NCP189CMTWADJTAG [ONSEMI]

LDO, 500mA, Low noise, High Accuracy with Power-Good amd VoutControlled slew rate;
NCP189CMTWADJTAG
型号: NCP189CMTWADJTAG
厂家: ONSEMI    ONSEMI
描述:

LDO, 500mA, Low noise, High Accuracy with Power-Good amd VoutControlled slew rate

文件: 总12页 (文件大小:297K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
LDO Regulator, 0.5 A, High  
Accuracy (0.7%), Adjustable,  
Low Noise, High PSRR with  
Power Good  
MARKING  
DIAGRAMS  
WDFNW6 2x2, 0.65P  
CASE 511DW  
XXMG  
G
XXX  
A
L
= Specific Device Code  
= Assembly Location  
= Wafer Lot  
NCP189  
The NCP189 is a 0.5 A LDO, next generation of high PSRR, low  
noise and low dropout regulators with Power Good open collector  
output. Designed to meet the requirements of RF and sensitive analog  
circuits, the NCP189 device provides low noise, high PSRR and low  
quiescent current while offering the ability to regulate output voltages  
down to 0.6 V. The device also offers excellent load / line transients.  
The NCP189 is designed to work with a 4.7 mF input and output  
ceramic capacitor. It is available in industry standard WDFNW6  
0.65P, 2 mm x 2 mm.  
M
Y
W
G
= Month Code  
= Year  
= Work Week  
= PbFree Package  
(Note: Microdot may be in either location)  
PIN CONNECTONS  
Features  
Operating Input Voltage Range: 1.6 V to 5.5 V  
Available in Fixed Voltage Option: 0.6 V to 5.0 V  
Adjustable Version Reference Voltage: 0.6 V  
0.7% Initial Accuracy at 25°C  
1% Accuracy Over Load and Temperature  
Low Quiescent Current Typ. 35 mA  
Shutdown Current: Typ. 0.1 mA  
ORDERING INFORMATION  
See detailed ordering, marking and shipping information on  
page 11 of this data sheet.  
Very Low Dropout: Typ. 65 mV at 500 mA for 3.3 V Variant  
High PSRR: Typ. 85 dB at 100 mA, f = 1 kHz  
Low Noise: 10 mV  
(Fixed Version)  
RMS  
Stable with a 4.7 mF Small Case Size Ceramic Capacitors  
Controlled Output Voltage Slew Rate from 5 mV / ms  
Available in WDFNW6 2 mm x 2 mm x 0.75 mm Case 511DW  
These Devices are PbFree, Halogen Free/BFR Free and are RoHS  
Compliant  
Typical Applications  
Communication Systems  
InVehicle Networking  
Telematics, Infotainment and Clusters  
General Purpose Automotive  
V
IN  
V
OUT  
IN  
OUT  
NCP189  
R1  
R2  
ADJ version  
FB  
4.7 mF  
Ceramic  
4.7 mF  
Ceramic  
C
C
IN  
OUT  
EN  
GND  
ON  
OFF  
Figure 1. Typical Application Schematics  
© Semiconductor Components Industries, LLC, 2022  
1
Publication Order Number:  
July, 2022 Rev. 0  
NCP189/D  
NCP189  
PIN FUNCTION DESCRIPTION  
Pin No.  
WDFNW6  
Pin  
Name  
Description  
1
6
OUT  
IN  
Regulated output voltage. The output should be bypassed with small 4.7 mF ceramic capacitor  
Input voltage supply pin  
4
EN  
Chip enable: Applying V < 0.4 V disables the regulator, Pulling V > 1 V enables the LDO  
EN EN  
5
PG  
Power Good, open collector. Use 10 kW to 100 kW pullup resistor connected to output or input voltage  
Common ground connection  
3
GND  
FB  
2
Adjustable output feedback pin (for adjustable version only)  
2
SNS  
PAD  
Sense feedback pin. Must be connected to OUT pin on PCB (for fixed versions only)  
Expose pad should be tied to ground plane for better power dissipation  
PAD  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
V
Input Voltage (Note 1)  
V
IN  
*0.3 to 6  
Output Voltage  
V
OUT  
0.3 to V + 0.3, max. 6  
V
IN  
Chip Enable Input  
V
*0.3 to 6  
*0.3 to 6  
20  
V
EN  
PG  
PG  
Power Good Voltage  
V
V
Power Good Current  
I
mA  
s
Output Short Circuit Duration  
Maximum Junction Temperature  
Storage Temperature  
t
unlimited  
150  
SC  
T
°C  
°C  
V
J
TSTG  
55 to 150  
2000  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Charged Device Model (Note 2)  
ESDHBM  
ESDCDM  
1000  
V
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AECQ100002 (EIA/JESD22A114)  
ESD Charged Device Model tested per EIA/JESD22C101, Field Induced Charge Model  
www.onsemi.com  
2
 
