NCP1653ADR2G [ONSEMI]

Compact, Fixed-Frequency, Continuous Conduction Mode PFC Controller; 紧凑型,固定频率,连续导通模式PFC控制器
NCP1653ADR2G
型号: NCP1653ADR2G
厂家: ONSEMI    ONSEMI
描述:

Compact, Fixed-Frequency, Continuous Conduction Mode PFC Controller
紧凑型,固定频率,连续导通模式PFC控制器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 功率因数校正 光电二极管
文件: 总20页 (文件大小:184K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP1653, NCP1653A  
Compact, Fixed−Frequency,  
Continuous Conduction  
Mode PFC Controller  
The NCP1653 is a controller designed for Continuous Conduction  
Mode (CCM) Power Factor Correction (PFC) boost circuits. It  
operates in the follower boost or constant output voltage in 67 or 100  
kHz fixed switching frequency. Follower boost offers the benefits of  
reduction of output voltage and hence reduction in the size and cost  
of the inductor and power switch. Housed in a DIP−8 or SO−8  
package, the circuit minimizes the number of external components  
and drastically simplifies the CCM PFC implementation. It also  
integrates high safety protection features. The NCP1653 is a driver  
for robust and compact PFC stages.  
http://onsemi.com  
MARKING DIAGRAMS  
8
1
8
NCP1653  
AWL  
YYWW  
NCP1653A  
AWL  
8
1
YYWW  
PDIP−8  
P SUFFIX  
1
Features  
CASE 626  
IEC1000−3−2 Compliant  
8
1
8
Continuous Conduction Mode  
8
N1653  
ALYW  
G
1653A  
ALYW  
G
Average Current−Mode or Peak Current−Mode Operation  
Constant Output Voltage or Follower Boost Operation  
Very Few External Components  
1
SO−8  
1
D SUFFIX  
CASE 751  
A suffix = 67 kHz option  
= Assembly Location  
WL, L = Wafer Lot  
YY, Y = Year  
WW, W = Work Week  
Fixed Switching Frequency: 67 kHz = NCP1653A,  
Fixed Switching Frequency: 100 kHz = NCP1653  
Soft−Start Capability  
A
V Undervoltage Lockout with Hysteresis (8.7 / 13.25 V)  
G
= Pb−Free Package  
CC  
Overvoltage Protection (107% of Nominal Output Level)  
Undervoltage Protection or Shutdown (8% of Nominal Output Level)  
Programmable Overcurrent Protection  
Programmable Overpower Limitation  
Thermal Shutdown with Hysteresis (120 / 150_C)  
Pb−Free Packages are Available  
Typical Applications  
PIN CONNECTIONS  
FB  
V
CC  
1
2
3
4
8
7
6
5
V
Drv  
control  
In  
Gnd  
TV & Monitors  
CS  
V
M
PC Desktop SMPS  
(Top View)  
AC Adapters SMPS  
White Goods  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 18 of this data sheet.  
EMI  
Filter  
AC  
Input  
Output  
15 V  
FB  
V
CC  
V
control  
Drv  
In  
Gnd  
CS  
V
M
NCP1653  
Figure 1. Typical Application Circuit  
©
Semiconductor Components Industries, LLC, 2005  
1
Publication Order Number:  
December, 2005 − Rev. 4  
NCP1653/D  
NCP1653, NCP1653A  
L
I
Output Voltage (V  
)
out  
I
in  
V
in  
L
EMI  
Filter  
AC  
Input  
C
bulk  
C
R
FB  
filter  
on  
R
CS  
I
L
off  
I
FB  
V
control  
Vreg  
2
Current  
Mirror  
1
300 k  
9 V  
FB / SD  
C
control  
9 V  
1
0
0
1
I
Iref  
IFB  
96%  
ref  
Regulation Block  
13.25 V  
/ 8.7 V  
Overvoltage  
Protection  
V
control  
V
CC  
UVLO  
I
=
control  
R
1
(I > 107% I  
)
FB  
ref  
R = constant  
1
+
8
V
CC  
Shutdown / UVP  
(I < 8% I  
18 V  
Current  
)
ref  
FB  
&
Mirror  
R
vac  
4% I Hysteresis  
ref  
V
Overpower  
Limitation  
CC  
12 k  
In  
I
vac  
2
3
Reference Block  
Internal Bias  
(I  
I
> 3 nA )  
S
vac  
Turn on  
9 V  
C
vac  
V
M
R I I  
M S vac  
V
=
5
M
x
2 I  
control  
I
M
Thermal  
Shutdown  
9 V  
(120 / 150 °C)  
CS  
Overcurrent  
Protection  
(I > 200 mA)  
S
I
S
R
M
Current  
Mirror  
C
M
4
7
V
R
S
ref  
PFC  
I
ch  
Modulation  
9 V  
V
CC  
Drv  
+
+
R
Q
OR  
V
ramp  
C
ramp  
0
1
Output  
Driver  
Gnd  
S
6
67 or 100 kHz clock  
Figure 2. Functional Block Diagram  
http://onsemi.com  
2
 
