
ZCD(GND)  
CS(OVS)  
OVS(LEB)  
DRV on, FET is turned off for OVS watch dog time (800 ms  
).  
CS/ZCD  
ZCD(GND)  
t
to detect a possible grounding of this pin and prevent a  
subsequent fault operation.  
OVS(WDG)  
Zero Current Detection (ZCD)  
The NCP1623 turns on DRV at the valley of the  
drainsource voltage to minimize switching loss and noise.  
Line Sensing  
A low pass filtered CS/ZCD voltage, V , is an image of  
SNS  
After ZCD blanking time (600 ns t  
), V  
is  
the input voltage. The blanking time (25 ms, t ) for  
LD(BLANK)  
ZCD(BLANK)  
CS/ZCD  
www.onsemi.com  
13  
 
NCP1623  
OFF MODE  
lowline (LL) detection is set longer than a halfline cycle  
but not that long to quickly detects an abrupt line transient  
from high to low. When the line changes from low to high  
The NCP1623 turns off DRV switching and enters the  
OFF mode when one of the following faults is detected:  
UVLO when V < V  
TSD when T > 150°C.  
UVP when V < V  
STATICOVP triggered by BO or DIS sleep mode.  
and V  
is over V  
, high line mode is  
SNS  
CS/ZCD(HL)  
CC  
CC(OFF).  
immediately entered. When highline is detected (that is,  
when signal “LL” of Figure 7 is low), the loop gain, t  
J
/
ON  
.
FB  
FB(UVP)  
(V  
– V  
) ms/V, is divided by about 2.5 to  
CTRL  
CTRL(MIN)  
ensure a 2level feedforward.  
The FB pin of the A version sources the current I  
FB(LL)  
In OFF mode, V  
reset to low. Also, the major part of the circuit sleeps except  
for UVLO, TSD, UVP, BO and DIS blocks.  
In case of OFF mode triggered by DIS function, the circuit  
consumption is further minimized to I  
is grounded and PFCOK signal is  
CTRL  
when lowline is detected. This is used to reduce the  
regulation level at lowline and hence provide the follower  
boost capability. Also, when follower boost is enabled, the  
line sensing result is forced to highline if DRV switching  
is disabled for a line detection watch dog time (500 ms  
(100 mA max).  
CC(DIS)  
DISABLE FUNCTION  
t
).  
LD(WDG)  
The NCP1623 operation is disabled when the DIS pin  
voltage exceeds the DIS sleep mode enter voltage (V  
Brown Out  
The NCP1623 uses V  
voltage detection same as the line sensing. By default, when  
powered, the circuit is in a fault state (“BONOK” high) and  
BONOK is set to low when V  
As shown in Figure 7, when V  
brownout enter voltage (V  
blanking time (50 ms t  
and the drive is not immediately disabled. Instead, a 30 mA  
current source (I ) gradually reduces V . As a  
result, the circuit keeps generating DRV pulses until the  
STATICOVP trips (that is when V  
minimum clamp level, 0.5 V V  
Figure 6). This method relieves the risk of input voltage  
bouncing the fault line detection caused by EMI filter  
oscillation from an abrupt DRV stop.  
,
DIS(EN)  
(filtered V  
) for the input  
SNS  
CS/ZCD  
