NCP3063BMNTXG [ONSEMI]

1.5 A, Step-Up/Down/ Inverting Switching Regulators; 1.5 A ,步上/下/反相开关稳压器
NCP3063BMNTXG
型号: NCP3063BMNTXG
厂家: ONSEMI    ONSEMI
描述:

1.5 A, Step-Up/Down/ Inverting Switching Regulators
1.5 A ,步上/下/反相开关稳压器

稳压器 开关 光电二极管
文件: 总19页 (文件大小:364K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP3063, NCP3063B,  
NCV3063  
1.5 A, Step-Up/Down/  
Inverting Switching  
Regulators  
http://onsemi.com  
MARKING  
The NCP3063 Series is a higher frequency upgrade to the popular  
MC34063A and MC33063A monolithic DCDC converters. These  
devices consist of an internal temperature compensated reference,  
comparator, a controlled duty cycle oscillator with an active current  
limit circuit, a driver and a high current output switch. This series was  
specifically designed to be incorporated in StepDown, StepUp and  
VoltageInverting applications with a minimum number of external  
components.  
DIAGRAMS  
3063x  
ALYW  
G
8
1
1
Features  
SOIC8  
D SUFFIX  
CASE 751  
Operation to 40 V Input  
Low Standby Current  
V3063  
ALYW  
G
Output Switch Current to 1.5 A  
Output Voltage Adjustable  
Frequency Operation of 150 kHz  
Precision 1.5% Reference  
1
NCP3063x  
AWL  
New Features: Internal Thermal Shutdown with Hysteresis  
New Features: CyclebyCycle Current Limiting  
PbFree Packages are Available  
YYWWG  
1
8
1
Applications  
NCV3063  
AWL  
YYWWG  
PDIP8  
P, P1 SUFFIX  
CASE 626  
StepDown, StepUp and Inverting supply applications  
High Power LED Lighting  
Battery Chargers  
1
NCP  
3063x  
ALYW  
G
8
1
NCP3063  
SET dominant  
TSD  
1
R
S
DFN8  
CASE 488AF  
Q
NCP  
3063  
ALYW  
G
7
COMPARATOR  
+
S
2
3
SET dominant  
Q
Rs  
R
0.15 W  
NCP3063x  
=
Specific Device Code  
x = B  
Assembly Location  
Wafer Lot  
D
OSCILLATOR  
CT  
0.2 V  
6
V
in  
L
A
=
=
=
=
=
47 mH  
12 V  
+
L, WL  
Y, YY  
W, WW  
G
CT  
2.2 nF  
COMPARATOR  
C
in  
1.25 V  
REFERENCE  
REGULATOR  
+
Year  
Work Week  
220 mF  
V
5
out  
3.3 V /  
800 mA  
4
PbFree Package  
(Note: Microdot may be in either location)  
3.9 kW  
R2  
+
R1  
470 mF  
2.4 kW  
C
out  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 16 of this data sheet.  
Figure 1. Typical Buck Application Circuit  
© Semiconductor Components Industries, LLC, 2009  
1
Publication Order Number:  
November, 2009 Rev. 9  
NCP3063/D  
NCP3063, NCP3063B, NCV3063  
1
Switch Collector  
Switch Emitter  
8
7
N.C.  
N.C.  
Sense  
Switch Collector  
I
pk  
Sense  
2
3
4
I
pk  
Switch Emitter  
EP Flag  
Timing Capacitor  
6
5
Timing Capacitor  
GND  
V
CC  
V
CC  
GND  
Comparator  
Inverting  
Input  
Comparator  
Inverting  
Input  
(Top View)  
(Top View)  
NOTE: EP Flag must be tied to GND Pin 4  
on PCB  
Figure 2. Pin Connections  
Figure 3. Pin Connections  
NCP3063  
8
1
TSD  
N.C.  
