NCP186BMX120TAG [ONSEMI]

Fast Transient Response Low Voltage 1 A LDO;
NCP186BMX120TAG
型号: NCP186BMX120TAG
厂家: ONSEMI    ONSEMI
描述:

Fast Transient Response Low Voltage 1 A LDO

文件: 总13页 (文件大小:334K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP186  
Fast Transient Response  
Low Voltage 1 A LDO  
The NCP186x series are CMOS LDO regulators featuring 1 A  
output current. The input voltage is as low as 1.8 V and the output  
voltage can be set from 1.2 V.  
www.onsemi.com  
Features  
Operating Input Voltage Range: 1.8 V to 5.5 V  
Output Voltage Range: 1.2 to 3.9 V  
Quiescent Current typ. 90 mA  
XDFN8  
MX SUFFIX  
CASE 711AS  
Low Dropout: 100 mV typ. at 1 A, V  
High Output Voltage Accuracy 1%  
= 3.0 V  
OUT  
Stable with Small 1 mF Ceramic Capacitors  
Over−current Protection  
PIN CONNECTIONS  
Built−in Soft Start Circuit to Suppress Inrush Current  
Thermal Shutdown Protection: 165°C  
IN  
1
2
3
4
8
7
6
5
OUT  
OUT  
N/C  
FB  
With (NCP186A) and Without (NCP186B) Output Discharge  
IN  
Function  
Available in Small xDFN8 1.2 x 1.6 mm Package  
These are Pb−free Devices  
EN  
GND  
Typical Applications  
Battery Powered Equipment  
Portable Communication Equipment  
Cameras, Image Sensors and Camcorders  
(Top View)  
MARKING DIAGRAM  
VIN  
VOUT  
IN  
OUT  
XXMG  
CIN  
1 mF  
COUT  
1 mF  
G
NCP186  
ON  
EN  
FB  
GND  
XX = Specific Device Code  
OFF  
M
= Date Code  
G
= Pb−Free Package  
Figure 1. Typical Application Schematic  
(Note: Microdot may be in either location)  
ORDERING INFORMATION  
See detailed ordering and shipping information in the ordering  
information section on page 4 of this data sheet.  
© Semiconductor Components Industries, LLC, 2015  
1
Publication Order Number:  
June, 2015 − Rev. 0  
NCP186/D  
NCP186  
IN  
OUT IN  
FB  
OUT  
FB  
VOLTAGE REFERENCE  
AND  
VOLTAGE REFERENCE  
AND  
SOFT−START  
SOFT−START  
EN  
EN  
0.7 V  
0.7 V  
THERMAL  
SHUTDOWN  
THERMAL  
SHUTDOWN  
GND  
GND  
NCP186A (with output discharge)  
NCP186B (without output discharge)  
Figure 2. Internal Block Diagram  
Table 1. PIN FUNCTION DESCRIPTION  
Pin No. XDFN6  
Pin Name  
Description  
LDO output pin  
1
OUT  
2
3
N/C  
FB  
Not internally connected. This pin can be tied to the ground plane to improve thermal dissipation.  
4
Feedback input pin  
Ground pin  
5
GND  
EN  
6
7
Chip enable input pin (active “H”)  
Power supply input pin  
IN  
8
EPAD  
EPAD  
It’s recommended to connect the EPAD to GND, but leaving it open is also acceptable  
Table 2. ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
IN  
Value  
Unit  
V
Input Voltage (Note 1)  
−0.3 to 6.0  
Output Voltage  
OUT  
EN  
−0.3 to V + 0.3  
V
IN  
Chip Enable Input  
−0.3 to 6.0  
Internally Limited  
150  
V
Output Current  
I
mA  
°C  
°C  
V
OUT  
Maximum Junction Temperature  
Storage Temperature  
T
J(MAX)  
T
STG  
−55 to 150  
2000  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Machine Model (Note 2)  
ESD  
HBM  
ESD  
200  
V
MM  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AEC−Q100−002 (EIA/JESD22−A114)  
ESD Machine Model tested per AEC−Q100−003 (EIA/JESD22−A115)  
Latchup Current Maximum Rating tested per JEDEC standard: JESD78  
Table 3. THERMAL CHARACTERISTICS  
Rating  
Symbol  
Value  
Unit  
Thermal Resistance, Junction−to−Air, XDFN8 1.2 mm x 1.6 mm  
R
111  
°C/W  
q
JA  
www.onsemi.com  
2
 