2.1 V maximum) for DIS blanking time (t  
).  
DIS(BLANK)  
Practically, this occurs if the DIS pin is let floating since an  
internal 530 kW resistor pulls up the pin. In this case, the V  
CC  
exceeds V  
.
SNS  
CS/ZCD(BOEX)  
current consumption is reduced to I  
(100 mA  
CC(DIS)  
is lower than the  
SNS  
maximum) and the PFC stage stops operating.  
Similar to power reducing sequence in brownout, the  
drive is not immediately disabled and 30 mA current source  
) for BO  
CS/ZCD(BOEN)  
), BONOK signal is high  
BO(BLANK)  
gradually reduces V  
until the STATICOVP function  
CTRL  
VCTRL(BO)  
CTRL  
trips in Figure 6. The DIS sleep mode is maintained until the  
DIS pin is externally pulled down below the DIS sleep mode  
reaches the  
as shown in  
CTRL  
exit voltage (V  
, 0.8 V minimum).  
DIS(EX)  
CTRL(MIN)  
If the NCP1623 enters the OFF mode by other fault  
detections (not by STATICOVP in DIS process), the DIS pin  
is grounded through a 530 kW resistor.  
OUTPUT DRIVE  
Second Over Voltage Protection (OVP2)  
The output stage in DRV pin contains a totem pole  
optimized to minimize crossconduction currents, making  
the NCP1623 compatible with highfrequency operation.  
Its high current capability (500 mA / +800 mA) allows it  
to effectively drive high gate charge power FET. In the large  
During the FET turnoff time, the CS/ZCD pin signal is  
proportional to the output voltage and can hence unveil  
overshoots. This provides an additional protection to protect  
the PFC stage in case of a failure of the resistive network at  
FB pin. When an OVP2 fault is detected after OVP2  
V range (up to 30 V), the DRV pin turnon voltage is  
blanking time (t ) from DRV off, the circuit  
OVP2(BLANK)  
CC  
clamped up to 14 V.  
stops generating DRV pulses for 75 ms t  
typically.  
OVP2(RST)  
OVP2 is disabled for 60 ms at startup and for 10 ms at the  
end of 75 ms t time to prevent an abnormal OVP2  
detection at the transient condition, but the output voltage  
could be over the OVP2 level if the bulk voltage is abruptly  
charged during these OVP2 disabling times.  
FAILURE DETECTION  
OVP2(RST)  
When manufacturing a power supply, components can be  
accidently shorted or improperly soldered. Such failures can  
also happen to occur later on because of the components  
fatigue or excessive stress. The false open/short circuits are  
generally required not to cause fire, smoke nor big noise.  
The NCP1623 integrates functions which help meet this  
requirement.  
THERMAL SHUTDOWN  
An internal thermal sensing circuitry disables the circuit  
gate drive and keeps the power switch off when the junction  
temperature exceeds 150°C. The NCP1623 remains off until  
the junction temperature drops below about 100°C (50°C  
hysteresis). The temperature shutdown remains active as  
FB Pin Open Protection  
