NCP2820AFCT2G [ONSEMI]

音频功率放大器,D 级,2.65 W,无滤波器,单声道;
NCP2820AFCT2G
型号: NCP2820AFCT2G
厂家: ONSEMI    ONSEMI
描述:

音频功率放大器,D 级,2.65 W,无滤波器,单声道

放大器 功率放大器 消费电路 音频放大器 视频放大器
文件: 总22页 (文件大小:288K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP2820  
2.65 W Filterless Class−D  
Audio Power Amplifier  
The NCP2820 is a costeffective mono ClassD audio power  
amplifier capable of delivering 2.65 W of continuous average power  
to 4.0 from a 5.0 V supply in a Bridge Tied Load (BTL)  
configuration. Under the same conditions, the output power stage can  
provide 1.4 W to a 8.0 BTL load with less than 1% THD+N. For  
cellular handsets or PDAs it offers space and cost savings because no  
output filter is required when using inductive tranducers. With more  
than 90% efficiency and very low shutdown current, it increases the  
lifetime of your battery and drastically lowers the junction  
temperature.  
The NCP2820 processes analog inputs with a pulse width  
modulation technique that lowers output noise and THD when  
compared to a conventional sigmadelta modulator. The device allows  
independent gain while summing signals from various audio sources.  
Thus, in cellular handsets, the earpiece, the loudspeaker and even the  
melody ringer can be driven with a single NCP2820. Due to its low  
http://onsemi.com  
MARKING  
DIAGRAMS  
A3  
A1  
1
9PIN FLIPCHIP CSP  
1
FC SUFFIX  
CASE 499AL  
C1  
8
1
ZB MG  
1
42ꢁ ꢂV noise floor, Aweighted, a clean listening is guaranteed no  
matter the load sensitivity.  
8 PIN UDFN 2x2.2  
MU SUFFIX  
Features  
CASE 506AV  
Optimized PWM Output Stage: Filterless Capability  
Efficiency up to 90%  
A
Y
= Assembly Location  
= Year  
Low 2.5 mA Typical Quiescent Current  
Large Output Power Capability: 1.4 W with 8.0 Load (CSP) and  
THD + N < 1%  
WW = Work Week  
M
G
= Date Code  
= PbFree Package  
Wide Supply Voltage Range: 2.55.5 V Operating Voltage  
High Performance, THD+N of 0.03% @ V = 5.0 V,  
p
R = 8.0 , P = 100 mW  
L
out  
Excellent PSRR (65 dB): No Need for Voltage Regulation  
Surface Mounted Package 9Pin FlipChip CSPand UDFN8  
Fully Differential Design. Eliminates Two Input Coupling Capacitors  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 20 of  
this data sheet.  
Very Fast Turn On/Off Times with Advanced Rising and Falling  
Cs  
Gain Technique  
External Gain Configuration Capability  
Internally Generated 250 kHz Switching Frequency  
VP  
Audio  
Input  
from  
R
R
i
i
INP  
INM  
OUTM  
OUTP  
Short Circuit Protection Circuitry  
DAC  
“Pop and Click” Noise Protection Circuitry  
PbFree Packages are Available  
SD  
Input from  
Microcontroller  
Applications  
Cellular Phone  
GND  
Portable Electronic Devices  
PDAs and Smart Phones  
Portable Computer  
Cs  
R
R
i
i
1.6 mm  
3.7 mm  
© Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
November, 2006 Rev. 5  
NCP2820/D  
NCP2820  
PIN CONNECTIONS  
9Pin FlipChip CSP  
UDFN8  
OUTM  
GND  
1
2
3
4
8
7
6
5
SD  
VP  
A1  
A2  
A3  
INP  
GND  
OUTM  
B1  
VP  
B2  
VP  
B3  
GND  
C3  
INP  
INM  
VP  
OUTP  
C1  
C2  
(Top View)  
INM  
SD  
OUTP  
(Top View)  
BATTERY  
Cs  
V
p
R
R
i
f
INM  
OUTP  
RAMP  
GENERATOR  
Data  
Processor  
CMOS  
Output  
Stage  
Negative  
Differential  
Input  
OUTM  
R
R
f
i
INP  
300 kꢀ  
Shutdown  
Control  
Positive  
Differential  
Input  
GND  
SD  
V
ih  
V
il  
Figure 1. Typical Application  
PIN DESCRIPTION  
Pin No.  
CSP  
A1  
A2  
A3  
B1  
B2  
B3  
C1  
C2  
UDFN8  
Symbol  
INP  
Type  
Description  
3
7
8
2
6
7
4
1
I
I
Positive Differential Input.  
Analog Ground.  
GND  
OUTM  
O
I
Negative BTL Output.  
V
p
V
p
Analog Positive Supply. Range: 2.5 V – 5.5 V.  
I
Power Analog Positive Supply. Range: 2.5 V – 5.5 V.  
Analog Ground.  
GND  
INM  
SD  
I
I
Negative Differential Input.  
I
The device enters in Shutdown Mode when a low level is applied on this pin. An internal  
300 kresistor will force the device in shutdown mode if no signal is applied to this pin. It  
also helps to save space and cost.  
C3  
5
OUTP  
O
Positive BTL Output.  
http://onsemi.com  
2
NCP2820  
MAXIMUM RATINGS  
Symbol  
Rating  
Max  
Unit  
V
p
Supply Voltage  
Active Mode  
Shutdown Mode  
6.0  
7.0  
V
V
Input Voltage  
0.3 to V +0.3  
V
A
in  
CC  
I
Max Output Current (Note 1)  
Power Dissipation (Note 2)  
Operating Ambient Temperature  
Max Junction Temperature  
Storage Temperature Range  
1.5  
Internally Limited  
40 to +85  
150  
out  
P
d
T
A
°C  
°C  
°C  
°C/W  
T
J
T
stg  
65 to +150  
R
Thermal Resistance JunctiontoAir  
9Pin FlipChip  
90 (Note 3)  
50  
JA  
UDFN8  
ESD Protection  
> 2000  
> 200  
V
Human Body Model (HBM) (Note 4)  