NCP186  
Table 4. ELECTRICAL CHARACTERISTICS  
V
V
= V  
+ 0.5 V or V = 1.8 V whichever is greater; I  
= 1 mA; C = C  
= 1.0 mF (effective capacitance) (Note 3);  
IN  
OUT_NOM  
IN  
OUT  
IN  
OUT  
= 1.2 V; T = 25°C; unless otherwise noted. The specifications in bold are guaranteed at −40°C T 125°C.  
EN  
J
J
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
5.5  
Unit  
V
Operating Input Voltage  
Output Voltage  
V
IN  
1.8  
V
I
+ 0.5 V V 5.5 V,  
V
OUT  
−1.0  
1.0  
%
OUT_NOM  
OUT  
IN  
= 0 to 1 A, −40°C T 85°C  
J
V
I
+ 0.5 V V 5.5 V,  
−2.0  
1.0  
OUT_NOM  
IN  
= 0 to 1 A, −40°C T 125°C  
OUT  
J
Load Regulation  
Line Regulation  
Dropout Voltage  
I
= 1 mA to 1000 mA  
LoadReg  
LineReg  
0.7  
0.002  
405  
180  
175  
170  
120  
110  
100  
95  
5.0  
0.1  
mV  
%/V  
mV  
OUT  
V
= V  
+ 0.5 V to 5.0 V  
IN  
OUT_NOM  
I
= 1 A  
V
V
V
V
V
V
V
V
V
V
= 1.2 V  
= 1.75 V  
= 1.8 V  
= 1.85 V  
= 2.5 V  
= 2.8 V  
= 3.0 V  
= 3.3 V  
= 3.5 V  
= 3.9 V  
V
DO  
585  
295  
285  
280  
190  
170  
160  
145  
135  
130  
140  
1.5  
OUT  
OUT_NOM  
OUT_NOM  
OUT_NOM  
OUT_NOM  
OUT_NOM  
OUT_NOM  
OUT_NOM  
OUT_NOM  
OUT_NOM  
OUT_NOM  
When V  
V
falls to  
OUT  
– 100 mV  
OUT_NOM  
92  
86  
Quiescent Current  
I
= 0 mA  
I
Q
90  
mA  
mA  
mA  
mA  
mA  
V
OUT  
Standby Current  
V
V
V
= 0 V  
I
0.1  
EN  
STBY  
Output Current Limit  
Output Short Circuit Current  
Enable Input Current  
Enable Threshold Voltage  
= 90% of V  
= 0 V  
I
1100  
1100  
1400  
1400  
0.15  
OUT  
OUT  
OUT_NOM  
OCL  
I
OSC  
I
0.6  
0.4  
EN  
EN Input Voltage “H”  
EN Input Voltage “L”  
V
ENH  
1.0  
V
ENL  
Power Supply Rejection Ratio  
Output Noise  
V
= V  
+ 1.0 V, Ripple 0.2 Vp−p,  
PSRR  
75  
dB  
IN  
OUT_NOM  
I
= 30 mA, f = 1 kHz  
OUT  
f = 10 Hz to 100 kHz  
= 5.5 V, V = 0 V, V  
V
N
48  
34  
mV  
RMS  
Output Discharge Resistance  
(NCP186A option only)  
V
IN  
= 1.8 V  
R
W
EN  
OUT  
AD  
Thermal Shutdown  
Temperature  
Temperature rising from T = +25°C  
T
165  
20  
°C  
°C  
J
SD  
Thermal Shutdown Hysteresis Temperature falling from T  
T
SDH  
SD  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
3. Effective capacitance, including the effect of DC bias, tolerance and temperature. See the Application Information section for more  
information.  
www.onsemi.com  
3
 