A 250 nA sink current (I  
voltage if it is floating so that the UVP protection trips. This  
current source is small (450 nA maximum) so that its impact  
) pulls down the FB pin  
FB(UVP)  
long as V is higher than V  
. The reset action forces  
CC(RST)  
CC  
the TSD threshold to 150°C so that any cold startup will be  
done with the proper TSD level.  
www.onsemi.com  
14  
NCP1623  
on the bulk voltage regulation level remains negligible with  
typical feedback resistor dividers.  
NCP1623 checks the CS/ZCD pin short condition where the  
operation stops if V is lower than 275 mV  
CS/ZCD  
(V  
maximum) when shortly sourcing 40 mA  
minimum). Therefore, CS/ZCD pin external  
ZCD(GND)  
GND Pin Open Protection  
(I  
ZCD(GND)  
If the GND pin is not connected, GND pin voltage is  
floating and could be higher than PFC stage power ground  
level. If NCP1623 detects a reversed voltage between GND  
and CS/ZCD pin for 800 ms, IC is reset with no switching  
operation.  
impedance should be higher than 7 kW.  
Bypass Diode Short Protection  
A bypass diode is generally placed between the input and  
output highvoltage rails to divert this inrush current. When  
the bypass diode is shortcircuited, the inductor current  
enters deep CCM as the discharging inductor current slope  
is very gentle. In such case, the overstress protection (OVS)  
CZ/ZCD Pin Short Protection  
If ZCD signal is not detected at all at CS/ZCD pin short  
condition, ZCD watchdog timer doesn’t allow DRV turnon  
can trip and stop the drive switching for 800 ms t  
.
OVS(WDG)  
for 200 ms t . After the watchdog time, the  
ZCD(WDG)  
www.onsemi.com  
15  
NCP1623  
Table 4. ORDERING INFORMATION  
Device  
Marking  
UPD  
Package  
Shipping  
NCP1623ASNT1G  
NCP1623ADR2G  
TSOP6 (PbFree)  
SOIC8 (PbFree)  
3000 / Tape & Reel  
2500 / Tape & Reel  
1623A  
1623C  
NCP1623CDR2G  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
Table 5. CIRCUITS SPECIFIC OPTIONS  
NCP1623 Versions  
A
C
SOIC8  
No  
Options  
Package  
TSOP6 / SOIC8  
Follower Boost  
Yes  
12.5 ms / 5.0 ms  
25 ms  
Maximum Ontime at LL/HL  
DIS Mode Detection Blanking Time (SOIC8 Only)  
OVP2 Protection  
16.6 ms / 6.6 ms  
25 ms  
No  
Yes  
BrownOut Protection  
No  
No  
www.onsemi.com  
16  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TSOP6  
CASE 318G02  
ISSUE V  
1
DATE 12 JUN 2012  
SCALE 2:1  
NOTES:  
D
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
H
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM  
LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.  
4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH,  
PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR  
GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSIONS D  
AND E1 ARE DETERMINED AT DATUM H.  
6
1
5
4
L2  
GAUGE  
PLANE  
E1  
E
5. PIN ONE INDICATOR MUST BE LOCATED IN THE INDICATED ZONE.  