Machine Model (MM) (Note 5)  
Latchup Current @ T = 85°C (Note 6)  
9Pin FlipChip  
$70  
mA  
A
UDFN8  
$100  
MSL  
Moisture Sensitivity (Note 7)  
Level 1  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. The device is protected by a current breaker structure. See “Current Breaker Circuit” in the Description Information section for more  
information.  
2. The thermal shutdown is set to 160°C (typical) avoiding irreversible damage to the device due to power dissipation.  
3. For the 9Pin FlipChip CSP package, the R  
is highly dependent of the PCB Heatsink area. For example, R  
can equal 195°C/W with  
JA  
JA  
2
2
50 mm total area and also 135°C/W with 500 mm . When using ground and power planes, the value is around 90°C/W, as specified in table.  
4. Human Body Model: 100 pF discharged through a 1.5 kresistor following specification JESD22/A114. On 9Pin FlipChip, B2 Pin (V )  
P
is qualified at 1500 V.  
5. Machine Model: 200 pF discharged through all pins following specification JESD22/A115.  
6. Latchup Testing per JEDEC Standard JESD78.  
7. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: JSTD020A.  
http://onsemi.com  
3
NCP2820  
ELECTRICAL CHARACTERISTICS (Limits apply for T = +25°C unless otherwise noted) (NCP2820FCT1G and NCP2820FCT2G)  
A
Characteristic  
Operating Supply Voltage  
Supply Quiescent Current  
Symbol  
Conditions  
T = 40°C to +85°C  
Min  
Typ  
Max  
Unit  
V
V
p
2.5  
5.5  
A
I
dd  
V = 3.6 V, R = 8.0 ꢀ  
2.15  
2.61  
mA  
p
L
V = 5.5 V, No Load  
p
V from 2.5 V to 5.5 V, No Load  
p
T = 40°C to +85°C  
A
4.6  
Shutdown Current  
I
sd  
V = 4.2 V  
A  
A  
p
T = +25°C  
0.42  
0.45  
0.8  
A
T = +85°C  
A
V = 5.5 V  
p
T = +25°C  
T = +85°C  
A
0.8  
0.9  
1.5  
A
Shutdown Voltage High  
Shutdown Voltage Low  
Switching Frequency  
V
1.2  
V
V
sdih  
V
0.4  
310  
sdil  
F
V from 2.5 V to 5.5 V  
190  
250  
kHz  
sw  
p
T = 40°C to +85°C  
A
Gain  
G
R = 8.0 ꢀ  
L
285 k300 k315 kꢀ  
V
V
R
R
R
i
i
i
Output Impedance in Shutdown Mode  
Resistance from SD to GND  
Output Offset Voltage  
Z
300  
300  
6.0  
9.0  
5.0  
160  
kꢀ  
SD  
Rs  
Vos  
Ton  
Toff  
Tsd  
Vn  
V = 5.5 V  
mV  
ms  
p
Turn On Time  
V from 2.5 V to 5.5 V  
p
Turn Off Time  
V from 2.5 V to 5.5 V  
ms  
p
Thermal Shutdown Temperature  
Output Noise Voltage  
°C  
V = 3.6 V, f = 20 Hz to 20 kHz  
Vrms  
p
no weighting filter  
with A weighting filter  
65  
42  
RMS Output Power  
Po  
W
W
W
W
R = 8.0 , f = 1.0 kHz, THD+N < 1%  
L
V = 2.5 V  
0.32  
0.48  
0.7  
0.97  
1.38  
p
V = 3.0 V  
p
V = 3.6 V  
p
V = 4.2 V  
p
V = 5.0 V  
p
R = 8.0 , f = 1.0 kHz, THD+N < 10%  
L
V = 2.5 V  
0.4  
0.59  
0.87  
1.19  
1.7  
p
V = 3.0 V  
p
V = 3.6 V  
p
V = 4.2 V  
p
V = 5.0 V  
p
R = 4.0 , f = 1.0 kHz, THD+N < 1%  
L
V = 2.5 V  
0.49  
0.72  
1.06  
1.62  
2.12  
p
V = 3.0 V  
p
V = 3.6 V  
p
V = 4.2 V  
p
V = 5.0 V  
p
R = 4.0 , f = 1.0 kHz, THD+N < 10%  
L
V = 2.5 V  
0.6  
0.9  
1.33  
2.0  
2.63  
p
V = 3.0 V  
p
V = 3.6 V  
p
V = 4.2 V  
p
V = 5.0 V  
p
http://onsemi.com  
4
NCP2820  
ELECTRICAL CHARACTERISTICS (Limits apply for T = +25°C unless otherwise noted) (NCP2820FCT1G and NCP2820FCT2G)  
A
Characteristic  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Efficiency  
%
R = 8.0 , f = 1.0 kHz  
L
V = 5.0 V, P = 1.2 W  
91  
90  
p
out  
V = 3.6 V, P = 0.6 W  
p
out  
R = 4.0 , f = 1.0 kHz  
L
V = 5.0 V, P = 2.0 W  
82  
81  
p
out  
V = 3.6 V, P = 1.0 W  
p
out  
Total Harmonic Distortion + Noise  
Common Mode Rejection Ratio  
THD+N  
CMRR  
V = 5.0 V, R = 8.0 ,  
%
p
L
f = 1.0 kHz, P = 0.25 W  
0.05  
0.09  
out  
V = 3.6 V, R = 8.0 ,  
p
L
f = 1.0 kHz, P = 0.25 W  
out  
V from 2.5 V to 5.5 V  
p
dB  
V
ic  
= 0.5 V to V 0.8 V  
62  
p
V = 3.6 V, V = 1.0 V  
p
ic  
pp  
f = 217 Hz  
f = 1.0 kHz  
56  
57  
Power Supply Rejection Ratio  
PSRR  
V
= 200 mV, R = 8.0 ,  
dB  
p_ripple_pkpk  
L
Inputs AC Grounded  
V = 3.6 V  
p
f = 217 kHz  
f = 1.0 kHz  
62  
65  
ELECTRICAL CHARACTERISTICS (Limits apply for T = +25°C unless otherwise noted) (NCP2820MUTBG)  
A
Characteristic  
Operating Supply Voltage  
Supply Quiescent Current  
Symbol  
Conditions  
T = 40°C to +85°C  
Min  
Typ  
Max  
Unit  
V
V
p
2.5  
5.5  
A
I
dd  
V = 3.6 V, R = 8.0 ꢀ  
2.15  
2.61  
mA  
p
L
V = 5.5 V, No Load  
p
V from 2.5 V to 5.5 V, No Load  
p
T = 40°C to +85°C  
A
3.8  
Shutdown Current  
I
sd  
V = 4.2 V  
A  
A  
p
T = +25°C  
0.42  
0.45  
0.8  
2.0  
A
T = +85°C  
A
V = 5.5 V  
p
T = +25°C  
T = +85°C  
A
0.8  
0.9  
1.5  
A
Shutdown Voltage High  
Shutdown Voltage Low  
Switching Frequency  
V
1.2  
V
V
sdih  
V
0.4  
300  
sdil  
F
V from 2.5 V to 5.5 V  
180  
240  
kHz  