NCP186  
ORDERING INFORMATION TABLE  
Voltage  
Option  
1.2 V  
1.75 V  
1.8 V  
1.85 V  
2.5 V  
2.8 V  
3.0 V  
3.3 V  
3.5 V  
3.9 V  
1.2 V  
1.75 V  
1.8 V  
1.85 V  
2.5 V  
2.8 V  
3.0 V  
3.3 V  
3.5 V  
3.9 V  
Part Number  
Marking  
FA  
Option  
Package  
Shipping  
NCP186AMX120TAG  
NCP186AMX175TAG  
NCP186AMX180TAG  
NCP186AMX185TAG  
NCP186AMX250TAG  
NCP186AMX280TAG  
NCP186AMX300TAG  
NCP186AMX330TAG  
NCP186AMX350TAG  
NCP186AMX390TAG  
NCP186BMX120TAG  
NCP186BMX175TAG  
NCP186BMX180TAG  
NCP186BMX185TAG  
NCP186BMX250TAG  
NCP186BMX280TAG  
NCP186BMX300TAG  
NCP186BMX330TAG  
NCP186BMX350TAG  
NCP186BMX390TAG  
With active discharge  
With active discharge  
With active discharge  
With active discharge  
With active discharge  
With active discharge  
With active discharge  
With active discharge  
With active discharge  
With active discharge  
Without active discharge  
Without active discharge  
Without active discharge  
Without active discharge  
Without active discharge  
Without active discharge  
Without active discharge  
Without active discharge  
Without active discharge  
Without active discharge  
FC  
FD  
FL  
XDFN−8  
(Pb−Free)  
FE  
3000/Tape&Reel  
FF  
711AS  
FG  
FH  
FJ  
FK  
HA  
HC  
HD  
HL  
XDFN−8  
(Pb−Free)  
HE  
HF  
HG  
HH  
HJ  
3000/Tape&Reel  
711AS  
HK  
www.onsemi.com  
4
NCP186  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 0.5 V or V = 1.8 V, whichever is greater, V = 1.2 V, I  
= 1 mA, C = C  
= 1.0 mF, T = 25°C.  
OUT−NOM  
IN  
EN  
OUT  
IN  
OUT  
J
1.212  
1.209  
1.206  
1.203  
1.200  
1.197  
1.194  
1.814  
1.809  
1.804  
1.799  
1.794  
1.789  
1.784  
1.779  
1.774  
1.191  
1.188  
1.185  
V
= 1.8 V  
OUT−NOM  
1.182  
1.179  
1.176  
V
= 1.2 V  
80  
OUT−NOM  
1.769  
1.764  
−40 −20  
0
20  
40  
60  
100  
120  
−40 −20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 3. Output Voltage vs. Temperature  
Figure 4. Output Voltage vs. Temperature  
3.932  
3.922  
3.912  
3.902  
3.892  
3.882  
3.872  
3.862  
3.852  
3.842  
3.324  
3.314  
3.304  
3.294  
3.284  
3.274  
3.264  
3.254  
V
= 3.3 V  
80  
OUT−NOM  
V
= 3.9 V  
80  
OUT−NOM  
3.244  
3.234  
3.832  
3.822  
−40 −20  
0
20  
40  
60  
100 120  
−40 −20  
0
20  
40  
60  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 5. Output Voltage vs. Temperature  