NCP1653, NCP1653A  
PIN FUNCTION DESCRIPTION  
Pin  
Symbol  
Name  
Function  
1
FB / SD  
Feedback /  
Shutdown  
This pin receives a feedback current I which is proportional to the PFC circuit output voltage.  
The current is for output regulation, output overvoltage protection (OVP), and output  
undervoltage protection (UVP).  
FB  
When I goes above 107% I , OVP is activated and the Drive Output is disabled.  
FB  
ref  
When I goes below 8% I , the device enters a low−consumption shutdown mode.  
FB  
ref  
2
3
V
Control Voltage /  
Soft−Start  
The voltage of this pin V  
factor of the circuit. This pin is connected to an external capacitor C  
bandwidth typically below 20 Hz to achieve near unity power factor.  
directly controls the input impedance and hence the power  
control  
control  
to limit the V  
control  
control  
The device provides no output when V  
capacitor.  
= 0 V. Hence, C  
also works as a soft−start  
control  
control  
In  
Input Voltage  
Sense  
This pin sinks an input−voltage current I  
which is proportional to the RMS input voltage V .  
vac ac  
The current I  
is for overpower limitation (OPL) and PFC duty cycle modulation. When the  
vac  
2
product (I I ) goes above 3 nA , OPL is activated and the Drive Output duty ratio is reduced  
S vac  
by pulling down V  
indirectly to reduce the input power.  
control  
4
5
CS  
Input Current  
Sense  
This pin sources a current I which is proportional to the inductor current I . The sense current  
S L  
I
is for overcurrent protection (OCP), overpower limitation (OPL) and PFC duty cycle  
S
modulation. When I goes above 200 mA, OCP is activated and the Drive Output is disabled.  
S
V
M
Multiplier Voltage This pin provides a voltage V for the PFC duty cycle modulation. The input impedance of the  
M
PFC circuit is proportional to the resistor R externally connected to this pin. The device  
M
operates in average current−mode if an external capacitor C is connected to the pin.  
M
Otherwise, it operates in peak current−mode.  
6
7
8
GND  
Drv  
The IC Ground  
Drive Output  
This pin provides an output to an external MOSFET.  
V
CC  
Supply Voltage  
This pin is the positive supply of the device. The operating range is between 8.75 V and 18 V  
with UVLO start threshold 13.25 V.  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
FB, V  
, In, CS, V Pins (Pins 1−5)  
control  
M
Maximum Voltage Range  
Maximum Current  
V
−0.3 to +9  
100  
V
max  
I
mA  
max  
Drive Output (Pin 7)  
Maximum Voltage Range  
Maximum Current Range (Note 2)  
V
−0.3 to +18  
1.5  
V
A
max  
I
max  
Power Supply Voltage (Pin 8)  
Maximum Voltage Range  
Maximum Current  
V
−0.3 to +18  
100  
V
max  
I
mA  
max  
Power Dissipation and Thermal Characteristics  
P suffix, Plastic Package, Case 626  
Maximum Power Dissipation @ T = 70°C  
Thermal Resistance Junction−to−Air  
P
800  
100  
mW  
A
D
R
q
°C/W  
JA  
D suffix, Plastic Package, Case 751  
Maximum Power Dissipation @ T = 70°C  
P
450  
178  
mW  
A
D
Thermal Resistance Junction−to−Air  
Operating Junction Temperature Range  
Storage Temperature Range  
R
q
°C/W  
JA  
T
−40 to +125  
−65 to +150  
°C  
°C  
J
T
stg  
1. MaximumRatings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those  
indicated may adversely affect device reliability. Functional operation under absolute maximum−rated is not implied. Functional operation  
should be restricted to the Recommended Operating Conditions.  
A. This device series contains ESD protection and exceeds the following tests:  
Pins 1−8: Human Body Model 2000 V per MIL−STD−883, Method 3015.  
Machine Model Method 190 V.  
B. This device contains Latchup protection and exceeds 100 mA per JEDEC Standard JESD78.  
2. Guaranteed by design.  
http://onsemi.com  
3
NCP1653, NCP1653A  
ELECTRICAL CHARACTERISTICS (For typical values T = 25°C. For min/max values, T = −40°C to +125°C, V = 15 V,  
J
J
CC  
I
FB  
= 100 mA, I  
= 30 mA, I = 0 mA, unless otherwise specified)  
vac  
S
Characteristics  
Pin  
Symbol  
Min  
Typ  
Max  
Unit  
OSCILLATOR  
Switching Frequency  
NCP1653  
NCP1653A  
7
7
f
90  
60.3  
102  
67  
110  
73.7  
kHz  
%
SW  
Maximum Duty Cycle (V = 0 V) (Note 3)  
D
94  
M
max  
GATE DRIVE  
Gate Drive Resistor  
7
Output High and Draw 100 mA out of Drv pin (I  
= 100 mA)  
R
5.0  
2.0  
9.0  
6.6  
20  
18  
W
W
source  
OH  
Output Low and Insert 100 mA into Drv pin (I  
= 100 mA)  
R
OL  
sink  
Gate Drive Rise Time from 1.5 V to 13.5 V (Drv = 2.2 nF to Gnd)  
Gate Drive Fall Time from 13.5 V to 1.5 V (Drv = 2.2 nF to Gnd)  
7
7
t
88  
ns  
ns  
r
t
61.5  
f
FEEDBACK / OVERVOLTAGE PROTECTION / UNDERVOLTAGE PROTECTION  
Reference Current (V = 3 V)  
1
1
2
2
2
1
I
192  
95  
204  
96  
208  
98  
mA  
%
M
ref  
Regulation Block Ratio  
I
/I  
regL ref  
Vcontrol Pin Internal Resistor  
R
300  
2.4  
100  
kW  
V
control  
Maximum Control Voltage (I = 100 mA)  
V
FB  
control(max)  
control(max)  
Maximum Control Current (I  
= I / 2)  
ref  
I
mA  
control(max)  
Feedback Pin Voltage (I = 100 mA)  
V
FB1  
1.0  
1.3  
1.5  
1.8  
1.9  
2.2  
V
V
FB  
Feedback Pin Voltage (I = 200 mA)  
FB  
Overvoltage Protection  
OVP Ratio  
1
I
/I  
104  
107  
214  
500  
230  
%
mA  
ns  
OVP ref  
Current Threshold  
Propagation Delay  
I
t
OVP  
OVP  
Undervoltage Protection (V = 3 V)  
1
M
UVP Activate Threshold Ratio  
UVP Deactivate Threshold Ratio  
UVP Lockout Hysteresis  
Propagation Delay  
I
I
/I  
4.0  
7.0  
4.0  
8.0  
12  
15  
20  
%
%
UVP(on) ref  
/I  
UVP(off) ref  
I
8.0  
500  
mA  
ns  
UVP(H)  
t
UVP  
CURRENT SENSE  
Current Sense Pin Offset Voltage (I = 100 mA)  
4
4
V
0
10  
30  
mV  
S
S
Overcurrent Protection Threshold (V = 1 V)  
I
185  
200  
215  
mA  
M
S(OCP)  
OVERPOWER LIMITATION  
Input Voltage Sense Pin Internal Resistor  
4
3−4  
4
R
I
12  
kW  
vac(int)  
2
Over Power Limitation Threshold  
× I  
vac  
3.0  
nA  
S
Sense Current Threshold (I  
Sense Current Threshold (I  
= 30 mA, V = 3 V)  
I
I
80  
24  
100  
32  
140  
48  
mA  
mA  
vac  
M
S(OPL1)  
= 100 mA, V = 3 V)  
vac  
M
S(OPL2)  
CURRENT MODULATION  
PWM Comparator Reference Voltage  
5
5
V
2.25  
2.62  
2.75  
V
ref  
Multiplier Current (V  
Multiplier Current (V  
Multiplier Current (V  
Multiplier Current (V  
= V  
= V  
= V  
= V  
, I  
= 30 mA, I = 25 mA)  
I
I
I
I
1.0  
3.2  
10  
2.85  
9.5  
5.8  
18  
mA  
mA  
mA  
mA  
control  
control  
control  
control  
control(max) vac  
S
M1  
M2  
M3  
M4  
, I  
= 30 mA, I = 75 mA)  
S
control(max) vac  
/ 10, I  
= 30 mA, I = 25 mA)  
35  
58  
control(max)  
control(max)  
vac  
vac  
S
/ 10, I  
= 30 mA, I = 75 mA)  
30  
103.5  
180  
S
THERMAL SHUTDOWN  
Thermal Shutdown Threshold (Note 3)  
Thermal Shutdown Hysteresis  
T
150  
°C  
°C  
SD  
30  
3. Guaranteed by design.  
http://onsemi.com  
4
 