sw  
p
T = 40°C to +85°C  
A
Gain  
G
R = 8.0 ꢀ  
L
285 k300 k315 kꢀ  
V
V
R
R
R
i
i
i
Output Impedance in Shutdown Mode  
Resistance from SD to GND  
Output Offset Voltage  
Z
20  
300  
6.0  
1.0  
1.0  
160  
kꢀ  
kꢀ  
SD  
Rs  
Vos  
Ton  
Toff  
Tsd  
Vn  
V = 5.5 V  
mV  
s  
p
Turn On Time  
V from 2.5 V to 5.5 V  
p
Turn Off Time  
V from 2.5 V to 5.5 V  
s
p
Thermal Shutdown Temperature  
Output Noise Voltage  
°C  
V = 3.6 V, f = 20 Hz to 20 kHz  
V
r
m
s
p
no weighting filter  
with A weighting filter  
65  
42  
http://onsemi.com  
5
NCP2820  
ELECTRICAL CHARACTERISTICS (Limits apply for T = +25°C unless otherwise noted) (NCP2820MUTBG)  
A
Characteristic  
RMS Output Power  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
Po  
W
R = 8.0 , f = 1.0 kHz, THD+N < 1%  
L
V = 2.5 V  
0.22  
0.33  
0.45  
0.67  
0.92  
p
V = 3.0 V  
p
V = 3.6 V  
p
V = 4.2 V  
p
V = 5.0 V  
p
R = 8.0 , f = 1.0 kHz, THD+N < 10%  
W
W
W
%
L
V = 2.5 V  
0.36  
0.53  
0.76  
1.07  
1.49  
p
V = 3.0 V  
p
V = 3.6 V  
p
V = 4.2 V  
p
V = 5.0 V  
p
R = 4.0 , f = 1.0 kHz, THD+N < 1%  
L
V = 2.5 V  
0.24  
0.38  
0.57  
0.83  
1.2  
p
V = 3.0 V  
p
V = 3.6 V  
p
V = 4.2 V  
p
V = 5.0 V  
p
R = 4.0 , f = 1.0 kHz, THD+N < 10%  
L
V = 2.5 V  
0.52  
0.8  
1.125  
1.58  
2.19  
p
V = 3.0 V  
p
V = 3.6 V  
p
V = 4.2 V  
p
V = 5.0 V  
p
Efficiency  
R = 8.0 , f = 1.0 kHz  
L
V = 5.0 V, P = 1.2 W  
87  
87  
p
out  
V = 3.6 V, P = 0.6 W  
p
out  
R = 4.0 , f = 1.0 kHz  
L
V = 5.0 V, P = 2.0 W  
79  
78  
p
out  
V = 3.6 V, P = 1.0 W  
p
out  
Total Harmonic Distortion + Noise  
Common Mode Rejection Ratio  
THD+N  
CMRR  
V = 5.0 V, R = 8.0 ,  
%
p
L
f = 1.0 kHz, P = 0.25 W  
0.05  
0.06  
out  
V = 3.6 V, R = 8.0 ,  
p
L
f = 1.0 kHz, P = 0.25 W  
out  
V from 2.5 V to 5.5 V  
p
dB  
V
ic  
= 0.5 V to V 0.8 V  
62  
p
V = 3.6 V, V = 1.0 V  
p
ic  
pp  
f = 217 Hz  
f = 1.0 kHz  
56  
57  
Power Supply Rejection Ratio  
PSRR  
V
= 200 mV, R = 8.0 ,  
dB  
p_ripple_pkpk  
L
Inputs AC Grounded  
V = 3.6 V  
p
f = 217 kHz  
f = 1.0 kHz  
62  
65  
http://onsemi.com  
6
NCP2820  
NCP2820  
C
C
R
R
i
i
i
i
+
+
INP  
OUTM  
30 kHz  
Low Pass  
Filter  
Audio Input  
Signal  
Measurement  
Input  
Load  
INM  
OUTP  
GND  
VP  
4.7 F  
+
Power  
Supply  
Figure 2. Test Setup for Graphs  
NOTES:  
1. Unless otherwise noted, C = 100 nF and R = 150 k. Thus, the gain setting is 2 V/V and the cutoff frequency of the  
i
i
input high pass filter is set to 10 Hz. Input capacitors are shorted for CMRR measurements.  
2. To closely reproduce a real application case, all measurements are performed using the following loads:  
R = 8 means Load = 15 H + 8 + 15 H  
L
R = 4 means Load = 15 H + 4 + 15 H  
L
Very low DCR 15 H inductors (50 m) have been used for the following graphs. Thus, the electrical load  
measurements are performed on the resistor (8 or 4 ) in differential mode.  
3. For Efficiency measurements, the optional 30 kHz filter is used. An RC lowpass filter is selected with  
(100 , 47 nF) on each PWM output.  
http://onsemi.com  
7
NCP2820  
TYPICAL CHARACTERISTICS  
100  
90  
80  
70  
60  
50  
40  
100  
90  
80  
70  
60  
NCP2820 CSP  
Class AB  
NCP2820 DFN  
V = 5 V  
R = 8 ꢀ  
L
p
50  
40  
30  
20  
10  
0
Class AB  
V = 5 V  
R = 8 ꢀ  
L
p
30  
20  
NCP2820  
0
0.2  
0.4  
0.6  
0.8  
(W)  
1.0  
1.2  
1.4  
0
0.2  
0.4  
0.6  
(W)  
0.8  
1
P
out  
P
out  
Figure 3. Efficiency vs. Pout  
Figure 4. Die Temperature vs. Pout  
Vp = 5 V, RL = 8 , f = 1 kHz  
Vp = 5 V, RL = 8 , f = 1 kHz @ TA = +25°C  
60  
55  
50  
45  
40  
35  
30  
25  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
NCP2820 CSP  
NCP2820 DFN  
Class AB  
V = 3.6 V  
R = 8 ꢀ  
L
p
Class AB  
V = 3.6 V  
R = 8 ꢀ  
L
p
NCP2820  
0
0.1  
0.2  
0.3  
0.4  
(W)  
0.5  
0.6  
0.7  
0
0.1  
0.2  
0.3  
P
0.4  
(W)  
0.5  
0.6  
0.7  
P
out  
out  
Figure 5. Efficiency vs. P out  
Figure 8. Die Temperature vs. P out  
Vp = 3.6 V, RL = 8 , f = 1 kHz  
Vp = 3.6 V, RL = 8 , f = 1 kHz @ TA = +25°C  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
160  
140  
120  
100  
80  
NCP2820 CSP  
NCP2820 DFN  
Class AB  
V = 5 V  
R = 4 ꢀ  
L
p
Class AB  
60  
V = 5 V  
R = 4 ꢀ  
p
40  
NCP2820  
L
20  
0
0.5  
1
1.5  
2
0
0.5  
1.0  
(W)  
1.5  
2.0  
P
(W)  
P
out  
out  
Figure 6. Efficiency vs. Pout  
Figure 7. Die Temperature vs. Pout  
Vp = 5 V, RL = 4 , f = 1 kHz  
Vp = 5 V, RL = 4 , f = 1 kHz @ TA = +25°C  
http://onsemi.com  
8
NCP2820  
TYPICAL CHARACTERISTICS  
100  
90  
80  
70  
60  
50  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
NCP2820 CSP  
NCP2820 DFN  
Class AB  
V = 3.6 V  
R = 4 ꢀ  
L
p
Class AB  
40  
30  
20  
V = 3.6 V  