Figure 6. Output Voltage vs. Temperature  
0.10  
0.08  
0.06  
0.04  
0.02  
0
5
4
V
V
V
V
= 1.2 V  
= 1.8 V  
= 3.3 V  
= 3.9 V  
OUT−NOM  
OUT−NOM  
OUT−NOM  
OUT−NOM  
V
V
V
V
= 1.2 V  
= 1.8 V  
= 3.3 V  
= 3.9 V  
OUT−NOM  
OUT−NOM  
OUT−NOM  
OUT−NOM  
3
2
1
0
−0.02  
−0.04  
−1  
−2  
−3  
−0.06  
I
= 1 mA to 1000 mA  
OUT  
V
IN  
= V  
+ 0.5 V to 5.0 V, V 1.8 V  
OUT−NOM IN  
−0.08  
−0.10  
−4  
−5  
−40 −20  
−40 −20  
0
20  
40  
60  
80  
100 120  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 7. Line Regulation vs. Temperature  
Figure 8. Load Regulation vs. Temperature  
www.onsemi.com  
5
NCP186  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 0.5 V or V = 1.8 V, whichever is greater, V = 1.2 V, I  
= 1 mA, C = C  
= 1.0 mF, T = 25°C.  
OUT J  
OUT−NOM  
IN  
EN  
OUT  
IN  
275  
250  
225  
200  
175  
150  
125  
100  
75  
275  
250  
225  
200  
175  
150  
125  
100  
75  
V
= 1.8 V  
V
= 1.8 V  
OUT−NOM  
OUT−NOM  
I
= 1000 mA  
OUT  
T = 125°C  
J
T = 25°C  
J
I
I
= 500 mA  
= 200 mA  
OUT  
T = −40°C  
J
OUT  
50  
50  
25  
0
25  
0
−40 −20  
I
= 10 mA  
OUT  
0
200  
400  
600  
800  
1000  
0
20  
40  
60  
80  
100 120  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
Figure 9. Dropout Voltage vs. Output Current  
Figure 10. Dropout Voltage vs. Temperature  
140  
120  
100  
80  
140  
120  
100  
80  
T = 125°C  
J
V
= 3.3 V  
V
= 3.3 V  
OUT−NOM  
OUT−NOM  
I
= 1000 mA  
OUT  
T = 25°C  
J
I
I
= 500 mA  
= 200 mA  
OUT  
60  
60  
T = −40°C  
J
40  
40  
OUT  
20  
0
20  
0
I
= 10 mA  
OUT  
0
200  
400  
600  
800  
1000  
−40 −20  
0
20  
40  
60  
80  
100  
120  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
Figure 11. Dropout Voltage vs. Output Current  
Figure 12. Dropout Voltage vs. Temperature  
450  
400  
350  
300  
250  
200  
150  
100  
120  
110  
100  
90  
T = 125°C  
J
T = 25°C  
J
V
= 1.2 V  
T = −40°C  
J
OUT−NOM  
V
V
= 1.8 V  
= 3.3 V  
OUT−NOM  
OUT−NOM  
V
= 3.9 V  
80  
OUT−NOM  
70  
60  
50  
0
V
= 1.8 V  
OUT−NOM  
I
= 0 mA  
0
OUT  
0
200  
400  
600  
800  
1000  
−40 −20  
20  
40  
60  
80  
100 120  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
Figure 13. Ground Current vs. Output Current  
Figure 14. Quiescent Current vs. Temperature  
www.onsemi.com  
6