NCP189  
THERMAL CHARACTERISTICS  
Rating  
Symbol  
Value  
Unit  
Thermal Characteristics, WDFNW62x2, 0.65 Pitch Package  
Thermal Resistance, JunctiontoAmbient (Note 3)  
Thermal Resistance, JunctiontoCase (top)  
RqJA  
RqJC(top)  
RqJC(bot)  
RqJB  
60  
167  
6.9  
6.6  
4.6  
6.5  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Thermal Resistance, JunctiontoCase (bottom) (Note 4)  
Thermal Resistance, JunctiontoBoard  
Characterization Parameter, JunctiontoTop  
YJT  
Characterization Parameter, JunctiontoBoard  
YJB  
2
3. The junctiontoambient thermal resistance under natural convection is obtained in a simulation on a highK board (2s2p, 1in , 1oz Cu)  
following the JEDEC51.7 guidelines with assumptions as above, in an environment described in JESD512a.  
4. The junctiontocase (bottom) thermal resistance is obtained by simulating a cold plate test on the IC exposed pad. Test description can  
be found in the ANSI SEMI standard G3088.  
ELECTRICAL CHARACTERISTICS  
40°C T 125°C; V = V  
+ 0.5 V or 1.6 V, whichever is greater, I  
= 1 mA, C = C  
= 4.7 mF, V = V , unless  
J
IN  
OUT(NOM)  
OUT  
IN  
OUT  
EN  
IN  
otherwise noted. Typical values are at T = +25°C (Note 5).  
J
Characteristic  
Operating Input Voltage  
Under Voltage Lock Out  
Output Voltage Accuracy  
Symbol  
Test Conditions  
Min  
Typ  
Max  
5.5  
Unit  
V
V
IN  
1.6  
V
UVLO  
1.5  
V
V
OUT  
V
J
= V  
+ 0.5 V, I  
= 1 mA  
0.7  
V
NOM  
+0.7  
%
IN  
OUT(NOM)  
OUT  
T = +25°C  
V
= V  
+ 0.5 V to 5.5 V,  
1  
V
+1  
%
V
IN  
OUT(NOM)  
OUT  
NOM  
0.1 mA I  
0.5 A  
Reference Voltage (Adjustable Ver.  
FB pin connected to OUT)  
V
FB  
V
IN  
= 1.6 V to 5.5 V,  
0.594  
0.6  
0.606  
0.1 mA I  
0.5 A  
OUT  
Line Regulation  
Line  
V
+ 0.5 V V 5.5 V  
1
0
0.5  
2
mV/V  
mV  
Reg  
OUT(NOM)  
IN  
Load Regulation  
Load  
I
I
= 1 mA to 0.5 A  
Reg  
OUT  
OUT  
Dropout Voltage (Note 5)  
V
DO  
= 500 mA  
V
V
V
V
V
V
V
= 1.5 V  
= 1.8 V  
= 2.5 V  
= 2.8 V  
= 3.0 V  
= 3.3 V  
= 5.0 V  
109  
93  
74  
69  
67  
65  
58  
750  
750  
35  
0.1  
175  
152  
121  
113  
110  
108  
95  
mV  
OUT(NOM)  
OUT(NOM)  
OUT(NOM)  
OUT(NOM)  
OUT(NOM)  
OUT(NOM)  
OUT(NOM)  
Output Current Limit  
Short Circuit Current  
Quiescent Current  
I
CL  
V
V
= 90% V  
= 0 V  
850  
mA  
OUT  
OUT(NOM)  
I
SC  
OUT  
I
Q
I
= 0 mA  
55  
mA  
mA  
V
OUT  
Shutdown Current  
I
V
EN  
0.4 V, T 125°C  
3.5  
DIS  
J
EN Pin Threshold Voltage  
V
ENH  
EN Input Voltage “H”  
EN Input Voltage “L”  
V
IN  
V
ENL  
0.4  
0.6  
EN Pull Down Current  
I
V
EN  
= 5 V  
0.2  
95  
90  
30  
85  
mA  
EN  
Power Good Threshold Voltage  
V
Output Voltage Raising  
Output Voltage Falling  
%
PGUP  
PGDW  
V
Power Good Output Voltage Low  
V
PGLO  
I
= 1 mA, Open drain  
100  
mV  
PG  
TurnOn Delay Time  
C
= 4.7 mF, From assertion of V to  
start raise  
ms  
OUT  
OUT  
EN  
V
www.onsemi.com  
3
 