R = 4 ꢀ  
L
p
NCP2820  
0
0.2  
0.4  
0.6  
(W)  
0.8  
1
1.2  
0
0.2  
0.4  
0.6  
(W)  
0.8  
1.0  
P
P
out  
out  
Figure 10. Die Temperature vs. Pout  
Vp = 3.6 V, RL = 4 , f = 1 kHz @ TA = +25°C  
Figure 9. Efficiency vs. Pout  
Vp = 3.6 V, RL = 4 , f = 1 kHz  
10  
1.0  
10  
1.0  
V = 5.0 V  
V = 4.2 V  
p
p
R = 8 ꢀ  
R = 8 ꢀ  
L
L
f = 1 kHz  
f = 1 kHz  
NCP2820 DFN  
NCP2820 DFN  
0.1  
0.1  
NCP2820 CSP  
NCP2820 CSP  
0.01  
0.01  
0
0.2  
0.4  
0.6  
0.8  
1.0  
(W)  
1.2  
1.4  
1.6  
0
0.2  
0.4  
0.6  
(W)  
0.8  
1.0  
1.2  
P
out  
P
out  
Figure 12. THD+N vs. Pout  
Vp = 4.2 V, RL = 8 , f = 1 kHz  
Figure 11. THD+N vs. Pout  
Vp = 5 V, RL = 8 , f = 1 kHz  
10  
1.0  
10  
1.0  
V = 3.6 V  
V = 3 V  
p
p
R = 8 ꢀ  
R = 8 ꢀ  
L
L
f = 1 kHz  
f = 1 kHz  
NCP2820 DFN  
NCP2820 DFN  
0.1  
0.1  
NCP2820 CSP  
NCP2820 CSP  
0.01  
0.01  
0
0.2  
0.4  
0.6  
0.8  
0
0.1  
0.2  
0.3  
(W)  
0.4  
0.5  
0.6  
P
out  
(W)  
P
out  
Figure 14. THD+N vs. Pout  
Vp = 3 V, RL = 8 , f = 1 kHz  
Figure 13. THD+N vs. Pout  
Vp = 3.6 V, RL = 8 , f = 1 kHz  
http://onsemi.com  
9
NCP2820  
TYPICAL CHARACTERISTICS  
10  
1.0  
10  
V = 2.5 V  
p
V = 5 V  
p
R = 8 ꢀ  
L
R = 4 ꢀ  
L
f = 1 kHz  
f = 1 kHz  
1.0  
0.1  
NCP2820 DFN  
0.1  
NCP2820 CSP  
0.01  
0.01  
0
0
0
0.1  
0.2  
(W)  
0.3  
0.4  
2.0  
1.0  
0
0.5  
1.0  
1.5  
(W)  
2.0  
2.5  
1.4  
0.6  
P
out  
P
out  
Figure 15. THD+N vs. Pout  
Vp = 2.5 V, RL = 8 , f = 1 kHz  
Figure 16. THD+N vs. Pout  
Vp = 5 V, RL = 4 , f = 1 kHz  
10  
1.0  
10  
1.0  
V = 4.2 V  
R = 4 ꢀ  
f = 1 kHz  
V = 3.6 V  
p
R = 4 ꢀ  
f = 1 kHz  
p
L
L
0.1  
0.1  
0.01  
0.01  
0.5  
1.0  
(W)  
1.5  
0
0.2  
0.4  
0.6  
P
0.8  
1.0  
1.2  
P
(W)  
out  
out  
Figure 17. THD+N vs. Pout  
Vp = 4.2 V, RL = 4 , f = 1 kHz  
Figure 18. THD+N vs. Pout  
Vp = 3.6 V, RL = 4 , f = 1 kHz  
10  
10  
V = 3 V  
R = 4 ꢀ  
f = 1 kHz  
V = 2.5 V  
p
R = 4 ꢀ  
f = 1 kHz  
p
L
L
1.0  
0.1  
1.0  
0.1  
0
0.2  
0.4  
0.6  
0.8  
0.1  
0.2  
0.3  
0.4  
0.5  
P
out  
(W)  
P
out  
(W)  
Figure 20. THD+N vs. Power Out  
Figure 19. THD+N vs. Power Out  
Vp = 2.5 V, RL = 4 , f = 1 kHz  
Vp = 3 V, RL = 4 , f = 1 kHz  
http://onsemi.com  
10  
NCP2820  
TYPICAL CHARACTERISTICS  
2.0  
1.5  
1.0  
0.5  
0
3.0  
R = 8 ꢀ  
f = 1 kHz  
R = 4 ꢀ  
f = 1 kHz  
L
L
2.5  
2.0  
1.5  
1.0  
0.5  
0
NCP2820 DFN  
THD+N = 10%  
THD+N = 10%  
NCP2820 CSP  
THD+N = 10%  
THD+N = 1%  
NCP2820 DFN  
THD+N = 3%  
NCP2820 CSP  
THD+N = 1%  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
POWER SUPPLY (V)  
POWER SUPPLY (V)  
Figure 21. Output Power vs. Power Supply  
Figure 22. Output Power vs. Power Supply  
RL = 8 @ f = 1 kHz  
RL = 4 @ f = 1 kHz  
10  
1.0  
10  
1.0  
V = 3.6 V  
p
V = 2.5 V  
p
V = 2.5 V  
p
V = 3.6 V  
p
0.1  
0.1  
V = 5 V  
p
V = 5 V  
p
0.01  
0.01  
10  
100  
1000  
FREQUENCY (Hz)  
10000  
100000  
10  
100  
1000  
10000  
100000  
FREQUENCY (Hz)  
Figure 23. THD+N vs. Frequency  
Figure 24. THD+N vs. Frequency  
RL = 8 , Pout = 250 mW @ f = 1 kHz  
RL = 4 , Pout = 250 mW @ f = 1 kHz  
20  
30  
40  
50  
60  
70  
80  
20  
30  
40  
50  
60  
70  
80  
V = 5 V  
V = 5 V  
p
p
V = 3.6 V  
V = 3.6 V  
p
p
Inputs to GND  
R = 8 ꢀ  
Inputs to GND  
R = 4 ꢀ  
L
L
10  
100  
1000  
10000  
100000  
10  
100  
1000  
10000  
100000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 25. PSRR vs. Frequency  
Inputs Grounded, RL = 8 , Vripple = 200 mvpkpk  
Figure 26. PSRR vs. Frequency  
Inputs grounded, RL = 4 , Vripple = 200 mVpkpk  
http://onsemi.com  
11  
NCP2820  
TYPICAL CHARACTERISTICS  
20  
30  
40  
50  
60  
70  
80  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
Thermal Shutdown  
V = 3.6 V  
p
R = 8 ꢀ  
L
V = 3.6 V  
R = 8 ꢀ  
L
p
0.5  
0
10  
100  
1000  
10000  
100000  
120  
130  
140  
TEMPERATURE (°C)  
150  
160  
FREQUENCY (Hz)  
Figure 27. PSRR vs. Frequency  
Figure 28. Thermal Shutdown vs. Temperature  
Vp = 3.6 V, RL = 8 , Vic = 200 mvpkpk  
Vp = 5 V, RL = 8 ,  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
R = 8 ꢀ  
L
R = 8 ꢀ  
L
2.5  
3.5  
4.5  
5.5  
2.5  
3.5  
4.5  
5.5  
POWER SUPPLY (V)  
POWER SUPPLY (V)  
Figure 29. Shutdown Current vs. Power Supply  
Figure 30. Quiescent Current vs. Power Supply  
RL = 8 ꢀ  
RL = 8 ꢀ  
1000  
100  
10  
1000  
100  
10  
V = 3.6 V  
R = 8 ꢀ  
L
V = 5 V  
p
R = 8 ꢀ  
L
p
No Weighting  
No Weighting  
With A Weighting  
With A Weighting  
10  
100  
1000  
10000  
10  
100  
1000  
10000  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 31. Noise Floor, Inputs AC Grounded  
Figure 32. Noise Floor, Inputs AC Grounded  
with 1 F Vp = 3.6 V  
with 1 F Vp = 5 V  
http://onsemi.com  