NCP186  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 0.5 V or V = 1.8 V, whichever is greater, V = 1.2 V, I  
= 1 mA, C = C  
= 1.0 mF, T = 25°C.  
OUT J  
OUT−NOM  
IN  
EN  
OUT  
IN  
120  
110  
100  
90  
1.0  
0.9  
T = 125°C  
T = 25°C  
J
J
V
V
V
V
= 1.2 V  
= 1.8 V  
= 3.3 V  
= 3.9 V  
OUT−NOM  
OUT−NOM  
OUT−NOM  
OUT−NOM  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
T = −40°C  
J
80  
70  
V
I
= 1.8 V  
OUT−NOM  
= 0 mA  
60  
50  
OUT  
0.1  
0
V
EN  
= 0 V  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
−40 −20  
0
20  
40  
60  
80  
100 120  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 15. Quiescent Current vs. Input Voltage  
Figure 16. Standby Current vs. Temperature  
2.0  
1.9  
1.8  
1.7  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
V
= 1.8 V  
OUT−NOM  
V
= 3.9 V  
= 1.2 V  
V
= 3.3 V  
OUT−NOM  
OUT−NOM  
V
= 3.9 V  
= 1.2 V  
OUT−NOM  
V
= 3.3 V  
OUT−NOM  
V
OUT−NOM  
V
OUT−NOM  
1.6  
1.5  
1.4  
1.3  
V
= 1.8 V  
1.4  
1.3  
OUT−NOM  
1.2  
1.1  
−40 −20  
V
= 90% of V  
1.2  
1.1  
V
= 0 V  
OUT−FORCED OUT−NOM  
OUT−FORCED  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. Short Circuit Current vs.  
Temperature  
Figure 18. Output Current Limit vs.  
Temperature  
1.0  
0.9  
0.8  
0.7  
0.6  
0.6  
0.5  
0.4  
0.3  
0.2  
V
V
V
V
= 1.2 V  
= 1.8 V  
= 3.3 V  
= 3.9 V  
OUT−NOM  
OUT−NOM  
OUT−NOM  
OUT−NOM  
OFF −> ON  
ON −> OFF  
0.5  
0.4  
0.1  
0
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 19. Enable Threshold Voltage vs.  
Temperature  
Figure 20. Enable Input Current vs.  
Temperature  
www.onsemi.com  
7
NCP186  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 0.5 V or V = 1.8 V, whichever is greater, V = 1.2 V, I  
= 1 mA, C = C  
= 1.0 mF, T = 25°C.  
OUT J  
OUT−NOM  
IN  
EN  
OUT  
IN  
50  
45  
40  
35  
30  
90  
80  
70  
60  
50  
40  
30  
20  
V
= V  
OUT−NOM  
OUT−FORCED  
= 5.5 V  
V
IN  
V
EN  
= 0 V  
C
= 1 mF X7R 0805  
OUT  
V
V
= 1.2 V  
= 3.3 V  
OUT−NOM  
OUT−NOM  
25  
20  
V
= 1.8 V, V = 2.8 V  
IN  
OUT−NOM  
OUT−NOM  
10  
0
V
= 3.3 V, V = 4.3 V  
IN  
−40 −20  
0
20  
40  
60  
80  
100 120  
10  
100  
1k  
10k  
100k  
1M  
10M  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
Figure 21. Output Discharge Resistance vs.  
Temperature (NCP186A option only)  
Figure 22. Power Supply Rejection Ratio  