NCP1653, NCP1653A  
ELECTRICAL CHARACTERISTICS (For typical values T = 25°C. For min/max values, T = −40°C to +125°C, V = 15 V,  
J
J
CC  
I
FB  
= 100 mA, I  
= 30 mA, I = 0 mA, unless otherwise specified)  
vac  
S
Characteristics  
Pin  
Symbol  
Min  
Typ  
Max  
Unit  
SUPPLY SECTION  
Supply Voltage  
8
UVLO Startup Threshold  
V
V
12.25  
8.0  
13.25  
8.7  
14.5  
9.5  
V
V
V
CC(on)  
Minimum Operating Voltage after Startup  
UVLO Hysteresis  
CC(off)  
V
4.0  
4.55  
CC(H)  
Supply Current:  
8
Startup (V = V  
− 0.2 V)  
I
18  
0.95  
21  
50  
1.5  
50  
mA  
mA  
mA  
CC  
CC(on)  
stup  
stup1  
stup2  
stup3  
Startup (V < 4.0 V, I = 200 mA)  
I
CC  
FB  
Startup (4.0 V < V < V  
− 0.2 V, I = 200 mA)  
I
I
CC  
CC(on)  
FB  
Startup (V < V  
− 0.2 V, I = 0 mA) (Note 4)  
21  
50  
mA  
CC  
CC(on)  
FB  
Operating (V = 15 V, Drv = open, V = 3 V)  
I
I
3.7  
4.7  
33  
5.0  
6.0  
50  
mA  
mA  
mA  
CC  
M
CC1  
Operating (V = 15 V, Drv = 1 nF to Gnd, V = 1 V)  
CC  
M
CC2  
Shutdown (V = 15 V and I = 0 A)  
I
stdn  
CC  
FB  
4. Please refer to the “Biasing the Controller” Section in the Functional Description.  
TYPICAL CHARACTERISTICS  
110  
105  
100  
95  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
NCP1653  
90  
85  
80  
75  
NCP1653A  
V
M
= 0 V  
70  
65  
60  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
−50  
−25  
−50  
−25  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 3. Switching Frequency vs. Temperature  
Figure 4. Maximum Duty Cycle vs. Temperature  
14  
205  
204  
203  
202  
201  
200  
199  
198  
197  
196  
195  
12  
10  
8
R
OH  
R
OL  
6
4
2
0
−50  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
−25  
−50  
−25  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 5. Gate Drive Resistance vs. Temperature  
Figure 6. Reference Current vs. Temperature  
http://onsemi.com  
5
 
NCP1653, NCP1653A  
TYPICAL CHARACTERISTICS  
100  
3
2.5  
2
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
T = 25°C  
J
T = 125°C  
J
T = −40°C  
J
1.5  
1
0.5  
0
0
25  
50  
75  
100  
125  
100  
120  
140  
160  
180  
200  
220  
−50  
−25  
I , FEEDBACK CURRENT (mA)  
FB  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 7. Regulation Block  
Figure 8. Regulation Block Ratio vs.  
Temperature  
2.5  
2
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
I
FB  
= 200 mA  
1.5  
1
I
FB  
= 100 mA  
0.5  
0
0
25  
50  
75  
100  
125  
−25  
0
25  
50  
75  
100  
125  
−50  
−50  
−25  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 9. Maximum Control Voltage vs.  
Temperature  
Figure 10. Feedback Pin Voltage vs.  
Temperature  
2.5  
2
120  
118  
116  
114  
112  
110  
108  
106  
104  
102  
100  
T = −40°C  
J
1.5  
1
T = 25°C  
J
T = 125°C  
J
0.5  
0
50  
I
100  
150  
200  
250  
0
25  
50  
75  
100  
125  
0
−50  
−25  
, FEEDBACK PIN CURRENT (mA)  
T , JUNCTION TEMPERATURE (°C)  
J
FB  
Figure 11. Feedback Pin Voltage vs. Feedback  
Current  
Figure 12. Overvoltage Protection Ratio  
vs. Temperature  
http://onsemi.com  
6
 
NCP1653, NCP1653A  
TYPICAL CHARACTERISTICS  
16  
14  
12  
10  
8
230  
225  
220  
215  
210  
205  
200  
I
/I  
UVP(off) ref  
6
I
/I  
UVP(on) ref  
4
2
0
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
−50  
−25  
−50  
−25  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 13. Overvoltage Protection Threshold  
vs. Temperature  
Figure 14. Undervoltage Protection  
Thresholds vs. Temperature  
100  
90  
210  
208  
206  
204  
202  
200  
198  
196  
194  
192  
190  
80  
70  
60  
50  
40  
30  
T = −40 °C  
J
20  
10  
0
T = 125 °C  
J
T = 25 °C  
J
0
25  
50  
75  
100  
125  
−50  
−25  
100  
150  
200  
250  
0
50  
T , JUNCTION TEMPERATURE (°C)  
J
I , SENSE CURRENT (mA)  
S
Figure 15. Current Sense Pin Voltage vs.  
Sense Current  
Figure 16. Overcurrent Protection Threshold  
vs. Temperature  
4
3.5  
3
7
6
5
4
3
2
1
0
I
= 100 mA  
= 30 mA  
vac  
I
vac  
T = −40 °C  
J
2.5  
2
T = 25 °C  
J
T = 125 °C  
J
1.5  
1
0.5  
0
0
25  
50  
75  
100  
125  
0
50  
100  
150  
200  
−50  
−25  
T , JUNCTION TEMPERATURE (°C)  
J
I
, INPUT−VOLTAGE CURRENT (mA)  
vac  
Figure 17. Overpower Limitation Threshold  
vs. Temperature  
Figure 18. In Pin Voltage vs.  
Input−Voltage Current  
http://onsemi.com  
7
NCP1653, NCP1653A  
TYPICAL CHARACTERISTICS  
3
2.9  
2.8  
200  
180  
160  
140  
120  
100  
I
= 25 mA  
= 75 mA  
S
2.7  
2.6  
2.5  
2.4  
I
S
80  
I
V
= 30 mA  
vac  
60  
40  
2.3  
2.2  
2.1  
2
= V  
control(max)  
control  
I I  
S vac  
I
=
derived from the (eq.8)  
20 control  
2I  
M
0
−50  
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
−50  
−25  
−25  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 19. PWM Comparator Reference  
Voltage vs. Temperature  
Figure 20. Maximum Control Current vs.  
Temperature  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
V
CC(on)  
I
= 75 mA  
= 25 mA  
S
I
S
V
CC(off)  
I
V
= 30 mA  
vac  
6
6
= 10 % V  
control(max)  
control  
4
4
I I  
S vac  
I
=
derived from the (eq.8)  
control  
2
2
2I  
M
0
0
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
−50  
−25  
−50  
−25  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 21. 10% of Maximum Control Current  
vs. Temperature  
Figure 22. Supply Voltage Undervoltage  
Lockout Thresholds vs. Temperature  
80  
70  
60  
50  
6
5
4
I , 1 nF Load  
CC2  
I , No Load  
CC1  
40  
30  
20  
10  
0
I
3
2
1
stdn  
I
stup  
V
CC  
= 15 V  
0
0
25  
50  
75  
100  
125  
0
25  
50  
75  
100  
125  
−50  
−25  
−50  
−25  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 23. Supply Current in Startup and  
Shutdown Mode vs. Temperature  
Figure 24. Operating Supply Current vs.  
Temperature  
http://onsemi.com  
8
NCP1653, NCP1653A  
FUNCTIONAL DESCRIPTION  
Introduction  
5. Thermal Shutdown (TSD) is activated and the  
Drive Output (Pin 7) is disabled when the  
junction temperature exceeds 150_C. The  
operation resumes when the junction temperature  
falls down by typical 30_C.  
The NCP1653 is a Power Factor Correction (PFC) boost  
controller designed to operate in fixed−frequency  
Continuous Conduction Mode (CCM). It can operate in  
either peak current−mode or average current−mode.  
Fixed−frequency operation eases the compliance with  
EMI standards and the limitation of the possible radiated  
noise that may pollute surrounding systems. The CCM  
operation reduces the application di/dt and the resulting  
interference. The NCP1653 is designed in a compact 8−pin  
package which offers the minimum number of external  
components. It simplifies the design and reduces the cost.  
The output stage of the NCP1653 incorporates 1.5 A  
current capability for direct driving of the MOSFET in  
high−power applications.  
The NCP1653 is implemented in constant output voltage  
or follower boost modes. The follower boost mode permits  
one to significantly reduce the size of the PFC circuit  
inductor and power MOSFET. With this technique, the  
output voltage is not set at a constant level but depends on  
the RMS input voltage or load demand. It allows lower  
output voltage and hence the inductor and power MOSFET  
size or cost are reduced.  
CCM PFC Boost  
A CCM PFC boost converter is shown in Figure 25. The  
input voltage is a rectified 50 or 60 Hz sinusoidal signal.  
The MOSFET is switching at a high frequency (typically  
102 kHz in the NCP1653) so that the inductor current I  
L
basically consists of high and low−frequency components.  
Filter capacitor C is an essential and very small value  
filter  
capacitor in order to eliminate the high−frequency  
component of the inductor current I . This filter capacitor  
L
cannot be too bulky because it can pollute the power factor  
by distorting the rectified sinusoidal input voltage.  
I
in  
I
L
L
V
out  
V
in  
C
filter  
C
bulk  
Hence, NCP1653 is an ideal candidate in high−power  
applications where cost−effectiveness, reliability and high  
power factor are the key parameters. The NCP1653  
incorporates all the necessary features to build a compact  
and rugged PFC stage.  
Figure 25. CCM PFC Boost Converter  
PFC Methodology  
The NCP1653 uses a proprietary PFC methodology  
particularly designed for CCM operation. The PFC  
methodology is described in this section.  
The NCP1653 provides the following protection features:  
1. Overvoltage Protection (OVP) is activated and  
the Drive Output (Pin 7) goes low when the  
output voltage exceeds 107% of the nominal  
regulation level which is a user−defined value.  
The circuit automatically resumes operation when  
the output voltage becomes lower than the 107%.  
2. Undervoltage Protection (UVP) is activated and  
the device is shut down when the output voltage  
goes below 8% of the nominal regulation level.  
The circuit automatically starts operation when  
the output voltage goes above 12% of the  
I
L
I
in  
t
t
time  
1
2
nominal regulation level. This feature also  
provides output open−loop protection, and an  
external shutdown feature.  
T
Figure 26. Inductor Current in CCM  
3. Overpower Limitation (OPL) is activated and the  
Drive Output (Pin 7) duty ratio is reduced by  
pulling down an internal signal when a computed  
input power exceeds a permissible level. OPL is  
automatically deactivated when this computed input  
power becomes lower than the permissible level.  
4. Overcurrent Protection (OCP) is activated and  
the Drive Output (Pin 7) goes low when the  
inductor current exceeds a user−defined value.  
The operation resumes when the inductor current  
becomes lower than this value.  
As shown in Figure 26, the inductor current I in a  
switching period T includes a charging phase for duration  
L
t and a discharging phase for duration t . The voltage  
1
2
conversion ratio is obtained in (eq.1).  
V
V
t ) t  
T
T * t  
out  
in  
1
2
+
+
t
2
1
T * t  
1
(eq.1)  
V
in  
+
V
out  
T
http://onsemi.com  
9
 