12  
NCP2820  
8
11  
10  
9
T = +85°C  
A
7
T = +25°C  
A
T = +25°C  
A
T = 40°C  
A
T = 40°C  
A
6
5
8
7
6
T = +85°C  
A
4
2.5  
3.5  
4.5  
5.5  
2.5  
3.5  
4.5  
5.5  
POWER SUPPLY (V)  
POWER SUPPLY (V)  
Figure 34. Turn off Time  
Figure 33. Turn on Time  
DESCRIPTION INFORMATION  
Detailed Description  
The device has the same behavior when it is turnedoff by  
a logic low on the shutdown pin. No power is delivered to the  
load 5 ms after a falling edge on the shutdown pin. Due to  
the fast turn on and off times, the shutdown signal can be  
used as a mute signal as well.  
The basic structure of the NCP2820 is composed of one  
analog preamplifier, a pulse width modulator and an  
Hbridge CMOS power stage. The first stage is externally  
configurable with gainsetting resistor R and the internal  
i
fixed feedback resistor R (the closedloop gain is fixed by  
f
Turn On and Turn Off Transitions in Case of UDFN8  
In case of UDFN8 package, the audio signal is established  
instantaneously after the rising edge on the shutdown pin.  
The audio is also suddenly cut once a low level is sent to the  
amplifier. This way to turn on and off the device in a very fast  
way also prevents from “pop & click” noise.  
the ratios of these resistors) and the other stage is fixed. The  
load is driven differentially through two output stages.  
The differential PWM output signal is a digital image of  
the analog audio input signal. The human ear is a band pass  
filter regarding acoustic waveforms, the typical values of  
which are 20 Hz and 20 kHz. Thus, the user will hear only  
the amplified audio input signal within the frequency range.  
The switching frequency and its harmonics are fully filtered.  
The inductive parasitic element of the loudspeaker helps to  
guarantee a superior distortion value.  
Shutdown Function  
The device enters shutdown mode when the shutdown  
signal is low. During the shutdown mode, the DC quiescent  
current of the circuit does not exceed 1.5 A.  
Current Breaker Circuit  
Power Amplifier  
The maximum output power of the circuit corresponds to  
an average current in the load of 820 mA.  
The output PMOS and NMOS transistors of the amplifier  
have been designed to deliver the output power of the  
specifications without clipping. The channel resistance  
In order to limit the excessive power dissipation in the  
load if a shortcircuit occurs, a current breaker cell shuts  
down the output stage. The current in the four output MOS  
transistors are realtime controlled, and if one current  
exceeds the threshold set to 1.5 A, the MOS transistor is  
opened and the current is reduced to zero. As soon as the  
shortcircuit is removed, the circuit is able to deliver the  
expected output power.  
This patented structure protects the NCP2820. Since it  
completely turns off the load, it minimizes the risk of the  
chip overheating which could occur if a soft current limiting  
circuit was used.  
(R ) of the NMOS and PMOS transistors is typically 0.4  
.  
on  
Turn On and Turn Off Transitions in Case of 9 Pin  
FlipChip Package  
In order to eliminate “pop and click” noises during  
transition, the output power in the load must not be  
established or cutoff suddenly. When a logic high is applied  
to the shutdown pin, the internal biasing voltage rises  
quickly and, 4 ms later, once the output DC level is around  
the common mode voltage, the gain is established slowly  
(5.0 ms). This method to turn on the device is optimized in  
terms of rejection of “pop and click” noises. Thus, the total  
turn on time to get full power to the load is 9 ms (typical).  
http://onsemi.com  
13  
NCP2820  
APPLICATION INFORMATION  
NCP2820 PWM Modulation Scheme  
The NCP2820 uses a PWM modulation scheme with each  
output switching from 0 to the supply voltage. If V = 0 V  
outputs OUTM and OUTP are in phase and no current is  
flowing through the differential load. When a positive signal  
is applied, OUTP duty cycle is greater than 50% and OUTM  
is less than 50%. With this configuration, the current through  
the load is 0 A most of the switching period and thus power  
losses in the load are lowered.  
in  
OUTP  
OUTM  
+Vp  
0 V  
Vp  
Load Current  
0 A  
Figure 35. Output Voltage and Current Waveforms into an Inductive Loudspeaker  
DC Output Positive Voltage Configuration  
Voltage Gain  
An optional filter can be used for filtering high frequency  
signal before the speaker. In this case, the circuit consists of  
two inductors (15 H) and two capacitors (2.2 F)  
(Figure 36). The size of the inductors is linked to the output  
power requested by the application. A simplified version of  