Switch Collector  
SET dominant  
R
S
Q
COMPARATOR  
7
+
2
3
I
pk  
Sense  
S
Switch Emitter  
Q
SET dominant  
R
0.2 V  
OSCILLATOR  
CT  
6
5
Timing Capacitor  
+V  
CC  
COMPARATOR  
1.25 V  
REFERENCE  
REGULATOR  
+
4
GND  
Comparator Inverting Input  
Figure 4. Block Diagram  
http://onsemi.com  
2
 
NCP3063, NCP3063B, NCV3063  
PIN DESCRIPTION  
Pin No.  
Pin Name  
Description  
Internal Darlington switch collector  
Internal Darlington switch emitter  
Timing Capacitor  
1
2
3
Switch Collector  
Switch Emitter  
Timing Capacitor  
Oscillator Input  
4
5
GND  
Ground pin for all internal circuits  
Comparator  
Inverting Input  
Inverting input pin of internal comparator  
6
7
V
Voltage Supply  
CC  
I
pk  
Sense  
Peak Current Sense Input to monitor the voltage drop across an external resistor to limit the peak  
current through the circuit  
8
N.C.  
Pin Not Connected  
Exposed  
Pad  
Exposed Pad  
The exposed pad beneath the package must be connected to GND (Pin 4). Additionally, using  
proper layout techniques, the exposed pad can greatly enhance the power dissipation capabilities  
of the NCP3063.  
MAXIMUM RATINGS (measured vs. Pin 4, unless otherwise noted)  
Rating  
Symbol  
Value  
Unit  
V
pin 6  
V
0 to +40  
V
V
CC  
CC  
Comparator Inverting Input pin 5  
V
0.2 to + V  
CII  
CC  
Darlington Switch Collector pin 1  
V
V
0 to +40  
0.6 to + V  
0 to +40  
1.5  
V
V
V
A
V
V
SWC  
SWE  
Darlington Switch Emitter pin 2 (transistor OFF)  
Darlington Switch Collector to Emitter pin 12  
Darlington Switch Current  
CC  
V
SWCE  
I
SW  
I
pk  
Sense Pin 7  
V
0.2 to V + 0.2  
IPK  
CC  
Timing Capacitor Pin 3  
V
TCAP  
0.2 to +1.4  
POWER DISSIPATION AND THERMAL CHARACTERISTICS  
Rating  
Symbol  
Value  
Unit  
°C/W  
°C/W  
PDIP8  
SOIC8  
Thermal Resistance, JunctiontoAir  
R
100  
q
JA  
Thermal Resistance, JunctiontoAir  
Thermal Resistance, JunctiontoCase  
R
q
180  
45  
q
JA  
R
JC  
DFN8  
Thermal Resistance, JunctiontoAir  
R
80  
°C/W  
°C  
q
JA  
Storage Temperature Range  
Maximum Junction Temperature  
T
STG  
65 to +150  
+150  
°C  
T
J MAX  
Operating Junction Temperature Range (Note 3)  
NCP3063  
NCP3063B, NCV3063  
T
J
0 to +70  
40 to +125  
°C  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. This device series contains ESD protection and exceeds the following tests:  