NCP1653, NCP1653A  
The input filter capacitor C  
filter absorbs the high−frequency component of inductor  
and the front−ended EMI  
C
V
filter  
t
ramp ref  
T * t  
1
1
(eq.6)  
V
+ V  
ref  
*
+ V  
ref  
M
C
T
T
ramp  
current I . It makes the input current I a low−frequency  
L
in  
From (eq.3) and (eq.6), the input impedance Z is  
re−formulated in (eq.7).  
in  
signal only of the inductor current.  
(eq.2)  
I
in  
+ I  
L−50  
V
V
M
out  
(eq.7)  
Z
+
in  
The suffix 50 means it is with a 50 or 60 Hz bandwidth  
of the original I .  
V
I
ref L−50  
L
Because V and V are roughly constant versus time,  
ref  
out  
From (eq.1) and (eq.2), the input impedance Z is  
formulated.  
in  
the multiplier voltage V is designed to be proportional to  
M
the I  
in order to have a constant Z for PFC purpose.  
in  
L−50  
It is illustrated in Figure 28.  
T * t  
V
out  
V
1
in  
(eq.3)  
Z
+
+
in  
I
in  
T
I
L−50  
Power factor is corrected when the input impedance Z  
in  
in (eq.3) is constant or slowly varying in the 50 or 60 Hz  
bandwidth.  
V
in  
V
M
V
ref  
I
in  
time  
PFC Modulation  
I
ch  
R
S
Q
+
+
I
L
V
ramp  
time  
time  
0
1
C
ramp  
V
M
clock  
V
ref  
Figure 28. Multiplier Voltage Timing Diagram  
It can be seen in the timing diagram in Figure 27 that V  
originally consists of a switching frequency ripple coming  
M
V
ramp  
V
M
from the inductor current I . The duty ratio can be  
L
inaccurately generated due to this ripple. This modulation  
is the so−called “peak current−mode”. Hence, an external  
without  
filtering  
V
M
capacitor C connected to the multiplier voltage V pin  
M
M
Clock  
(Pin 5) is essential to bypass the high−frequency  
Latch Set  
component of V . The modulation becomes the so−called  
M
“average current−mode” with a better accuracy for PFC.  
Latch Reset  
Output  
V
M
R
M
I
I
vac S  
V
M
=
5
2I  
control  
I
M
Inductor  
Current  
PFC Duty  
Modulation  
Figure 27. PFC Duty Modulation and Timing Diagram  
C
M
R
M
The PFC duty modulation and timing diagram is shown  
in Figure 27. The MOSFET on time t is generated by the  
1
intersection of reference voltage V and ramp voltage  
ref  
Figure 29. External Connection on the Multiplier  
Voltage Pin  
V
ramp  
. A relationship in (eq.4) is obtained.  
I
C
t
ch 1  
(eq.4)  
V
ramp  
+ V  
)
+ V  
ref  
M
The multiplier voltage V is generated according to  
M
ramp  
(eq.8).  
The charging current I is specially designed as in  
ch  
R
I
I
M vac S  
2 I  
(eq.5). The multiplier voltage V is therefore expressed in  
M
(eq.8)  
V
M
+
control  
terms of t in (eq.6).  
1
Input−voltage current I  
is proportional to the RMS  
vac  
C
V
ramp ref  
(eq.5)  
input voltage V as described in (eq.9). The suffix ac  
I
ch  
+
ac  
T
http://onsemi.com  
10  
 