this filter requires a 1 F capacitor in parallel with the load,  
instead of two 2.2 F connected to ground (Figure 37).  
Cellular phones and portable electronic devices are great  
applications for Filterless ClassD as the track length  
between the amplifier and the speaker is short, thus, there is  
usually no need for an EMI filter. However, to lower radiated  
emissions as much as possible when used in filterless mode,  
a ferrite filter can often be used. Select a ferrite bead with the  
high impedance around 100 MHz and a very low DCR value  
in the audio frequency range is the best choice. The  
MPZ1608S221A1 from TDK is a good choice. The package  
size is 0603.  
The first stage is an analog amplifier. The second stage is  
a comparator: the output of the first stage is compared with  
a periodic ramp signal. The output comparator gives a pulse  
width modulation signal (PWM). The third and last stage is  
the direct conversion of the PWM signal with MOS  
transistors Hbridge into a powerful output signal with low  
impedance capability.  
With an 8 load, the total gain of the device is typically  
set to:  
300 kꢀ  
R
i
Input Capacitor Selection (Cin)  
The input coupling capacitor blocks the DC voltage at the  
amplifier input terminal. This capacitor creates a highpass  
filter with R , the cutoff frequency is given by  
in  
1
Fc +  
.
2     R   C  
i
i
Optimum Equivalent Capacitance at Output Stage  
If the optional filter described in the above section isn’t  
selected. Cellular phones and wireless portable devices  
design normally put several Radio Frequency filtering  
capacitors and ESD protection devices between Filter less  
Class D outputs and loudspeaker. Those devices are usually  
connected between amplifier output and ground. In order to  
achieve the best sound quality, the optimum value of total  
equivalent capacitance between each output terminal to the  
ground should be less than or equal to 150 pF. This total  
equivalent capacitance consists of the radio frequency  
filtering capacitors and ESD protection device equivalent  
parasitic capacitance.  
When using an input resistor set to 150 k, the gain  
configuration is 2 V/V. In such a case, the input capacitor  
selection can be from 10 nF to 1 F with cutoff frequency  
values between 1 Hz and 100 Hz. The NCP2820 also  
includes a built in low pass filtering function. It’s cut off  
frequency is set to 20 kHz.  
Optional Output Filter  
This filter is optional due to the capability of the speaker  
to filter by itself the high frequency signal. Nevertheless, the  
high frequency is not audible and filtered by the human ear.  
http://onsemi.com  
14  
NCP2820  
15 H  
2.2 F  
OUTM  
15 H  
OUTM  
OUTP  
1.0 F  
15 H  
2.2 F  
15 H  
OUTP  
Figure 36. Advanced Optional Audio Output Filter  
Figure 37. Optional Audio Output Filter  
OUTM  
FERRITE  
CHIP BEADS  
OUTP  
Figure 38. Optional EMI Ferrite Bead Filter  
Cs  
VP  
R
R
i
i
INP  
INM  
Differential  
Audio Input  
from DAC  
OUTM  
OUTP  
SD  
Input from  
Microcontroller  
GND  
Figure 39. NCP2820 Application Schematic with Fully Differential Input Configuration  
Cs  
VP  
R
R
i
i
INP  
INM  
Differential  
Audio Input  
from DAC  
OUTM  
OUTP  
FERRITE  
CHIP BEADS  
SD  
Input from  
Microcontroller  
GND  
Figure 40. NCP2820 Application Schematic with Fully Differential Input Configuration and  
Ferrite Chip Beads as an Output EMI Filter  
http://onsemi.com  
15  
NCP2820  
Cs  
C
C
i
i
VP  
R
R
i
i
INP  
Differential  
Audio Input  
from DAC  
OUTM  
OUTP  
INM  
SD  
FERRITE  
CHIP BEADS  
Input from  
Microcontroller  
GND  
Figure 41. NCP2820 Application Schematic with Differential Input Configuration and  
High Pass Filtering Function  
Cs  
C
C
i
i
VP  
R
R
i
i
INP  
INM  
OUTM  
OUTP  
SingleEnded Audio Input  
from DAC  
SD  
Input from  
Microcontroller  
GND  
Figure 42. NCP2820 Application Schematic with Single Ended Input Configuration  
http://onsemi.com  
16  
NCP2820  
V
p
J1  
C4*  
4.7 F  
C3*  
U1  
B1, B2  
J7  
V
p
C1  
R
f
R1  
INP  
A1  
OUTM  
A3  
150 kꢀ  
100 nF  
J2  
RAMP  
GENERATOR  
J3  
Data  
CMOS  
Processor  
Output  
Stage  
C2  
OUTP  
C3  
R
f
R2  
INM  
C1  
100 nF  
150 kꢀ  
300 kꢀ  
J8  
Shutdown  
Control  
GND  
A2, B3  
C2  
SD  
V
p
*J6 not Mounted  
*C3 not Mounted in case of 9 Pin FlipChip Evaluation Board  
*C4 not Defined in case of UDFN8 Evaluation Board.  
J5  
J4  
J6*  
C = NCP2820 ON  
L
J5  
C = NCP2820 OFF  
L
Figure 43. Schematic of the Demonstration Board of the 9pin Flip Chip CSP Device  
Figure 44. Silkscreen Layer of the 9 Pin FlipChip Evaluation Board  