2
3
L
MILLIMETERS  
SEATING  
M
C
NOTE 5  
DIM  
A
A1  
b
c
D
E
E1  
e
MIN  
0.90  
0.01  
0.25  
0.10  
2.90  
2.50  
1.30  
0.85  
0.20  
NOM  
1.00  
MAX  
1.10  
0.10  
0.50  
0.26  
3.10  
3.00  
1.70  
1.05  
0.60  
PLANE  
b
DETAIL Z  
e
0.06  
0.38  
0.18  
3.00  
c
2.75  
A
0.05  
1.50  
0.95  
L
0.40  
A1  
L2  
M
0.25 BSC  
DETAIL Z  
0°  
10°  
STYLE 1:  
STYLE 2:  
PIN 1. EMITTER 2  
2. BASE 1  
STYLE 3:  
PIN 1. ENABLE  
2. N/C  
STYLE 4:  
PIN 1. N/C  
2. V in  
STYLE 5:  
PIN 1. EMITTER 2  
2. BASE 2  
STYLE 6:  
PIN 1. DRAIN  
2. DRAIN  
3. GATE  
PIN 1. COLLECTOR  
2. COLLECTOR  
3. BASE  
3. COLLECTOR 1  
4. EMITTER 1  
5. BASE 2  
3. R BOOST  
4. Vz  
5. V in  
6. V out  
3. NOT USED  
3. COLLECTOR 1  
4. EMITTER 1  
5. BASE 1  
4. SOURCE  
5. DRAIN  
6. DRAIN  
4. GROUND  
5. ENABLE  
6. LOAD  
4. EMITTER  
5. COLLECTOR  
6. COLLECTOR  
6. COLLECTOR 2  
6. COLLECTOR 2  
STYLE 7:  
STYLE 8:  
PIN 1. Vbus  
2. D(in)  
STYLE 9:  
STYLE 10:  
PIN 1. D(OUT)+  
2. GND  
STYLE 11:  
STYLE 12:  
PIN 1. I/O  
2. GROUND  
3. I/O  
PIN 1. COLLECTOR  
2. COLLECTOR  
3. BASE  
PIN 1. LOW VOLTAGE GATE  
2. DRAIN  
PIN 1. SOURCE 1  
2. DRAIN 2  
3. D(in)+  
4. D(out)+  
5. D(out)  
6. GND  
3. SOURCE  
3. D(OUT)  
4. D(IN)−  
5. VBUS  
6. D(IN)+  
3. DRAIN 2  
4. N/C  
5. COLLECTOR  
6. EMITTER  
4. DRAIN  
4. SOURCE 2  
5. GATE 1  
4. I/O  
5. DRAIN  
5. VCC  
6. I/O  
6. HIGH VOLTAGE GATE  
6. DRAIN 1/GATE 2  
STYLE 13:  
STYLE 14:  
STYLE 15:  
PIN 1. ANODE  
2. SOURCE  
3. GATE  
STYLE 16:  
STYLE 17:  
PIN 1. EMITTER  
2. BASE  
PIN 1. GATE 1  
2. SOURCE 2  
3. GATE 2  
PIN 1. ANODE  
2. SOURCE  
PIN 1. ANODE/CATHODE  
2. BASE  
3. GATE  
3. EMITTER  
3. ANODE/CATHODE  
4. ANODE  
5. CATHODE  
6. COLLECTOR  
4. DRAIN 2  
5. SOURCE 1  
6. DRAIN 1  
4. CATHODE/DRAIN  
5. CATHODE/DRAIN  
6. CATHODE/DRAIN  
4. DRAIN  
4. COLLECTOR  
5. ANODE  
5. N/C  
6. CATHODE  
6. CATHODE  
GENERIC  
MARKING DIAGRAM*  
RECOMMENDED  
SOLDERING FOOTPRINT*  
6X  
0.60  
XXXAYWG  
XXX MG  
G
G
1
1
6X  
0.95  
3.20  
IC  
STANDARD  
XXX = Specific Device Code  
XXX = Specific Device Code  
A
Y
W
G
=Assembly Location  
= Year  
= Work Week  
M
G
= Date Code  
= PbFree Package  
0.95  
= PbFree Package  
PITCH  
DIMENSIONS: MILLIMETERS  
*This information is generic. Please refer to device data  
sheet for actual part marking. PbFree indicator, “G”  
or microdot “G”, may or may not be present. Some  
products may not follow the Generic Marking.  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB14888C  
TSOP6  
PAGE 1 OF 1  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC8 NB  
CASE 75107  
ISSUE AK  
8
1
DATE 16 FEB 2011  
SCALE 1:1  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
Y
B
0.25 (0.010)  
1
K
Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
0.050 BSC  