NCP1653, NCP1653A  
stands for the RMS. I is a constant in the 50 or 60 Hz  
over the bandwidth of 50 or 60 Hz and power factor is  
corrected.  
vac  
bandwidth. Multiplier resistor R is the external resistor  
M
connected to the multiplier voltage V pin (Pin 5). It is also  
Practically, the differential−mode inductance in the  
front−ended EMI filter improves the filtering performance  
M
constant. R directly limits the maximum input power  
M
capability and hence its value affects the NCP1653 to  
operate in either “follower boost mode” or “ constant  
output voltage mode”.  
of capacitor C . Therefore, the multiplier capacitor C  
filter M  
is generally with a larger value comparing to the filter  
capacitor C  
.
filter  
Input and output power (P and P ) are derived in  
in  
out  
Ǹ
2 V * 4 V  
V
ac  
) 12 kW  
ac  
(eq.9)  
I
+
[
(eq.13) when the circuit efficiency η is obtained or  
vac  
(
)
RȀ  
vac  
R
vac  
assumed. The variable V stands for the RMS input  
ac  
Sense current I is proportional to the inductor current I  
as described in (eq.10). I consists of the high−frequency  
component (which depends on di/dt or inductor L) and  
low−frequency component (which is I  
S
L
voltage.  
L
2
V
Z
2 R RȀ  
I
V
V
ac  
S
vac control ref ac  
P
in  
+
T
+
R
R V  
M CS out  
in  
).  
L−50  
(eq.13a)  
(eq.13b)  
R
R
I
V
CS  
S
control ac  
(eq.10)  
I
S
+
I
L
V
out  
Control current I  
is a roughly constant current that  
control  
2 R RȀ  
I
R
V
V
S
vac control ref ac  
P
out  
+ hP + h  
in  
comes from the PFC output voltage V that is a slowly  
out  
R
V
M
CS out  
varying signal. The bandwidth of  
additionally limited by inserting an external capacitor  
to the control voltage V pin (Pin 2) in  
I
can be  
control  
I
V
control ac  
T
V
C
out  
control  
control  
Figure 30. It is recommended to limit f , that is the  
control  
bandwidth of V  
achieve power factor correction purpose. Typical value of  
(or I  
), below 20 Hz typically to  
control  
control  
Follower Boost  
The NCP1653 operates in follower boost mode when  
is constant. If I is constant based on (eq.13), for  
C
is between 0.1 mF and 0.33 mF.  
control  
I
control  
control  
V
reg  
a constant load or power demand the output voltage V of  
out  
the converter is proportional to the RMS input voltage V . It  
ac  
300 k  
V
control  
means the output voltage V becomes lower when the RMS  
I
=
out  
control  
R
1
input voltage V becomes lower. On the other hand, the  
ac  
96% I  
I
I
ref ref  
FB  
output voltage V becomes lower when the load or power  
out  
Regulation Block  
demand becomes higher. It is illustrated in Figure 31.  
2
V
control  
V
(Traditional boost)  
out  
in  
C
control  
V
(Follower boost)  
out  
Figure 30. Vcontrol Low−Pass Filtering  
V
1
C
u
control  
(eq.11)  
2 p 300 kW f  
control  
time  
time  
From (eq.7)−(eq.10), the input impedance Z is  
re−formulated in (eq.12).  
in  
R
R
V V I  
M
CS ac out L  
P
Z
+
in  
out  
2 R RȀ  
I
V
I
S
vac control ref L−50  
R
R
V
I
V
M
CS ac out  
(eq.12)  
Z
+
whenI + I  
L−50  
in  
L
2 R RȀ  
V
S
vac control ref  
Figure 31. Follower Boost Characteristics  
Follower Boost Benefits  
The multiplier capacitor C is the one to filter the  
M
high−frequency component of the multiplier voltage V .  
M
The high−frequency component is basically coming from  
The follower boost circuit offers an opportunity to reduce  
the output voltage V whenever the RMS input voltage  
is lower or the power demand P is higher. Because  
out  
of the step−up characteristics of boost converter, the output  
voltage V will always be higher than the input voltage  
the inductor current I . On the other hand, the filter  
L
out  
capacitor C  
similarly removes the high−frequency  
filter  
V
ac  
component of inductor current I . If the capacitors C and  
L
M
C
match with each other in terms of filtering capability,  
filter  
out  
I becomes I  
. Input impedance Z is roughly constant  
L
L−50  
in  
http://onsemi.com  
11  
 
NCP1653, NCP1653A  
V even though V is reduced in follower boost operation.  
power P . However, this output level is not constant and  
out  
in  
out  
As a result, the on time t is reduced. Reduction of on time  
depending on different values of V and P . The follower  
1
ac out  
makes the loss of the inductor and power MOSFET smaller.  
Hence, it allows cheaper cost in the inductor and power  
MOSFET or allows the circuit components to operate at a  
lower stress condition in most of the time.  
boost operating area is illustrated in Figure 33.  
V
out  
P
P
out(max)  
out(min)  
96% I  
R
ref FB  
1
2
1. P increases, V decreases  
out  
out  
Output Feedback  
2. V decreases, V decreases  
ac  
out  
The output voltage V of the PFC circuit is sensed as a  
out  
V
in  
feedback current I flowing into the FB pin (Pin 1) of the  
FB  
device. Since the FB pin voltage V  
is much smaller than  
FB1  
V
V
V
ac(min)  
ac  
ac(max)  
V
, it is usually neglected.  
out  
Figure 33. Follower Boost Region  
V
out  
* V  
FB1  
V
out  
(eq.14)  
I
+
[
FB  
R
FB  
R
FB  
Region (2): 96% × Iref < IFB < Iref  
where R is the feedback resistor across the FB pin  
FB  
When I is between 96% and 100% of I (i.e., 96% R  
(Pin 1) and the output voltage referring to Figure 2.  
FB  
ref  
FB  
× I < V < R × I ), the NCP1653 operates in constant  
Then, the feedback current I represents the output  
ref  
out  
FB  
ref  
FB  
output voltage mode which is similar to the follower boost  
mode characteristic but with narrow output voltage range.  
voltage V  
and will be used in the output voltage  
out  
regulation, undervoltage protection (UVP), and  
overvoltage protection (OVP).  
The regulation block output V decreases linearly with  
reg  
I
in the range from 96% of I to I . It gives a linear  
ref ref  
FB  
Output Voltage Regulation  
function of I  
in (eq.16).  
control  
Feedback current I which represents the output voltage  
FB  
I
control(max)  
0.04  
V
out  
(eq.16)  
(eq.17)  
V
out  
is processed in a function with a reference current  
ǒ1 *  
Ǔ
I
+
control  
R
I
FB ref  
(I = 200 mA typical) as shown in regulation block  
ref  
Resolving (eq.16) and (eq.13),  
function in Figure 32. The output of the voltage regulation  
block, low−pass filter on V  
V
0.04  
pin and the I  
=
.
ac  
control  
control  
V
out  
P
R
M
R
V
out  
CS  
ac  
I
V
control  
/ R block is in Figure 30 is control current I  
1
control  
+ ǒ  
Ǔ
)
h
I
R
2 R RȀ  
V
control(max)  
FB ref  
S
vac ref  
And the input is feedback current I . It means that I  
FB  
control  
According to (eq.17), output voltage V becomes R  
out  
FB  
is the output of I and it can be described as in Figure 32.  
FB  
× I when power is low (P 0). It is the maximum value  
of V in this operating region. Hence, it can be concluded  
that output voltage increases when power decreases. It is  
similar to the follower boost characteristic in (eq.15). On  
the other hand in (eq.17), output voltage V becomes R  
ref  
out  
There are three linear regions including: (1) I < 96% ×  
FB  
out  
I
, (2) 96% × I <I < I , and (3) I > I . They are  
ref FB ref FB ref  
ref  
discussed separately as follows:  
I
control  
out  
FB  
× I when RMS input voltage V is very high. It is the  
ref  
ac  
I
control(max)  
maximum value of V in this operating region. Hence, it  
out  
can also be concluded that output voltage increases when  
RMS input voltage increases. It is similar to another  
follower boost characteristic in (eq.15). This characteristic  
is illustrated in Figure 34.  
96% I  
I
I
FB  
ref  
ref  
Figure 32. Regulation Block  
V
P
out  
out(min)  
P
out(max)  
Region (1): IFB < 96% × Iref  
I
R
ref FB  
1
2
When I is less than 96% of I (i.e., V < 96% R  
FB  
FB  
ref  
out  
96% I  
R
ref FB  
× I ), the NCP1653 operates in follower boost mode. The  
ref  
1. P increases, V decreases  
out  
out  
regulation block output V is at its maximum value.  
reg  
2. V decreases, V decreases  
ac  
out  
I
I
becomes its maximum value (i.e., I  
=
control  
control  
= I /2 = 100 mA) which is a constant. (eq.13)  
control(max)  
ref  
V
V
V
becomes (eq.15).  
ac(min)  
ac  
ac(max)  
2 R RȀ  
I
V
V
S
vac control(max) ref ac  
Figure 34. Constant Output Voltage Region  
V
out  
+ h  
R
R
P
M
CS out  
(eq.15)  
Region (3): IFB > Iref  
V
ac  
T
When I is greater than I (i.e., V > R × I ), the  
FB  
ref  
out  
FB  
ref  
P
out  
NCP1653 provides no output or zero duty ratio. The  
The output voltage V is regulated at a particular level  
with a particular value of RMS input voltage V and output  
out  
regulation block output V becomes 0 V. I  
also  
control  
reg  
ac  
http://onsemi.com  
12  
 