http://onsemi.com  
17  
NCP2820  
Figure 45. Silkscreen Layer of the UDFN8 Evaluation Board  
PCB Layout Information  
A 1.0 F low ESR ceramic capacitor can also be used with  
slightly degraded performances on the THD+N from 0.06%  
up to 0.2%.  
NCP2820 is suitable for low cost solution. In a very small  
package it gives all the advantages of a ClassD audio  
amplifier. The required application board is focused on low  
cost solution too. Due to its fully differential capability, the  
audio signal can only be provided by an input resistor. If a  
low pass filtering function is required, then an input  
coupling capacitor is needed. The values of these  
components determine the voltage gain and the bandwidth  
frequency. The battery positive supply voltage requires a  
good decoupling capacitor versus the expected distortion.  
When the board is using Ground and Power planes with  
at least 4 layers, a single 4.7 F filtering ceramic capacitor  
on the bottom face will give optimized performance.  
In a two layers application, if both V pins are connected  
p
on the top layer, a single 4.7 F decoupling capacitor will  
optimize the THD+N level.  
The NCP2820 power audio amplifier can operate from  
2.5 V until 5.5 V power supply. With less than 2% THD+N,  
it delivers 500 mW rms output power to a 8.0 load at  
V =3.0 V and 1.0 W rms output power at V = 4.0 V.  
p
p
http://onsemi.com  
18  
NCP2820  
Note  
Figure 46. Top Layer of Two Layers Board Dedicated to the 9Pin FlipChip Package  
Note: This track between Vp pins is only needed when a 2 layers board is used. In case of a typical  
4 or more layers, the use of laser vias in pad will optimize the THD+N floor. The demonstration  
board delivered by ON Semiconductor is a 4 Layers with Top, Ground, Power Supply and Bottom.  
Bill of Materials  
PCB  
Footprint  
Item  
Part Description  
NCP2820 Audio Amplifier  
SMD Resistor 150 kꢀ  
Ref  
U1  
Manufacturer  
Part Number  
NCP2820  
1
2
3
4
5
6
R1, R2  
C1, C2  
C3, C4  
J7, J8  
J2  
0603  
0603  
0603  
VishayDraloric  
TDK  
CRCW0603  
Ceramic Capacitor 100 nF, 50 V, X7R  
Ceramic Capacitor 4.7 F, 6.3 V, X5R  
PCB Footprint  
C1608X7R1H104KT  
C1608X5R0J475MT  
TDK  
I/O connector. It can be plugged by  
Phoenix Contact  
Weidmuller  
MC1,5/3G  
MC1,5/3ST3,81  
7
I/O connector. It can be plugged by  
BLZ5.08/2 (Weidmuller Reference)  
J1, J3  
SL5.08/2/90B  
8
9
Jumper Connector, 400 mils  
J4  
J5  
Harwin  
D3082B01  
58266290  
Jumper Header Vertical Mount  
3*1, 2.54 mm.  
Tyco Electronics / AMP  
http://onsemi.com  
19  
NCP2820  
ORDERING INFORMATION  
Device  
Marking  
MAQ  
Package  
Shipping†  
NCP2820FCT1  
9Pin FlipChip CSP  
3000 / Tape & Reel  
NCP2820FCT1G  
MAQG  
9Pin FlipChip CSP  
(PbFree)  
3000 / Tape & Reel  
T1 Orientation  
NCP2820FCT2G  
NCP2820MUTBG  
MAQG  
ZBMG  
9Pin FlipChip CSP  
(PbFree)  
3000 / Tape & Reel  
T2 Orientation  
8 PIN UDFN 2x2.2  
3000 / Tape & Reel  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
T1 Orientation  
T2 Orientation  
Pin 1 (Upper Right)  
Pin 1 (Upper Left)  
Die orientation in tape with bumps down  
Die orientation in tape with bumps down  
http://onsemi.com  
20  
NCP2820  
PACKAGE DIMENSIONS  
9 PIN FLIPCHIP  
CASE 499AL01  
ISSUE O  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. COPLANARITY APPLIES TO SPHERICAL  
CROWNS OF SOLDER BALLS.  
A−  
4 X  
D
0.10  
C
B−  
MILLIMETERS  
DIM  
A
A1 0.210  
A2 0.330  
MIN  
0.540  
MAX  
0.660  
0.270  
0.390  
E
D
E
b
1.450 BSC  
1.450 BSC  
0.290 0.340  
0.500 BSC  
TOP VIEW  
A
e
0.10  
0.05  
C−  
C
D1  
E1  
1.000 BSC  
1.000 BSC  
C
A2  
SEATING  
PLANE  
A1  
SIDE VIEW  
D1  
e
C
B
A
E1  
e
9 X  
b
1
2
3
0.05 C A B  
0.03 C  
BOTTOM VIEW  
http://onsemi.com  
21  
NCP2820  
PACKAGE DIMENSIONS  
8 PIN UDFN, 2x2.2, 0.5P  
CASE 506AV01  
ISSUE B  
NOTES:  
A
B
E
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
D
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.25 AND  
0.30 mm FROM TERMINAL.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN ONE  
REFERENCE  
MILLIMETERS  
2X  
DIM MIN  
0.45  
A1 0.00  
NOM MAX  
A
0.50  
0.03  
0.55  
0.05  
0.10  
C
TOP VIEW  
A3  
b
D
0.127 REF  
2X  
0.10  
C
0.20  
0.25  
2.00 BSC  
1.50  
0.30  
A
(A3)  
D2 1.40  
1.60  
0.90  
E
2.20 BSC  
0.80  
0.10  
0.08  
C
C
E2 0.70  
e
K
L
0.50 BSC  
−−−  
0.40  
8X  
0.20  
0.35  
−−−  
0.45  
SEATING  
PLANE  
SIDE VIEW  
D2  
C
A1  
e
SOLDERING FOOTPRINT*  
2.15  
8X L  
8X  
0.48  
4
1
8X  
0.25  
1
E2  
0.50  
PITCH  
1.60  
8X K  
8
5
8X b  
0.10  
0.05  
C
C
A B  
BOTTOM VIEW  
NOTE 3  
0.80  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP2820/D  