6
5
4
3
2
V
V
= 1.8 V, V = 2.8 V  
IN  
OUT−NOM  
OUT−NOM  
= 3.9 V, V = 4.9 V  
IN  
C
= 1 mF X7R 0805  
OUT  
Integral Noise:  
V
= 1.8 V  
10 Hz − 100 kHz: 45 mVrms  
10 Hz − 1 MHz: 61 mVrms  
OUT−NOM  
V
= 3.9 V  
OUT−NOM  
10 Hz − 100 kHz: 52 mVrms  
10 Hz − 1 MHz: 68 mVrms  
1
0
10  
100  
1K  
10K  
100K  
1M  
FREQUENCY (Hz)  
Figure 23. Output Voltage Noise Spectral  
Density  
V
= 1.2 V  
V
= 1.2 V  
OUT−NOM  
OUT−NOM  
I
IN  
I
IN  
V
IN  
V
IN  
V
OUT  
V
OUT  
1 ms/div  
20 ms/div  
Figure 24. Turn−ON/OFF − VIN driven (slow)  
Figure 25. Turn−ON − VIN driven (fast)  
www.onsemi.com  
8
NCP186  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 0.5 V or V = 1.8 V, whichever is greater, V = 1.2 V, I  
= 1 mA, C = C  
= 1.0 mF, T = 25°C.  
OUT J  
OUT−NOM  
IN  
EN  
OUT  
IN  
V
= 3.9 V  
OUT−NOM  
V
= 3.9 V  
OUT−NOM  
I
IN  
I
IN  
V
IN  
V
IN  
V
OUT  
V
OUT  
1 ms/div  
20 ms/div  
Figure 26. Turn−ON/OFF − VIN driven (slow)  
Figure 27. Turn−ON − VIN driven (fast)  
V
EN  
V
EN  
V
OUT  
V
= 1.2 V  
OUT−NOM  
Device with output discharge  
V
OUT  
V
= 1.8 V  
OUT−NOM  
Device without output discharge  
I
IN  
I
IN  
200 ms/div  
200 ms/div  
Figure 28. Turn−ON/OFF − EN driven  
Figure 29. Turn−ON/OFF − EN driven  
V
= 3.9 V  
V
= 1.2 V  
OUT−NOM  
OUT−NOM  
V
IN  
V
IN  
2.8 V  
5.4 V  
t
R
= t = 1 ms  
F
t = t = 1 ms  
R F  
1.8 V  
1.2 V  
4.4 V  
3.9 V  
V
OUT  
V
OUT  
10 ms/div  
10 ms/div  
Figure 30. Line Transient Response  
Figure 31. Line Transient Response  
www.onsemi.com  
9
NCP186  
TYPICAL CHARACTERISTICS  
V
IN  
= V  
+ 0.5 V or V = 1.8 V, whichever is greater, V = 1.2 V, I  
= 1 mA, C = C  
= 1.0 mF, T = 25°C.  
OUT−NOM  
IN  
EN  
OUT  
IN  
OUT  
J
V
IN  
V
IN  
1000 mA  
1000 mA  
t
R
= t = 1 ms  
F
t = t = 1 ms  
R F  
1 mA  
I
I
1 mA  
OUT  
OUT  
V
OUT  
V
OUT  
1.2 V  
3.9 V  
V
= 1.2 V  
V
= 3.9 V  
OUT−NOM  
OUT−NOM  
10 ms/div  
10 ms/div  
Figure 32. Load Transient Response  
Figure 33. Load Transient Response  
220  
200  
180  
1.6  
P
, 2 oz Cu  
, 1 oz Cu  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
D(MAX)  
160  
140  
120  
100  
P
D(MAX)  
q
, 1 oz Cu  
JA  
q
, 2 oz Cu  
JA  
80  
60  
0.2  
0
0
100  
200  
300  
400  
500  
600  
2
PCB COPPER AREA (mm )  
Figure 34. qJA and PD(MAX) vs. Copper Area  
www.onsemi.com  
10  
 