NCP1653, NCP1653A  
becomes zero. The multiplier voltage V in (eq.8)  
I
is always greater than 8% and 12% of the nominal level  
FB  
M
becomes its maximum value and generates zero on time t .  
to enable the NCP1653 to operate. Hence, UVP happens  
when the output voltage is abnormally undervoltage, the  
FB pin (Pin 1) is opened, or the FB pin (Pin 1) is manually  
pulled low.  
1
Then, V decreases and the minimum can be V = V in  
out  
out  
in  
a boost converter. Going down to V , V automatically  
in  
out  
enters the previous two regions (i.e., follower boost region  
or constant output voltage region) and hence output voltage  
Soft−Start  
V
out  
cannot reach input voltage V as long as the NCP1653  
in  
The device provides no output (or no duty ratio) when the  
provides a duty ratio for the operation of the boost  
converter.  
In conclusion, the NCP1653 circuit operates in one of the  
following conditions:  
V
control  
(Pin 2) voltage is zero (i.e., V  
= 0 V). An  
control  
external capacitor C  
connected to the V  
pin  
control  
control  
provides a gradually increment of the V  
voltage (or  
control  
the duty ratio) in the startup and hence provides a soft−start  
feature.  
Constant output voltage mode: The output voltage is  
regulated around the range between 96% and 100% of R  
FB  
× I . The output voltage is described in (eq.16). Its  
ref  
Current Sense  
The device senses the inductor current I by the current  
sense scheme in Figure 36. The device maintains the  
voltage at the CS pin (Pin 4) to be zero voltage (i.e.,  
behavior is similar to a follower boost.  
L
Follower boost mode: The output voltage is regulated  
under 96% of R × I and I  
= I  
= I /2 =  
FB  
ref  
control  
control(max) ref  
100 mA. The output voltage is described in (eq.15).  
V 0 V) so that (eq.10) can be formulated.  
S
Overvoltage Protection (OVP)  
I
L
When the feedback current I is higher than 107% of the  
FB  
reference current I (i.e., V > 107% R × I ), the  
ref  
out  
FB  
ref  
Drive Output (Pin 7) of the device goes low for protection.  
The circuit automatically resumes operation when the  
feedback current becomes lower than 107% of the  
R
I
S
S
CS  
+
NCP1653  
Gnd  
V
S
reference current I  
.
ref  
R
CS  
I
L
The maximum OVP threshold is limited to 230 mA which  
corresponds to 230 mA × 1.92 MW + 2.5 V = 444.1 V when  
R
= 1.92 MW (680 kW + 680 kW + 560 kW) and  
FB  
V
FB1  
= 2.5 V (for the worst case referring to Figure 11).  
Figure 36. Current Sensing  
Hence, it is generally recommended to use 450 V rating  
output capacitor to allow some design margin.  
This scheme has the advantage of the minimum number  
of components for current sensing and the inrush current  
Undervoltage Protection (UVP)  
limitation by the resistor R . Hence, the sense current I  
CS  
S
represents the inductor current I and will be used in the  
L
I
CC  
PFC duty modulation to generate the multiplier voltage  
V , Overpower Limitation (OPL), and overcurrent  
M
protection.  
I
CC2  
Overcurrent Protection (OCP)  
Overcurrent protection is reached when I is larger than  
S
I
(200 mA typical). The offset voltage of the CS pin  
S(OCP)  
Shutdown  
Operating  
is typical 10 mV and it is neglected in the calculation.  
Hence, the maximum OCP inductor current threshold  
I
stdn  
I
is obtained in (eq.15).  
L(OCP)  
R I  
S S(OCP)  
R
S
(eq.18)  
I
8% I  
I
+
+
  200 mA  
12% I  
L(OCP)  
ref  
FB  
ref  
R
CS  
R
CS  
When overcurrent protection threshold is reached, the  
Figure 35. Undervoltage Protection  
Drive Output (Pin 7) of the device goes low. The device  
automatically resumes operation when the inductor current  
goes below the threshold.  
When the feedback current I is less than 8% of the  
FB  
reference current I (i.e., the output voltage V is less  
ref  
out  
than 8% of its nominal value), the device is shut down and  
consumes less than 50 mA. The device automatically starts  
operation when the output voltage goes above 12% of the  
nominal regulation level. In normal situation of boost  
Input Voltage Sense  
The device senses the RMS input voltage V by the  
ac  
sensing scheme in Figure 37. The internal current mirror is  
with a typical 4 V offset voltage at its input so that the  
converter configuration, the output voltage V is always  
out  
greater than the input voltage V and the feedback current  
current I can be derived in (eq.9). An external capacitor  
in  
vac  
http://onsemi.com  
13  
NCP1653, NCP1653A  
C
is to maintain the In pin (Pin 3) voltage in the  
limited. The OPL is automatically deactivated when the  
vac  
2
calculation to always be the peak of the sinusoidal voltage  
product (I × I ) becomes lower than the 3 nA level. This  
S vac  
2
due to very little current consumption (i.e., V = 2 V and  
3 nA level corresponds to the approximated input power  
in  
ac  
I
0). This I current represents the RMS input voltage  
(I × V ) to be smaller than the particular expression in  
vac  
vac  
L
ac  
V and will be used in overpower limitation (OPL) and the  
ac  
(eq.20).  
PFC duty modulation.  
2
I
I
t 3 nA  
S vac  
V
Current  
Mirror  
Ǹ
in  
2
R
R
CS  
S
2
ǒI @  
L
Ǔ
ǒV  
Ǔt 3 nA  
 