NCP189  
ELECTRICAL CHARACTERISTICS (continued)  
40°C T 125°C; V = V  
+ 0.5 V or 1.6 V, whichever is greater, I  
= 1 mA, C = C  
= 4.7 mF, V = V , unless  
J
IN  
OUT(NOM)  
OUT  
IN  
OUT  
EN  
IN  
otherwise noted. Typical values are at T = +25°C (Note 5).  
J
Characteristic  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Slew Rate Time (“C” option)  
C
= 4.7 mF, From assertion of V to  
5
mV/ms  
OUT  
VOUT = 95% V  
EN  
OUT(NOM)  
Slew Rate Time (“D” option)  
Slew Rate Time (“E” option)  
Slew Rate Time (“F” option)  
Power Supply Rejection Ratio  
C
= 4.7 mF, From assertion of V to  
10  
30  
mV/ms  
mV/ms  
mV/ms  
dB  
OUT  
OUT  
EN  
V
= 95% V  
OUT(NOM)  
C
= 4.7 mF, From assertion of V to  
EN  
OUT  
OUT  
V
= 95% V  
OUT(NOM)  
C
= 4.7 mF, From assertion of V to  
100  
OUT  
OUT  
EN  
V
= 95% V  
OUT(NOM)  
PSRR  
V
OUT  
= 3.3 V, f = 1 kHz  
f = 10 kHz  
85  
75  
53  
40  
10  
OUT(NOM)  
I
= 100 mA  
f = 100 kHz  
f = 1 MHz  
Output Voltage Noise (Fixed Ver.)  
Thermal Shutdown Threshold  
V
N
f = 10 Hz to  
100 kHz  
I
= 100 mA  
mV  
RMS  
OUT  
T
SDH  
Temperature rising  
165  
15  
°C  
°C  
W
T
HYST  
Temperature hysteresis  
VEN < 0.4 V, AD Version only  
Active Output Discharge  
Resistance  
R
250  
DIS  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
5. Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at T = 25°C.  
A
Low duty cycle pulse techniques are used during the testing to maintain the junction temperature as close to ambient as possible.  
6. Dropout voltage is characterized when V  
7. Guaranteed by design.  
falls 3% below V  
.
OUT  
OUT(NOM)  
www.onsemi.com  
4
 