相关型号:

NCP2820D

2.65 W Filterless Class−D Audio Power Amplifier
ONSEMI

NCP2820FCT1

2.65 W Filterless Class−D Audio Power Amplifier
ONSEMI

NCP2820FCT1G

2.65 W Filterless Class−D Audio Power Amplifier
ONSEMI

NCP2820FCT2G

2.65 W Filterless Class−D Audio Power Amplifier
ONSEMI

NCP2820MUTBG

2.65 W Filterless Class−D Audio Power Amplifier
ONSEMI

NCP2821

2.65 W Filterless with Selectable Gain Class−D Audio Amplifier
ONSEMI

NCP2821D

2.65 W Filterless with Selectable Gain Class−D Audio Amplifier
ONSEMI

NCP2821FCT1G

2.65W, 1 CHANNEL, AUDIO AMPLIFIER, BGA9, LEAD FREE, CSP-9
ROCHESTER

NCP2823

High Efficiency 3W Filterless Class D Audio Amplifier
ONSEMI

NCP2823AFCCT2G

High Efficiency 3W Filterless Class D Audio Amplifier
ONSEMI

NCP2823AFCT2G

High Efficiency 3W Filterless Class D Audio Amplifier
ONSEMI

NCP2823BFCT1G

High Efficiency 3W Filterless Class D Audio Amplifier
ONSEMI