Z−  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
0.10 (0.004)  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
GENERIC  
MARKING DIAGRAM*  
SOLDERING FOOTPRINT*  
8
1
8
1
8
8
XXXXX  
ALYWX  
XXXXXX  
AYWW  
G
XXXXX  
ALYWX  
XXXXXX  
AYWW  
1.52  
0.060  
G
1
1
Discrete  
Discrete  
(PbFree)  
IC  
IC  
(PbFree)  
7.0  
0.275  
4.0  
0.155  
XXXXX = Specific Device Code  
XXXXXX = Specific Device Code  
A
L
= Assembly Location  
= Wafer Lot  
A
= Assembly Location  
= Year  
Y
Y
W
G
= Year  
= Work Week  
= PbFree Package  
WW  
G
= Work Week  
= PbFree Package  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
STYLES ON PAGE 2  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42564B  
SOIC8 NB  
PAGE 1 OF 2  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
SOIC8 NB  
CASE 75107  
ISSUE AK  
DATE 16 FEB 2011  
STYLE 1:  
STYLE 2:  
STYLE 3:  
STYLE 4:  
PIN 1. EMITTER  
2. COLLECTOR  
3. COLLECTOR  
4. EMITTER  
5. EMITTER  
6. BASE  
PIN 1. COLLECTOR, DIE, #1  
2. COLLECTOR, #1  
3. COLLECTOR, #2  
4. COLLECTOR, #2  
5. BASE, #2  
PIN 1. DRAIN, DIE #1  
2. DRAIN, #1  
3. DRAIN, #2  
4. DRAIN, #2  
5. GATE, #2  
PIN 1. ANODE  
2. ANODE  
3. ANODE  
4. ANODE  
5. ANODE  
6. ANODE  
7. ANODE  
6. EMITTER, #2  
7. BASE, #1  
6. SOURCE, #2  
7. GATE, #1  
7. BASE  
8. EMITTER  
8. EMITTER, #1  
8. SOURCE, #1  
8. COMMON CATHODE  
STYLE 5:  
STYLE 6:  
PIN 1. SOURCE  
2. DRAIN  
STYLE 7:  
STYLE 8:  
PIN 1. COLLECTOR, DIE #1  
2. BASE, #1  
PIN 1. DRAIN  
2. DRAIN  
3. DRAIN  
4. DRAIN  
5. GATE  
PIN 1. INPUT  
2. EXTERNAL BYPASS  
3. THIRD STAGE SOURCE  
4. GROUND  
5. DRAIN  
6. GATE 3  
7. SECOND STAGE Vd  
8. FIRST STAGE Vd  
3. DRAIN  
3. BASE, #2  
4. SOURCE  
5. SOURCE  
6. GATE  
7. GATE  
8. SOURCE  
4. COLLECTOR, #2  
5. COLLECTOR, #2  
6. EMITTER, #2  
7. EMITTER, #1  
8. COLLECTOR, #1  
6. GATE  
7. SOURCE  
8. SOURCE  
STYLE 9:  
STYLE 10:  
PIN 1. GROUND  
2. BIAS 1  
STYLE 11:  
PIN 1. SOURCE 1  
2. GATE 1  
STYLE 12:  
PIN 1. EMITTER, COMMON  
2. COLLECTOR, DIE #1  
3. COLLECTOR, DIE #2  
4. EMITTER, COMMON  
5. EMITTER, COMMON  
6. BASE, DIE #2  
PIN 1. SOURCE  
2. SOURCE  
3. SOURCE  
4. GATE  
3. OUTPUT  
4. GROUND  
5. GROUND  
6. BIAS 2  
7. INPUT  
8. GROUND  
3. SOURCE 2  
4. GATE 2  
5. DRAIN 2  
6. DRAIN 2  
7. DRAIN 1  
8. DRAIN 1  
5. DRAIN  
6. DRAIN  
7. DRAIN  
8. DRAIN  
7. BASE, DIE #1  
8. EMITTER, COMMON  
STYLE 13:  
PIN 1. N.C.  
2. SOURCE  
3. SOURCE  
4. GATE  
STYLE 14:  
PIN 1. NSOURCE  
2. NGATE  
STYLE 15:  
PIN 1. ANODE 1  
2. ANODE 1  
STYLE 16:  
PIN 1. EMITTER, DIE #1  
2. BASE, DIE #1  
3. PSOURCE  
4. PGATE  
5. PDRAIN  
6. PDRAIN  
7. NDRAIN  
8. NDRAIN  
3. ANODE 1  
4. ANODE 1  
5. CATHODE, COMMON  
6. CATHODE, COMMON  
7. CATHODE, COMMON  
8. CATHODE, COMMON  
3. EMITTER, DIE #2  
4. BASE, DIE #2  
5. COLLECTOR, DIE #2  
6. COLLECTOR, DIE #2  