NCP189  
TYPICAL CHARACTERISTICS  
0.808  
0.806  
0.804  
0.802  
0.800  
0.798  
0.608  
0.606  
0.604  
0.602  
0.600  
0.598  
0.596  
0.594  
0.592  
V
I
= 1.6 V  
= 1 mA  
0.796  
0.794  
0.792  
V
I
C
= 1.6 V  
= 1 mA  
IN  
IN  
OUT  
OUT  
C
= 4.7 mF  
= 4.7 mF  
OUT  
OUT  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (°C)  
Temperature (°C)  
Figure 2. Output Voltage vs. Temperature  
Figure 3. Output Voltage vs. Temperature −  
V
OUT = 0.6 V (Adjustable Reference)  
VOUT = 0.8 V  
1.812  
1.809  
1.806  
1.803  
1.800  
1.797  
1.794  
1.791  
1.788  
1.212  
1.209  
1.206  
1.203  
1.200  
1.197  
1.194  
1.191  
1.188  
V
= 1.6 V  
= 1 mA  
V
= 2.3 V  
= 1 mA  
= 4.7 mF  
OUT  
IN  
IN  
I
I
OUT  
OUT  
C
= 4.7 mF  
C
OUT  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (°C)  
Temperature (°C)  
Figure 4. Output Voltage vs. Temperature −  
OUT = 1.2 V  
Figure 5. Output Voltage vs. Temperature −  
V
VOUT = 1.8 V  
3.324  
3.318  
3.312  
3.306  
3.300  
3.294  
3.288  
3.282  
3.276  
2.520  
2.515  
2.510  
2.505  
2.500  
2.495  
2.490  
2.485  
2.480  
V
I
C
= 3.0 V  
= 1 mA  
V
I
C
= 3.8 V  
= 1 mA  
IN  
IN  
OUT  
OUT  
= 4.7 mF  
= 4.7 mF  
OUT  
OUT  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (°C)  
Temperature (°C)  
Figure 6. Output Voltage vs. Temperature −  
OUT = 2.5 V  
Figure 7. Output Voltage vs. Temperature −  
V
VOUT = 3.3 V  
www.onsemi.com  
5
NCP189  
TYPICAL CHARACTERISTICS (continued)  
95  
87.5  
80  
125  
115  
105  
95  
72.5  
65  
85  
57.5  
75  
V
I
C
= 1.8 V  
= 0.5 A  
= 4.7 mF  
V
I
C
= 2.5 V  
= 0.5 A  
= 4.7 mF  
OUT  
OUT  
50  
42.5  
35  
65  
OUT  
OUT  
55  
OUT  
OUT  
45  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (°C)  
Temperature (°C)  
Figure 8. Dropout Voltage vs. Temperature −  
OUT = 1.8 V  
Figure 9. Dropout Voltage vs. Temperature −  
V
VOUT = 2.5 V  
200  
175  
150  
125  
100  
75  
92.5  
85  
I
C
= 0.5 A  
OUT  
= 4.7 mF  
OUT  
77.5  
70  
T = 125°C  
A
T = 25°C  
A
62.5  
55  
V
= 3.3 V  
= 0.5 A  
= 4.7 mF  
50  
47.5  
40  
OUT  
T = 40°C  
A
I
OUT  
25  
C
OUT  
0
32.5  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
40 20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Output Voltage (V)  
Figure 10. Dropout Voltage vs. Temperature −  
OUT = 3.3 V  
Figure 11. Dropout Voltage vs. Output Voltage  
V
850  
825  
850  
825  
800  
775  
750  
800  
775  
750  
725  
700  
675  
650  
725  
700  
675  
650  
C
= 4.7 mF  
OUT  
C
= 4.7 mF  
OUT  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (°C)  
Temperature (°C)  
Figure 12. Current Limit vs. Temperature  
Figure 13. Short Circuit Current vs. Temperature  
www.onsemi.com  
6
NCP189  
TYPICAL CHARACTERISTICS (continued)  
0.10  
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.10  
0.00  
0.10  
0.20  
0.30  
0.40  
V
I
C
= 2.5 V  
= 1 mA  
= 4.7 mF  
V
V
C
= 2.5 V  
= 4.7 mF  
80  
OUT  
OUT  
0.50  
0.60  
0.70  
= 3.0 V  
OUT  
IN  
OUT  
OUT  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
100 120  
Temperature (°C)  
Temperature (°C)  
Figure 14. Line Regulation vs. Temperature  
Figure 15. Load Regulation vs. Temperature  
80  
70  
60  
50  
40  
30  
20  
10  
0
46  
44  
42  
40  
38  
36  
34  
32  
30  
T = 25°C  
OUT  
V
I
C
= 3.3 V  
= 0 mA  
= 4.7 mF  
A
OUT  
I
= 0 mA  
OUT  
C
= 4.7 mF  
OUT  
OUT  
40 20  
0
20  
40  
60  
80  
100 120  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Temperature (°C)  
Input Voltage (V)  
Figure 16. Quiescent Current vs. Temperature  
Figure 17. Quiescent Current vs. Input Voltage  
170  
150  
130  
110  
90  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
V
I
C
= 0.6 V  
= 1 mA  
= 4.7 mF  
I
C
= 0 mA  
OUT  
OUT  
= 4.7 mF  
OUT  
OUT  
OUT  
70  
50  
30  
10  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (°C)  
Temperature (°C)  
Figure 18. Disable Current vs. Temperature  
Figure 19. Feedback Input Current vs.  
Temperature (Adjustable Option)  
www.onsemi.com  
7
NCP189  
TYPICAL CHARACTERISTICS (continued)  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
96  
95  
94  
V
raising  
OUT  
to nominal  
93  
92  
91  
90  
89  
88  
Output ON  
Output OFF  
V
falling  
OUT  
from nominal  
40 20  
0
20  
40  
60  
80  
100 120  
40  
20  
0
20  
40  
60  
80  
100  
120  
Temperature (°C)  
Temperature (°C)  
Figure 21. Power Good Threshold vs.  
Temperature  
Figure 20. Enable Threshold vs. Temperature  
20  
19  
18  
17  
16  
15  
14  
13  