@
ac  
R
) 12 kW  
vac  
R
R
S
R
) 12 kW  
vac  
vac  
12 k  
2
3 nA  
(eq.20)  
I @ V  
L ac  
t
In  
Ǹ
R
CS  
4 V  
I
2
vac  
3
Biasing the Controller  
C
It is recommended to add a typical 1 nF to 100 nF  
9 V  
vac  
decoupling capacitor next to the V pin for proper operation.  
CC  
When the NCP1653 operates in follower boost mode, the PFC  
output voltage is not always regulated at a particular level  
under all application range of input voltage and load power.  
It is not recommended to make a low−voltage bias supply  
voltage by adding an auxiliary winding on the PFC boost  
Figure 37. Input Voltage Sensing  
There is an internal 9 V ESD Zener Diode on the pin.  
Hence, the value of R is recommended to be at least  
vac  
938 kΩ for possibly up to 400 V instantaneous input voltage.  
inductor. Alternatively, it is recommended to get the V  
CC  
biasing supply from the second−stage power conversion stage  
as shown in Figure 39.  
R
12 kW  
9 V * 4 V  
vac  
400 V * 9 V  
u
V
(eq.19)  
R
vac  
u 938 kW  
bulk  
Overpower Limitation (OPL)  
AC  
EMI  
Sense current I represents the inductor current I and  
Input Filter  
S
L
hence represents the input current approximately.  
Input−voltage current I represents the RMS input  
vac  
voltage V and hence represents the input voltage. Their  
ac  
Output  
Voltage  
product (I × I ) represents an approximated input power  
V
cc  
S
vac  
(I × V ).  
L
ac  
Second−stage  
Power Converter  
V
reg  
NCP1653  
300 k  
V
2
control  
Figure 39. Recommended Biasing Scheme in  
Follower Boost Mode  
0
1
96% I  
I
I
FB  
ref  
ref  
Regulation Block  
When the NCP1653 operates in constant output voltage  
mode, it is possible to make a low−voltage bias supply by  
adding an auxiliary winding on the PFC boost inductor in  
Figure 40. In PFC boost circuit, the input is the rectified AC  
voltage and it is non−constant versus time that makes the  
auxiliary winding voltage also non−constant. Hence, the  
configuration in Figure 40 charges the voltages in  
capacitors C1 and C2 to n×(V − V ) and n×V and n is  
Overpower  
Limitation  
Figure 38. Overpower Limitation Reduces Vcontrol  
When the product (I × I ) is greater than a permissible  
S
vac  
2
level 3 nA , the output V of the regulation block is pulled  
reg  
out  
in  
in  
to 0 V. It makes V  
to be 0 V indirectly and V is  
M
control  
the turn ratio. As a result, the stack of the voltages is n×V  
out  
pulled to be its maximum. It generates the minimum duty  
ratio or no duty ratio eventually so that the input power is  
that is constant and can be used as a biasing voltage.  
http://onsemi.com  
14  
 
NCP1653, NCP1653A  
Vout  
VCC Undervoltage Lockout (UVLO)  
Vin  
The device typically starts to operate when the supply  
voltage V exceeds 13.25 V. It turns off when the supply  
CC  
voltage V goes below 8.7 V. An 18 V internal ESD Zener  
CC  
Diode is connected to the V  
pin (Pin 8) to prevent  
CC  
excessive supply voltage. After startup, the operating range  
is between 8.7 V and 18 V.  
C2  
C1  
Thermal Shutdown  
VCC  
An internal thermal circuitry disables the circuit gate  
drive and then keeps the power switch off when the junction  
temperature exceeds 150_C. The output stage is then  
enabled once the temperature drops below typically 120_C  
(i.e., 30_C hysteresis). The thermal shutdown is provided  
to prevent possible device failures that could result from an  
accidental overheating.  
Figure 40. Self−biasing Scheme in Constant Output  
Voltage Mode  
When the NCP1653 circuit is required to be startup  
independently from the second−stage converter, it is  
recommended to use a circuit in Figure 41. When there is  
Output Drive  
The output stage of the device is designed for direct drive  
of power MOSFET. It is capable of up to 1.5 A peak drive  
current and has a typical rise and fall time of 88 and  
61.5 ns with a 2.2 nF load.  
no feedback current (I = 0 mA) applied to FB pin (Pin 1),  
FB  
the NCP1653 V  
startup current is as low (50 mA  
CC  
maximum). It is good for saving the current to charge the  
capacitor. However, when there is some feedback  
V
CC  
current the startup current rises to as high as 1.5 mA in the  
< 4 V region. That is why the circuit of Figure 41 can  
V
CC  
be implemented: a PNP bipolar transistor derives the  
feedback current to ground at low V levels (V < 4 V)  
CC  
CC  
so that the startup current keeps low and an initial voltage  
can be quickly built up in the V capacitor. The values in  
CC  
Figure 41 are just for reference.  
Input  
Output  
180k  
180k  
180k  
1.5M  
560k  
100uF  
NCP1653  
BC556  
Figure 41. Recommended Startup Biasing Scheme  
http://onsemi.com  
15  
 