7. COLLECTOR, DIE #1  
8. COLLECTOR, DIE #1  
5. DRAIN  
6. DRAIN  
7. DRAIN  
8. DRAIN  
STYLE 17:  
PIN 1. VCC  
2. V2OUT  
3. V1OUT  
4. TXE  
STYLE 18:  
STYLE 19:  
PIN 1. SOURCE 1  
2. GATE 1  
STYLE 20:  
PIN 1. ANODE  
2. ANODE  
3. SOURCE  
4. GATE  
PIN 1. SOURCE (N)  
2. GATE (N)  
3. SOURCE (P)  
4. GATE (P)  
5. DRAIN  
3. SOURCE 2  
4. GATE 2  
5. DRAIN 2  
6. MIRROR 2  
7. DRAIN 1  
8. MIRROR 1  
5. RXE  
6. VEE  
7. GND  
8. ACC  
5. DRAIN  
6. DRAIN  
7. CATHODE  
8. CATHODE  
6. DRAIN  
7. DRAIN  
8. DRAIN  
STYLE 21:  
STYLE 22:  
STYLE 23:  
STYLE 24:  
PIN 1. CATHODE 1  
2. CATHODE 2  
3. CATHODE 3  
4. CATHODE 4  
5. CATHODE 5  
6. COMMON ANODE  
7. COMMON ANODE  
8. CATHODE 6  
PIN 1. I/O LINE 1  
PIN 1. LINE 1 IN  
PIN 1. BASE  
2. COMMON CATHODE/VCC  
3. COMMON CATHODE/VCC  
4. I/O LINE 3  
5. COMMON ANODE/GND  
6. I/O LINE 4  
7. I/O LINE 5  
8. COMMON ANODE/GND  
2. COMMON ANODE/GND  
3. COMMON ANODE/GND  
4. LINE 2 IN  
2. EMITTER  
3. COLLECTOR/ANODE  
4. COLLECTOR/ANODE  
5. CATHODE  
6. CATHODE  
7. COLLECTOR/ANODE  
8. COLLECTOR/ANODE  
5. LINE 2 OUT  
6. COMMON ANODE/GND  
7. COMMON ANODE/GND  
8. LINE 1 OUT  
STYLE 25:  
PIN 1. VIN  
2. N/C  
STYLE 26:  
PIN 1. GND  
2. dv/dt  
STYLE 27:  
PIN 1. ILIMIT  
2. OVLO  
STYLE 28:  
PIN 1. SW_TO_GND  
2. DASIC_OFF  
3. DASIC_SW_DET  
4. GND  
3. REXT  
4. GND  
5. IOUT  
6. IOUT  
7. IOUT  
8. IOUT  
3. ENABLE  
4. ILIMIT  
5. SOURCE  
6. SOURCE  
7. SOURCE  
8. VCC  
3. UVLO  
4. INPUT+  
5. SOURCE  
6. SOURCE  
7. SOURCE  
8. DRAIN  
5. V_MON  
6. VBULK  
7. VBULK  
8. VIN  
STYLE 30:  
PIN 1. DRAIN 1  
2. DRAIN 1  
STYLE 29:  
PIN 1. BASE, DIE #1  
2. EMITTER, #1  
3. BASE, #2  
3. GATE 2  
4. SOURCE 2  
5. SOURCE 1/DRAIN 2  
6. SOURCE 1/DRAIN 2  
7. SOURCE 1/DRAIN 2  
8. GATE 1  
4. EMITTER, #2  
5. COLLECTOR, #2  
6. COLLECTOR, #2  
7. COLLECTOR, #1  
8. COLLECTOR, #1  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42564B  
SOIC8 NB  
PAGE 2 OF 2  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NCP1623CDR2G

Critical Conduction Mode (CrM) Power Factor Correction Controller, Follower Boost
ONSEMI

NCP163

250 mA, Ultra-Low Noise and High PSRR LDO Regulator
ONSEMI

NCP1631

Interleaved, 2-Phase Power Factor Controller
ONSEMI

NCP1631DR2G

Interleaved, 2-Phase Power Factor Controller
ONSEMI

NCP1631_10

Interleaved, 2-Phase Power Factor Controller
ONSEMI

NCP1632

Interleaved, 2-Phase Power Factor Controller
ONSEMI

NCP1632ADR2G

Critical Conduction Mode (CrM) Power Factor Controller, Interleaved
ONSEMI

NCP1632DR2G

Interleaved, 2-Phase Power Factor Controller
ONSEMI

NCP1632_18

Interleaved, 2-Phase Power Factor Controller
ONSEMI

NCP163AFCS120T2G

LDO 稳压器,250 mA,超高 PSRR,超低噪音
ONSEMI

NCP163AFCS180T2G

250 mA, Ultra-Low Noise and High PSRR LDO Regulator
ONSEMI

NCP163AFCS250T2G

LDO 稳压器,250 mA,超高 PSRR,超低噪音
ONSEMI