12  
254  
252  
250  
248  
246  
244  
242  
240  
238  
I
C
= 1. mA  
EN = Low  
PG  
= 4.7 mF  
C
= 4.7 mF  
OUT  
OUT  
40  
20  
0
20  
40  
60  
80  
100  
120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (°C)  
Temperature (°C)  
Figure 22. Power Good Saturation Voltage vs.  
Temperature  
Figure 23. Active Discharge Resistance vs.  
Temperature  
130  
450  
400  
350  
300  
250  
200  
150  
100  
50  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
= 3.0 V  
IN  
= 2.5 V  
OUT  
T = 25°C  
A
C
= 4.7 mF  
OUT  
Iout = 10 mA  
Iout = 100 mA  
Iout = 500 mA  
T = 25°C  
A
EN = Low  
C
= 4.7 mF  
OUT  
10000  
0,1  
1
10  
100  
1000  
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
Input Voltage (V)  
Frequency (kHz)  
Figure 24. Active Discharge Resistance vs.  
Input Voltage  
Figure 25. Power Supply Rejection Ratio  
for VOUT = 2.5 V, COUT = 4.7 mF  
www.onsemi.com  
8
NCP189  
TYPICAL CHARACTERISTICS (continued)  
10000  
V
V
I
= 3.0 V  
IN  
OUT  
= 2.5 V  
= 10 mA  
1000  
100  
OUT  
T = 25°C  
A
C
= 4.7 mF  
OUT  
1
2
10  
1
0.01  
0.1  
1
10  
100  
1000 10000  
Frequency (kHz)  
Figure 27. Controlled Output Voltage Slew Rate  
Figure 26. Output Voltage Noise Spectral  
Density for VOUT = 2.5 V, COUT = 4.7 mF  
APPLICATIONS INFORMATION  
Power Good Output Connection  
The NCP189 is the member of new family of high output  
current and low dropout regulators which delivers low  
quiescent and ground current consumption, good noise and  
power supply ripple rejection ratio performance. The  
NCP189 incorporates EN pin and power good output for  
simple controlling by MCU or logic. Standard features  
include current limiting, softstart feature and thermal  
protection.  
The NCP189 include Power Good functionality for better  
interfacing to MCU system. Power Good output is open  
collector type, capable to sink up to 10 mA. Recommended  
operating current is between 10 mA and 1 mA to obtain low  
saturation voltage. External pullup resistor can be  
connected to any voltage up to 5.5 V (please see Absolute  
Maximum Ratings table above).  
Please note that Power Good internal circuitry is  
nonfunctional (disabled) to achieve the lowest possible  
internal current consumption in case of disabled LDO  
through Enable input (EN = Low). In this case internal  
Power Good transistor is open and output logic level is  
defined by voltage used for pullup resistor. When Power  
Good is intended to be used as part of power sequencing  
functionality, then please connect external pullup resistor  
to output voltage of NCP189. This will allow you to get  
correct low PG signal when LDO is disabled. Active  
discharge option is recommended to discharge output  
capacitors connected to LDO.  
Power Good signal is internally delayed avoiding reaction  
to short glitches in output voltage. Blanking time is about  
9 ms when voltage is decreasing from nominal value and  
about 18 ms when voltage is increasing back to nominal  
value.  
Input Decoupling (CIN)  
It is recommended to connect at least 4.7 mF ceramic X5R  
or X7R capacitor between IN and GND pin of the device.  
This capacitor will provide a low impedance path for any  
unwanted AC signals or noise superimposed onto constant  
input voltage. The good input capacitor will limit the  
influence of input trace inductances and source resistance  
during sudden load current changes. Higher capacitance and  
lower ESR capacitors will improve the overall line transient  
response.  
Output Decoupling (COUT  
)
The NCP189 does not require a minimum Equivalent  
Series Resistance (ESR) for the output capacitor. The device  
is designed to be stable with standard ceramics capacitors  
with values of 2.2 mF or greater. For the best performance  
and stability under all conditions (temperature, output  
current load etc.) is recommended to use 4.7 mF or higher  
capacitor. The X5R and X7R types have the lowest  
capacitance variations over temperature thus they are  
suitable. Please note that too high output capacity (for  
example 100 mF and more) may cause instability under some  
conditions, especially under very light load condition.  
Controlled Output Voltage Slew Rate  
The NCP189 has internal output voltage slew rate control  
(see Figure 27). After enable event there is about 85 ms dead  
time required to proper startup of all internal LDO blocks.  
When this time ends, output voltage starts to raise  
www.onsemi.com  
9
 