Pin 18: Human Body Model 2000 V per AEC Q100002; 003 or JESD22/A114; A115  
Machine Model Method 200 V  
2. This device contains latchup protection and exceeds 100 mA per JEDEC Standard JESD78.  
3. The relation between junction temperature, ambient temperature and Total Power dissipated in IC is T = T + R  
P
D
q •  
J
A
4. The pins which are not defined may not be loaded by external signals  
http://onsemi.com  
3
 
NCP3063, NCP3063B, NCV3063  
ELECTRICAL CHARACTERISTICS (V = 5.0 V, T = T to T [Note 5], unless otherwise specified)  
high  
CC  
J
low  
Symbol  
Characteristic  
Conditions  
Min  
Typ  
Max  
Unit  
OSCILLATOR  
f
Frequency  
(V 5 = 0 V, CT = 2.2 nF,  
110  
5.5  
150  
6.0  
190  
6.5  
kHz  
OSC  
Pin  
T = 25°C)  
J
I
/
Discharge to Charge Current Ratio  
(Pin 7 to V , T = 25°C)  
DISCHG  
CC  
J
I
CHG  
I
Capacitor Discharging Current  
Capacitor Charging Current  
Current Limit Sense Voltage  
(Pin 7 to V , T = 25°C)  
1650  
275  
mA  
mA  
DISCHG  
CC  
J
I
(Pin 7 to V , T = 25°C)  
CC J  
CHG  
IPK(Sense)  
V
(TJ = 25°C) (Note 6)  
165  
200  
235  
mV  
OUTPUT SWITCH (Note 7)  
V
Darlington Switch Collector to  
Emitter Voltage Drop  
(I  
SW  
= 1.0 A, Pin 2 to GND,  
T = 25°C) (Note 7)  
J
1.0  
1.3  
V
SWCE(DROP)  
I
Collector OffState Current  
(V = 40 V)  
CE  
0.01  
100  
mA  
C(OFF)  
COMPARATOR  
V
TH  
Threshold Voltage  
T = 25°C  
1.250  
V
%
J
NCP3063  
1.5  
2  
+1.5  
+2  
NCP3063B, NCV3063  
%
REG  
Threshold Voltage Line Regulation  
Input Bias Current  
(V = 5.0 V to 40 V)  
6.0  
1000  
2.0  
6.0  
mV  
nA  
LiNE  
CC  
I
(V = V )  
100  
1000  
CII in  
in  
th  
TOTAL DEVICE  
I
Supply Current  
(V = 5.0 V to 40 V,  
7.0  
mA  
CC  
CC  
CT = 2.2 nF, Pin 7 = V  
,
CC  
V
5 > V , Pin 2 = GND,  
Pin  
th  
remaining pins open)  
Thermal Shutdown Threshold  
Hysteresis  
160  
10  
°C  
°C  
5. NCP3063: T = 0°C, T  
= +70°C;  
low  
high  
low  
NCP3063B, NCV3063: T = 40°C, T  
= +125°C  
high  
6. The VIPK(Sense) Current Limit Sense Voltage is specified at static conditions. In dynamic operation the sensed current turnoff value depends  
on comparator response time and di/dt current slope. See the Operating Description section for details.  
7. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.  
8. NCV prefix is for automotive and other applications requiring site and change control.  
http://onsemi.com  
4
 
NCP3063, NCP3063B, NCV3063  
450  
400  
350  
300  
250  
200  
150  
100  
50  
190  
180  
170  
160  
150  
140  
C = 2.2 nF  
T = 25°C  
J
T
130  
120  
110  
0
3
7
12  
16  
21  
25  
29  
34  
38 40  
0 1 2 3 4 5 6 7 8 9 1011121314151617181920  
Ct, CAPACITANCE (nF)  
V
, SUPPLY VOLTAGE (V)  
CC  
Figure 5. Oscillator Frequency vs. Oscillator  
Timing Capacitor  
Figure 6. Oscillator Frequency vs. Supply  
Voltage  
2.4  
2.2  
2.0  
1.8  
1.25  
1.20  
1.15  
1.10  
V
= 5.0 V  
= 1 A  
CC  
V
= 5.0 V  
= 1 A  
CC  
I
E
I
C
1.6  
1.4  
1.05  
1.0  
1.2  
1.0  
50  
0
50  
100  
150  
50  
0
50  
100  
150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 7. Emitter Follower Configuration Output  
Darlington Switch Voltage Drop vs. Temperature  
Figure 8. Common Emitter Configuration Output  
Darlington Switch Voltage Drop vs. Temperature  
2.0  
1.9  
1.5  
1.4  
V
= 5.0 V  
V
= 5.0 V  
CC  
CC  
T = 25°C  
J
T = 25°C  
J
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.6  
0.5  
0
0.5  
1.0  
1.5  
0
0.5  
1.0  
1.5  
I , EMITTER CURRENT (A)  
E
I , COLLECTOR CURRENT (A)  
C
Figure 9. Emitter Follower Configuration Output  
Darlington Switch Voltage Drop vs. Emitter Current  
Figure 10. Common Emitter Configuration  
Output Darlington Switch Voltage Drop vs.  