NCP186  
APPLICATIONS INFORMATION  
Enable Operation  
General  
The NCP186 is a high performance 1 A low dropout linear  
The LDO uses the EN pin to enable/disable its operation  
and to deactivate/activate the output discharge function  
(A−version only).  
If the EN pin voltage is < 0.4 V the device is disabled and  
the pass transistor is turned off so there is no current flow  
between the IN and OUT pins. On A−version the active  
discharge transistor is active so the output voltage is pulled  
to GND through 34 W (typ.) resistor.  
regulator (LDO) delivering excellent noise and dynamic  
performance. Thanks to its adaptive ground current  
behavior the device consumes only 90 mA typ. of quiescent  
current (no−load condition).  
The regulator features low noise of 48 mV , PSRR of  
RMS  
75 dB at 1 kHz and very good line/load transient  
performance. Such excellent dynamic parameters, small  
dropout voltage and small package size make the device an  
ideal choice for powering the precision noise sensitive  
circuitry in portable applications.  
If the EN pin voltage is > 1.0 V the device is enabled and  
regulates the output voltage. The active discharge transistor  
is turned off.  
A logic EN input provides ON/OFF control of the output  
voltage. When the EN is low the device consumes as low as  
100 nA typ. from the IN pin.  
The device is fully protected in case of output overload,  
output short circuit condition or overheating, assuring a very  
robust design.  
The EN pin has internal pull−down current source with  
value of 150 nA typ. which assures the device is turned off  
when the EN pin is unconnected. In case when the EN  
function isn’t required the EN pin should be tied directly to  
IN pin.  
Output Current Limit  
Output current is internally limited to a 1.4 A typ. The  
LDO will source this current when the output voltage drops  
down from the nominal output voltage (test condition is  
Input Capacitor Selection (CIN)  
Input capacitor connected as close as possible is necessary  
to ensure device stability. The X7R or X5R capacitor should  
be used for reliable performance over temperature range.  
The value of the input capacitor should be 1 mF or greater for  
the best dynamic performance. This capacitor will provide  
a low impedance path for unwanted AC signals or noise  
modulated onto the input voltage.  
There is no requirement for the ESR of the input capacitor  
but it is recommended to use ceramic capacitor for its low  
ESR and ESL. A good input capacitor will limit the  
influence of input trace inductance and source resistance  
during load current changes.  
V
– 100mV). If the output voltage is shorted to  
OUT−NOM  
ground, the short circuit protection will limit the output  
current to 1.4 A typ. The current limit and short circuit  
protection will work properly over the whole temperature  
and input voltage ranges. There is no limitation for the short  
circuit duration.  
Thermal Shutdown  
When the LDO’s die temperature exceeds the thermal  
shutdown threshold value the device is internally disabled.  
The IC will remain in this state until the die temperature  
decreases by value called thermal shutdown hysteresis.  
Once the IC temperature falls this way the LDO is back  
enabled. The thermal shutdown feature provides the  
protection against overheating due to some application  
failure and it is not intended to be used as a normal working  
function.  
Output Capacitor Selection (COUT  
)
The LDO requires an output capacitor connected as close  
as possible to the output and ground pins. The recommended  
capacitor value is 1 mF, ceramic X7R or X5R type due to its  
low capacitance variations over the specified temperature  
range. The LDO is designed to remain stable with minimum  
effective capacitance of 0.8 mF. When selecting the capacitor  
the changes with temperature, DC bias and package size  
needs to be taken into account. Especially for small package  
size capacitors such as 0201 the effective capacitance drops  
rapidly with the applied DC bias voltage (refer the  
capacitor’s datasheet for details).  
Power Dissipation  
Power dissipation caused by voltage drop across the LDO  
and by the output current flowing through the device needs  
to be dissipated out from the chip. The maximum power  
dissipation is dependent on the PCB layout, number of used  
Cu layers, Cu layers thickness and the ambient temperature.  
The maximum power dissipation can be computed by  
following equation:  
There is no requirement for the minimum value of  
equivalent series resistance (ESR) for the C  
but the  
OUT  
maximum value of ESR should be less than 0.5 W. Larger  
capacitance and lower ESR improves the load transient  