NCP189  
Hints  
monotonously from zero to nominal output voltage. Total  
V
IN  
and GND printed circuit board traces should be as  
time need to settle LDO output on nominal voltage is given  
by voltage option and slew rate. Customer can choose from  
4 available options – 5 mV/ms, 10 mV/ms, 30 mV/ms and  
100 mV/ms.  
In case of adjustable application please remember that  
selected slew rate is controlled for voltage raise from 0 V to  
reference voltage. It means that slew rate is multiplied by  
Vout / Vref ratio.  
wide as possible. When the impedance of these traces is  
high, there is a chance to pick up noise or cause the regulator  
to malfunction. Place external components, especially the  
output capacitor, as close as possible to the NCP189, and  
make traces as short as possible.  
Adjustable Version  
In case customer needs nonstandard / special voltage  
option, but output noise is critical too, there is one option. In  
such case customer can use fixed version and connect  
external resistor divider between output voltage and SNS  
pin. Under such condition, original fixed voltage becomes  
reference voltage for resistor divider and feedback loop.  
Output voltage can be equal or higher than original fixed  
option, while possible range is from 0.6 V up to 5.0 V.  
Figure 28 shows how to add external resistors to increase  
output voltage above fixed value.  
Power Dissipation and Heat Sinking  
The maximum power dissipation supported by the device  
is dependent upon board design and layout. Mounting pad  
configuration on the PCB, the board material, and the  
ambient temperature affect the rate of junction temperature  
rise for the part. For reliable operation junction temperature  
should be limited to +125°C, however device is capable to  
work up to junction temperature +150°C (in range from  
+125°C to +150°C parameters are not guaranteed). The  
maximum power dissipation the NCP189 can handle is  
given by:  
Output voltage is then given by equation  
ǒ
)
VOUT + VFIX * 1 ) RńR2  
(eq. 4)  
ƪT  
ƫ
J(MAX) * TA  
where V  
is voltage of original fixed version (from 0.6 V  
PD(MAX)  
+
FIX  
(eq. 1)  
RqJA  
up to 5.0 V) or adjustable version (0.6 V). Do not operate the  
device at output voltage about 5.2 V, as device can be  
damaged.  
Typical current flowing into FB pin is below 200 nA  
(adjustable option), where current flowing into SNS pin is  
below 900 nA (fixed options). In order to avoid influence of  
this current to output voltage accuracy, it is recommended  
use values of R1 and R2 in range from 1 kW to 220 kW.  
The power dissipated by the NCP189 for given  
application conditions can be calculated from the following  
equations:  
ǒ
Ǔ
ǒ
Ǔ
PD [ VIN IGND(IOUT) ) IOUT VIN * VOUT  
(eq. 2)  
or  
ǒ
Ǔ
PD(MAX) ) VOUT   IOUT  
VIN(MAX)  
[
(eq. 3)  
IOUT ) IGND  
V
IN  
V
OUT  
IN  
OUT  
NCP189  
ADJ or FIX version  
FB / SNS  
GND  
R1  
R2  
4.7 mF  
Ceramic  
4.7 mF  
Ceramic  
C
IN  
EN  
C
OUT  
ON  
OFF  
Figure 28. Adjustable Variant Application  
Please note that output noise is amplified by V  
/ V  
For noise sensitive applications it is recommended to use as  
high fixed variant as possible – for example in case above it  
is better to use 3.3 V fixed variant to create 3.6 V output  
voltage, as output noise will be amplified only  
3.6 / 3.3 = 1.09x (10.9 mVrms).  
OUT  
FIX  
or V  
/ V  
ratio. For example, if original 0.6 V  
OUT  
FB  
adjustable variant is used to create nonstandard 3.6 V  
output voltage, output noise is increased 3.6 / 0.6 = 6 times  
and real noise value will be 6 * 10 mVrms = 60 mVrms.  
www.onsemi.com  
10  
 