Collector Current  
http://onsemi.com  
5
 
NCP3063, NCP3063B, NCV3063  
1.30  
1.28  
1.26  
1.24  
0.30  
0.28  
0.26  
0.24  
0.22  
0.20  
0.18  
0.16  
0.14  
1.22  
1.20  
0.12  
0.10  
40 25 10  
5
20 35 50 65 80 95 110 125  
40 25 10  
5
20 35 50 65 80 95 110 125  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 11. Comparator Threshold Voltage vs.  
Temperature  
Figure 12. Current Limit Sense Voltage vs.  
Temperature  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
C = 2.2 nF  
Pin 5, 7 = V  
T
CC  
2.5  
2.0  
Pin 2 = GND  
3.0 8.0  
13  
V
18  
23  
28  
33 38  
43  
, SUPPLY VOLTAGE (V)  
CC  
Figure 13. Standby Supply Current vs. Supply Voltage  
http://onsemi.com  
6
NCP3063, NCP3063B, NCV3063  
INTRODUCTION  
The NCP3063 is a monolithic power switching regulator  
controlled by the oscillator, thus pumping up the output filter  
capacitor. When the output voltage level reaches nominal,  
the output switch next cycle turning on is inhibited. The  
feedback comparator will enable the switching immediately  
when the load current causes the output voltage to fall below  
nominal. Under these conditions, output switch conduction  
can be enabled for a partial oscillator cycle, a partial cycle  
plus a complete cycle, multiple cycles, or a partial cycle plus  
multiple cycles. (See AN920/D for more information).  
optimized for dc to dc converter applications. The  
combination of its features enables the system designer to  
directly implement stepup, stepdown, and voltage−  
inverting converters with a minimum number of external  
components. Potential applications include cost sensitive  
consumer products as well as equipment for industrial  
markets. A representative block diagram is shown in  
Figure 4.  
Operating Description  
Oscillator  
The NCP3063 is a hysteretic, dcdc converter that uses a  
gated oscillator to regulate output voltage. In general, this  
mode of operation is somewhat analogous to a capacitor  
charge pump and does not require dominant pole loop  
compensation for converter stability. The Typical Operating  
Waveforms are shown in Figure 14. The output voltage  
waveform shown is for a stepdown converter with the  
ripple and phasing exaggerated for clarity. During initial  
converter startup, the feedback comparator senses that the  
output voltage level is below nominal. This causes the  
output switch to turn on and off at a frequency and duty cycle  
The oscillator frequency and offtime of the output switch  
are programmed by the value selected for timing capacitor  
C . Capacitor C is charged and discharged by a 1 to 6 ratio  
T
T
internal current source and sink, generating a positive going  
sawtooth waveform at Pin 3. This ratio sets the maximum  
t
/(t + t ) of the switching converter as 6/(6 + 1) or  
ON ON  
OFF  
0.857 (typical) The oscillator peak and valley voltage  
difference is 500 mV typically. To calculate the C capacitor  
T
value for required oscillator frequency, use the equations  
found in Figure 15. An Excel based design tool can be found  
at www.onsemi.com on the NCP3063 product page.  