NCP1653, NCP1653A  
Application Schematic  
680 k  
680 k  
560 k  
KBU6K  
Fuse  
600 mH  
CSD04060  
150 mH  
Input  
90 Vac  
to  
100 nF  
4.7 M  
Output  
390 V  
100 mF  
450 V  
680 nF  
1 mF  
265 Vac  
SPP20N60S  
15 V  
33 nF  
2 x 3.9 mH  
470 k  
0.1  
NCP1653  
2.85 k  
4.5  
10 k  
56 k  
330 nF  
1 nF  
1 nF 330 pF  
Figure 42. 300 W 100 kHz Power Factor Correction Circuit  
Table 1. Total Harmonic Distortion and Efficiency  
Input Voltage  
(V)  
Input Power  
(W)  
Output Voltage  
(V)  
Output Current  
(A)  
Power Factor  
Total Harmonic  
Distortion (%)  
Efficiency  
(%)  
110  
110  
110  
110  
110  
110  
220  
220  
220  
220  
220  
220  
331.3  
296.7  
157.3  
109.8  
80.7  
370.0  
373.4  
381.8  
383.5  
384.4  
385.0  
385.4  
386.2  
386.4  
386.7  
386.5  
386.6  
0.83  
0.74  
0.38  
0.26  
0.19  
0.16  
0.77  
0.53  
0.38  
0.27  
0.19  
0.16  
0.998  
0.998  
0.995  
0.993  
0.990  
0.988  
0.989  
0.985  
0.978  
0.960  
0.933  
0.920  
4
4
93  
93  
92  
91  
91  
91  
95  
95  
93  
95  
92  
92  
7
9
10  
10  
9
67.4  
311.4  
215.7  
157.3  
110.0  
80.2  
8
9
11  
14  
15  
66.9  
http://onsemi.com  
16  
NCP1653, NCP1653A  
APPENDIX I – SUMMARY OF EQUATIONS IN NCP1653 BOOST PFC  
Description  
Boost Converter  
Follower Boost Mode  
Constant Output Voltage Mode  
Same as Follower Boost Mode  
V
V
t ) t  
1 2  
T
T * t  
out  
in  
+
+
t
2
1
V
* V  
t
t
1
T
out  
V
in  
1
³
+
+
t
1
) t  
2
out  
Input Current Averaged by  
Filter Capacitor  
Same as Follower Boost Mode  
Same as Follower Boost Mode  
I
+ I  
L * 50  
in  
Nominal Output Voltage (I  
V
+ I  
R
) V  
+ 200 mA @ R  
FB  
FB  
out(nom)  
FB FB FB1  
= 200 mA)  
[ I  
R
FB FB  
Feedback Pin Voltage V  
Output Voltage  
Please refer to Figure 11.  
Same as Follower Boost Mode  
FB1  
V
in  
t V  
out  
t 192 mA @ R  
FB  
192 mA @ R  
FB  
t V  
out  
t 200 mA @ R  
FB  
Inductor Current  
Peak−Peak Ripple  
Same as Follower Boost Mode  
DI  
t 2 @ I  
L * 50  
L(pk * pk)  
Control Current  
I
I
ref  
2
control(max)  
V
out  
I
+ I  
+
+ 100 mA  
control  
control(max)  
ǒ1 *  
Ǔ
I
+
control  
0.04  
R
I
FB ref  
+ 100 mA  
control(max)  
and I  
t I  
control  
Switching Frequency  
Same as Follower Boost Mode  
Same as Follower Boost Mode  
f + 67 or 100 kHz  
Minimum Inductor for CCM  
Input Impedance  
Input Power  
V
out  
V
* V  
in  
V
1
in  
L u L  
+
(CRM)  
DI  
f
out  
L(pk * pk)  
R R  
V
V
R
M
R
V
V
M CS ac out  
CS ac out  
Z
+
Z
+
+
in  
in  
R RȀ  
S
I
V
2R RȀvac I  
V
control ref  
vac ref ref  
S
R
S
RȀ  
I
V
V
2R RȀ  
V
I
V
vac ref ref ac  
S
vac ref control ac  
P
in  
+
P
in  
R
R
CS  
V
out  
R R  
M CS  
V
out  
M
Output Power  
hR RȀ  
I
V
h2 R RȀvac V  
S
vac ref ref V  
S
refI  
V
ac  
control ac  
P
out  
+ hP +  
in  
P
out  
+
R
M
R
V
out  
R
M
R
CS  
V
CS  
out  
Maximum Input Power when  
Circuit will enter follower boost region when  
maximum power is reached.  
R
S
RȀ  
I
V
V
vac ref ref ac  
P
+ P  
in  
+
I
= 100 mA  
in(max)  
control  
R
R
CS  
V
out  
M
Current Limit  
Power Limit  
Same as Follower Boost Mode  
Same as Follower Boost Mode  
R
S
I
+
@ 200 mA  
L(OCP)  
R
CS  
R
R
vac  
) 12 kW  
S
2
@ 3 nA  
I @ V  
L
t
AC  
Ǹ
R
CS  
2
Output Overvoltage  
Output Undervoltage  
Same as Follower Boost Mode  
Same as Follower Boost Mode  
V
+ 107% @ V  
out(nom)  
out(OVP)  
[ 214 mA @ R  
FB  
V
V
+ 8% @ V  
out(nom)  
out(UVP * on)  
[ 16 mA @ R  
FB  
+ 12% @ V  
[ 24 mA @ R  
out(UVP * off)  
out(nom)  
FB  
Input Voltage Sense Pin  
Same as Follower Boost Mode  
Same as Follower Boost Mode  
R
vac  
) 12 kW  
R
u 938 kWand RȀ +  
vac  
Resistor R  
vac  
vac  
Ǹ
2
PWM Comparator  
Reference Voltage  
V
ref  
+ 2.62 V  
http://onsemi.com  
17  
NCP1653, NCP1653A  
ORDERING INFORMATION  
Device  
Package  
Shipping  
Switching Frequency  
NCP1653P  
PDIP−8  
50 Units / Rail  
50 Units / Rail  
100 kHz  
NCP1653PG  
PDIP−8  
(Pb−Free)  
NCP1653DR2  
SO−8  
2500 Units / Tape & Reel  
2500 Units / Tape & Reel  
NCP1653DR2G  
SO−8  
(Pb−Free)  
NCP1653AP  
PDIP−8  
50 Units / Rail  
50 Units / Rail  
67 kHz  
NCP1653APG  
PDIP−8  
(Pb−Free)  
NCP1653ADR2  
SO−8  
2500 Units / Tape & Reel  
2500 Units / Tape & Reel  
NCP1653ADR2G  
SO−8  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
PACKAGE DIMENSIONS  
PDIP−8  
P SUFFIX  
CASE 626−05  
ISSUE L  
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
8
5
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
−B−  
MILLIMETERS  
INCHES  
MIN  
1
4
DIM MIN  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
A
B
C
D
F
9.40  
6.10  
3.94  
0.38  
1.02  
0.370  
0.240  
0.155  
0.015  
0.040  
F
−A−  
NOTE 2  
L
G
H
J
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.050  
0.012  
0.135  
K
L
C
7.62 BSC  
0.300 BSC  
M
N
−−−  
0.76  
10  
_
1.01  
−−−  
0.030  
10  
_
0.040  
J
−T−  
SEATING  
PLANE  
N
M
D
K
G
H
M
M
M
B
0.13 (0.005)  
T A  
http://onsemi.com  
18  
NCP1653, NCP1653A  
PACKAGE DIMENSIONS  
SO−8  
D SUFFIX  
CASE 751−07  
ISSUE AG  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
−X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW  
STANDARD IS 751−07.  
S
M
M
B
0.25 (0.010)  
Y
1
K
−Y−  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
−Z−  
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
MountingTechniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
19  
NCP1653, NCP1653A  
The product described herein (NCP1653) may be covered by one or more of the following U.S. patents: 6,362,067. There may be other patents pending.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental  
damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over  
time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under  
its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death  
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part.  
SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NCP1653/D  

相关型号:

NCP1653AP

Compact, Fixed-Frequency, Continuous Conduction Mode PFC Controller
ONSEMI

NCP1653APG

Compact, Fixed-Frequency, Continuous Conduction Mode PFC Controller
ONSEMI

NCP1653DR2

Compact, Fixed-Frequency, Continuous Conduction Mode PFC Controller
ONSEMI

NCP1653DR2G

Compact, Fixed-Frequency, Continuous Conduction Mode PFC Controller
ONSEMI

NCP1653P

Compact, Fixed-Frequency, Continuous Conduction Mode PFC Controller
ONSEMI

NCP1653PG

Compact, Fixed-Frequency, Continuous Conduction Mode PFC Controller
ONSEMI

NCP1653_06

300 W 80 PLUS ATX Reference Design
ONSEMI

NCP1653_07

Compact, Fixed−Frequency, Continuous Conduction Mode PFC Controller
ONSEMI

NCP1653_09

Compact, Fixed-Frequency Continuous Conduction Mode PFC Controller
ONSEMI

NCP1654

Power Factor Controller for Compact and Robust,Continuous Conduction Mode Pre-Converters
ONSEMI

NCP1654BD133R2G

Power Factor Controller for Compact and Robust, Continuous Conduction Mode Pre-Converters
ONSEMI

NCP1654BD200R2G

Power Factor Controller for Compact and Robust, Continuous Conduction Mode Pre-Converters
ONSEMI