NCP189  
ORDERING INFORMATION  
Device part no. *  
Voltage Option  
Marking  
Option  
Package  
Shipping  
NCP189CMTWADJTAG  
ADJ  
1.2 V  
1.8 V  
3.3 V  
AE  
With Active Output Discharge,  
Slew Rate 5ꢀmV/ms  
WDFNW6 2x2  
3000 / Tape &  
Reel  
(PbFree)  
NCP189CMTW120TAG  
NCP189CMTW180TAG  
NCP189CMTW330TAG  
AA  
AC  
AD  
With Active Output Discharge,  
Slew Rate 5ꢀmV/ms  
WDFNW6 2x2  
(PbFree)  
3000 / Tape &  
Reel  
With Active Output Discharge,  
Slew Rate 5ꢀmV/ms  
WDFNW6 2x2  
(PbFree)  
3000 / Tape &  
Reel  
With Active Output Discharge,  
Slew Rate 5ꢀmV/ms  
WDFNW6 2x2  
(PbFree)  
3000 / Tape &  
Reel  
*Other voltage options and slew rate options (D / E / F) upon request.  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
11  
NCP189  
PACKAGE DIMENSIONS  
WDFNW6 2x2, 0.65P  
CASE 511DW  
ISSUE B  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
onsemi Website: www.onsemi.com  
www.onsemi.com  

相关型号:

NCP18WB333

for Surface Mounting Application
MURATA

NCP18WB33303RB

Temperature Sensor and Compensation 0603 (1608) Size
MURATA

NCP18WB333E03RB

NTC Thermistors
MURATA

NCP18WB333J03RB

NTC Thermistor, 33000ohm, Surface Mount, CHIP, 0603
MURATA

NCP18WB333K0SRB

NTC Thermistor, 33000ohm, Surface Mount, CHIP, 0603
MURATA

NCP18WB473

for Surface Mounting Application
MURATA

NCP18WB47303RB

Temperature Sensor and Compensation 0603 (1608) Size
MURATA

NCP18WB47310RB

Temperature Sensor and Compensation 0603 (1608) Size
MURATA

NCP18WB473D03RB

NTC Thermistors
MURATA

NCP18WB473E03RB

NTC Thermistor, 47000ohm, Surface Mount, CHIP, 0603
MURATA

NCP18WB473F10RB

DESIGN ENGINEERING KITS
MURATA

NCP18WB473F1SRB

NTC Thermistor, 47000ohm, Surface Mount, CHIP, 0603
MURATA