1
Feedback Comparator Output  
0
1
I
PK  
Comparator Output  
0
Timing Capacitor, C  
T
On  
Off  
Output Switch  
Nominal Output Voltage Level  
Output Voltage  
Startup  
Operation  
Figure 14. Typical Operating Waveforms  
http://onsemi.com  
7
 
NCP3063, NCP3063B, NCV3063  
Peak Current Sense Comparator  
With a voltage ripple gated converter operating under  
normal conditions, output switch conduction is initiated by  
the Voltage Feedback comparator and terminated by the  
oscillator. Abnormal operating conditions occur when the  
converter output is overloaded or when feedback voltage  
Real V  
on R resistor  
turnoff sc  
V
+ V  
) Rs @ (t_delay @ dińdt)  
ipk(sense)  
turn_off  
Typical I comparator response time t_delay is 350 ns.  
pk  
The di/dt current slope is growing with voltage difference on  
the inductor pins and with decreasing inductor value.  
It is recommended to check the real max peak current in  
the application at worst conditions to be sure that the max  
peak current will never get over the 1.5 A Darlington Switch  
Current max rating.  
sensing is lost. Under these conditions, the I Current Sense  
pk  
comparator will protect the Darlington output Switch. The  
switch current is converted to a voltage by inserting a  
fractional ohm resistor, R , in series with V and the  
SC  
CC  
Darlington output switch. The voltage drop across R is  
SC  
monitored by the Current Sense comparator. If the voltage  
Thermal Shutdown  
drop exceeds 200 mV with respect to V , the comparator  
CC  
Internal thermal shutdown circuitry is provided to protect  
the IC in the event that the maximum junction temperature  
is exceeded. When activated, typically at 160°C, the Output  
Switch is disabled. The temperature sensing circuit is  
designed with 10°C hysteresis. The Switch is enabled again  
when the chip temperature decreases to at least 150°C  
threshold. This feature is provided to prevent  
catastrophic failures from accidental device  
overheating. It is not intended to be used as a  
replacement for proper heatsinking.  
will set the latch and terminate output switch conduction on  
a
cyclebycycle basis. This Comparator/Latch  
configuration ensures that the Output Switch has only a  
single ontime during a given oscillator cycle.  
Real  
on  
I1  
V
turnoff  
R Resistor  
s
I through the  
Darlington  
Switch  
di/dt slope  
Io  
V
Output Switch  
ipk(sense)  
t_delay  
The output switch is designed in a Darlington  
configuration. This allows the application designer to  
operate at all conditions at high switching speed and low  
voltage drop. The Darlington Output Switch is designed to  
switch a maximum of 40 V collector to emitter voltage and  
current up to 1.5 A.  
The V  
Current Limit Sense Voltage threshold is  
IPK(Sense)  
specified at static conditions. In dynamic operation the  
sensed current turnoff value depends on comparator  
response time and di/dt current slope.  
APPLICATIONS  
Figures 16 through 24 show the simplicity and flexibility  
of the NCP3063. Three main converter topologies are  
demonstrated with actual test data shown below each of the  
circuit diagrams.  
increase output current and helps with efficiency still  
keeping low cost bill of materials. Typical schematics of  
boost configuration with NMOS transistor, buck  
configuration with PMOS transistor and buck configuration  
Figure 15 gives the relevant design equations for the key  
parameters. Additionally, a complete application design aid  
for the NCP3063 can be found at www.onsemi.com.  
Figures 25 through 31 show typical NCP3063  
applications with external transistors. This solution helps to  
with LOW V  
PNP are shown.  
CE(sat)  
Another advantage of using the external transistor is  
higher operating frequency which can go up to 250 kHz.  
Smaller size of the output components such as inductor and  
capacitor can be used then.  