response and high frequency PSRR. Only ceramic  
capacitors are recommended, the other types like tantalum  
capacitors not due to their large ESR.  
TJ * TA  
qJA  
PD(MAX)  
+
[W]  
(eq. 1)  
Where (T T ) is the temperature difference between the  
J
A
junction and ambient temperatures and θ is the thermal  
JA  
resistance (dependent on the PCB as mentioned above).  
www.onsemi.com  
11  
NCP186  
The power dissipated by the LDO for given application  
conditions can be calculated by the next equation:  
100 kHz) can be tuned by the selection of C  
and proper PCB layout. A simple LC filter could be added  
to the LDO’s IN pin for further PSRR improvement.  
capacitor  
OUT  
ǒ
Ǔ
PD + VIN @ IGND ) VIN * VOUT @ IOUT [W]  
(eq. 2)  
Enable Turn−On Time  
The enable turn−on time is defined as the time from EN  
assertion to the point in which V  
nominal value. This time is dependent on various  
application conditions such as V , C and T .  
Where I  
the output load current.  
Connecting the exposed pad and N/C pin to a large ground  
planes helps to dissipate the heat from the chip.  
The relation of θ and P  
Cu layer thickness could be seen on the Figure 34.  
is the LDO’s ground current, dependent on  
GND  
will reach 98% of its  
OUT  
OUT−NOM OUT  
A
to PCB copper area and  
JA  
D(MAX)  
PCB Layout Recommendations  
To obtain good transient performance and good regulation  
characteristics place C and C capacitors as close as  
Reverse Current  
The PMOS pass transistor has an inherent body diode  
IN  
OUT  
possible to the device pins and make the PCB traces wide.  
In order to minimize the solution size, use 0402 or 0201  
capacitors size with appropriate effective capacitance.  
Larger copper area connected to the pins will also improve  
the device thermal resistance. The actual power dissipation  
can be calculated from the equation above (Power  
Dissipation section). Exposed pad and N/C pin should be  
tied to the ground plane for good power dissipation.  
which will be forward biased in the case when V  
> V .  
OUT  
IN  
Due to this fact in cases, where the extended reverse current  
condition can be anticipated the device may require  
additional external protection.  
Power Supply Rejection Ratio  
The LDO features very high power supply rejection ratio.  
The PSRR at higher frequencies (in the range above  
www.onsemi.com  
12  
NCP186  
PACKAGE DIMENSIONS  
XDFN8 1.6x1.2, 0.4P  
CASE 711AS  
ISSUE A  
NOTES:  
L
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
D
A
B
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
8X  
L1  
DETAIL A  
MILLIMETERS  
OPTIONAL  
DIM  
A
A1  
b
MIN  
0.30  
0.00  
0.13  
MAX  
0.45  
0.05  
0.23  
CONSTRUCTION  
E
PIN ONE  
IDENTIFIER  
EXPOSED Cu  
MOLD CMPD  
1.60 BSC  
D
2X  
0.10  
C
1.20  
0.20  
0.40 BSC  
0.15  
1.40  
1.20 BSC  
D2  
E
E2  
e
L
L1  
0.40  
2X  
0.10  
C
TOP VIEW  
DETAIL B  
0.25  
OPTIONAL  
0.05 REF  
A
CONSTRUCTION  
DETAIL B  
0.10  
0.08  
C
C
A1  
RECOMMENDED  
MOUNTING FOOTPRINT*  
8X  
SEATING  
PLANE  
NOTE 3  
C
SIDE VIEW  
D2  
8X  
0.35  
1.44  
PACKAGE  
OUTLINE  
DETAIL A  
1.40  
1
4
E2  
8X  
L1  
1
0.44  
0.40  
PITCH  
8X  
0.26  
DIMENSIONS: MILLIMETERS  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
8
5
8X b  
8X  
L
e
0.10  
0.05  
C
C
A
B
e/2  
BOTTOM VIEW  
ON Semiconductor and the  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.  
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed  
at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation  
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets  
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each  
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,  
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which  
the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable  
copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP186/D  

相关型号:

NCP186BMX150TAG

LDO 稳压器,1 A,超低漏,高 PSRR,带启用
ONSEMI

NCP186BMX175TAG

Fast Transient Response Low Voltage 1 A LDO
ONSEMI

NCP186BMX180TAG

Fast Transient Response Low Voltage 1 A LDO
ONSEMI

NCP186BMX185TAG

Fast Transient Response Low Voltage 1 A LDO
ONSEMI

NCP186BMX250TAG

Fast Transient Response Low Voltage 1 A LDO
ONSEMI

NCP186BMX280TAG

Fast Transient Response Low Voltage 1 A LDO
ONSEMI

NCP186BMX300TAG

Fast Transient Response Low Voltage 1 A LDO
ONSEMI

NCP186BMX330TAG

Fast Transient Response Low Voltage 1 A LDO
ONSEMI

NCP186BMX350TAG

Fast Transient Response Low Voltage 1 A LDO
ONSEMI

NCP186BMX390TAG

Fast Transient Response Low Voltage 1 A LDO
ONSEMI

NCP187

Voltage Regulator - Low Iq, Low Dropout, Power Good Output
ONSEMI

NCP1871

Narrow Voltage DC Battery Charger
ONSEMI