http://onsemi.com  
8
NCP3063, NCP3063B, NCV3063  
(See Notes 9, 10, 11)  
StepDown  
StepUp  
VoltageInverting  
|V | ) V  
t
t
V
) V  
V
V
) V * V  
in  
out  
F
on  
out  
F
out  
F
V
* V  
* V  
* V  
V
* V  
off  
in  
SWCE  
out  
in  
SWCE  
in  
SWCE  
t
t
t
on  
on  
on  
ton  
t
off  
t
off  
t
off  
t
t
t
t
t
t
on  
on  
on  
f ǒ  
Ǔ
f ǒ  
Ǔ
f ǒ  
Ǔ
off ) 1  
off ) 1  
off ) 1  
381.6 @ 10*6  
CT  
C
+
* 343 @ 10*12  
T
f
osc  
IL(avg)  
t
t
I
on  
on  
out  
out ǒ ) 1Ǔ  
out ǒ ) 1Ǔ  
I
I
t
off  
t
off  
Ipk (Switch)  
RSC  
DI  
2
DI  
2
DI  
2
L
L
L
I
)
I
)
I
)
L(avg)  
L(avg)  
L(avg)  
0.20  
pk (Switch)  
0.20  
0.20  
I
I
I
pk (Switch)  
pk (Switch)  
L
V
* V  
DI  
V
* V  
DI  
V
* V  
* V  
out  
in  
SWCE  
L
in  
SWCE  
Ǔt  
L
in  
SWCE  
ǒ
Ǔt  
on  
ǒ
ǒ
Ǔt  
on  
on  
DI  
L
Vripple(pp)  
2
t
I
t
I
on out  
on out  
1
2
Ǹ
[
) DI @ ESR  
[
) DI @ ESR  
ǒ Ǔ ) (ESR)  
DI  
L
L
L
C
O
C
O
8 f C  
O
Vout  
R
2
R
2
R
1
R
R
2
1
THǒ ) 1Ǔ  
THǒ ) 1Ǔ  
THǒ ) 1Ǔ  
V
V
V
R
1
9. V  
Darlington Switch Collector to Emitter Voltage Drop, refer to Figures 7, 8, 9 and 10.  
SWCE  
10.V Output rectifier forward voltage drop. Typical value for 1N5819 Schottky barrier rectifier is 0.4 V.  
F
11. The calculated t /t must not exceed the minimum guaranteed oscillator charge to discharge ratio.  
on off  
The Following Converter Characteristics Must Be Chosen:  
V Nominal operating input voltage.  
in  
V
Desired output voltage.  
Desired output current.  
out  
I
out  
DI Desired peaktopeak inductor ripple current. For maximum output current it is suggested that DI be chosen to be  
L
L
less than 10% of the average inductor current I  
. This will help prevent I  
from reaching the current limit threshold  
L(avg)  
pk (Switch)  
set by R . If the design goal is to use a minimum inductance value, let DI = 2(I ). This will proportionally reduce  
SC  
L
L(avg)  
converter output current capability.  
f Maximum output switch frequency.  
V
Desired peaktopeak output ripple voltage. For best performance the ripple voltage should be kept to a low  
ripple(pp)  
value since it will directly affect line and load regulation. Capacitor C should be a low equivalent series resistance (ESR)  
O
electrolytic designed for switching regulator applications.  
Figure 15. Design Equations  
http://onsemi.com  
9
 
NCP3063, NCP3063B, NCV3063  
U201  
N.C. SWC  
R201  
0R15  
8
7
6
5
1
2
3
4
+V  
OUT  
= +3.3 V / 800 mA  
L201 47 mH  
+V = +12 V  
IN  
SWE  
I
PK  
1
TCAP  
1
V
CC  
J203  
C206  
0.1 mF  
D201  
+
C203  
COMP GND  
NCP3063  
J201  
C205  
470 mF / 25 V  
+
2.2 nF  
1N5819  
J204  
1
C201  
0.1 mF  
C202  
220 mF / 50 V  
GND  
J202  
1
R203  
3K9 1%  
GND  
R202  
2K4 1%  
Figure 16. Typical Buck Application Schematic  
Value of Components  
Name  
L201  
D201  
C202  
C205  
C203  
Value  
Name  
R201  
R202  
R203  
C201  
C202  
Value  
47 mH, I > 1.5 A  
150 mW, 0.5 W  
sat  
1 A, 40 V Schottky Rectifier  
220 mF, 50 V, Low ESR  
470 mF, 25 V, Low ESR  
2.2 nF Ceramic Capacitor  
2.40 kW  
3.90 kW  
100 nF Ceramic Capacitor  
100 nF Ceramic Capacitor  
Test Results  
Test  
Condition  
= 9 V to 12 V, I = 800 mA  
Results  
Line Regulation  
Load Regulation  
Output Ripple  
V
in  
V
in  
V
in  
V
in  
V
in  
8 mV  
9 mV  
o
= 12 V, I = 80 mA to 800 mA  
o
= 12 V, I = 40 mA to 800 mA  
85 mV  
> 73%  
o
pp  
Efficiency  
= 12 V, I = 400 mA to 800 mA  
o
Short Circuit Current  
= 12 V, R  
= 0.15 W  
1.25 A  
load  
76  
74  
72  
70  
68  
66  
64  
0.1 0.2 0.3  
0.4 0.5 0.6 0.7  
OUTPUT LOAD (Adc)  
0.8 0.9  
1.0  
Figure 18. Efficiency vs. Output Current for the Buck  
Demo Board at Vin = 12 V, Vout = 3.3 V, TA = 255C  
Figure 17. Buck Demoboard Layout  
http://onsemi.com  
10  
NCP3063, NCP3063B, NCV3063  
L101  
100 mH  
U101  
N.C. SWC  
+V  
= +24 V / 350 mA  
OUT  
R101  
0R15  
D101  
1N5819  
8
7
6
5
1
2
3
4
1
+V = +12 V  
IN  
SWE  
I
PK  
J103  
+
TCAP  
1
V
CC  
C106  
0.1 mF  
C105  
330 mF / 50 V  
C103  
2.2 nF  
COMP GND  
NCP3063  
J101  
+
J104  
1
C101  
0.1 mF  
C102  
470 mF / 25 V  
GND  
J102  
1
R103  
18K0 1%  
GND  
R102  
1K0 1%  
Figure 19. Typical Boost Application Schematic  
Value of Components  
Name  
L101  
D101  
C102  
C105  
C103  
Value  
Name  
R101  
R102  
R103  
C101  
C106  
Value  
100 mH, I > 1.5 A  
150 mW, 0.5 W  
sat  
1 A, 40 V Schottky Rectifier  
470 mF, 25 V, Low ESR  
330 mF, 50 V, Low ESR  
2.2 nF Ceramic Capacitor  
1.00 kW  
18.00 kW  
100 nF Ceramic Capacitor  
100 nF Ceramic Capacitor  
Test Results  
Test  
Condition  
= 9 V to 15 V, I = 250 mA  
Results  
Line Regulation  
Load Regulation  
Output Ripple  
Efficiency  
V
in  
V
in  
V
in  
V
in  
2 mV  
5 mV  
o
= 12 V, I = 30 mA to 350 mA  
o
= 12 V, I = 10 mA to 350 mA  
350 mV  
o
pp  
= 12 V, I = 50 mA to 350 mA  
> 85.5%  
o
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
0
0.05  
0.1  
0.15  
0.2  
0.25 0.3  
0.35 0.4  
OUTPUT LOAD (Adc)  
Figure 21. Efficiency vs. Output Current for the Boost  
Demo Board at Vin = 12 V, Vout = 24 V, TA = 255C  
Figure 20. Boost Demoboard Layout  
http://onsemi.com  
11  
NCP3063, NCP3063B, NCV3063  
U501  
N.C. SWC  
R501  
0R15  
8
7
6
5
1
2
3
4
+V = +5 V  
IN  
SWE  
I
PK  
TCAP  
1
V
CC  
L501  
C503  
COMP GND  
NCP3063  
J501  
D501  
1N5819  
+
22 mH  
2.2 nF  
C501  
0.1 mF  
C502  
330 mF / 25 V  
V
OUT  
= 12 V / 100 mA  
J502  
1
R503  
1
J503  
C506  
1K96 1%  
16K9 1%  
C505  
470 mF / 35 V  
GND  
R502  
+
0.1 mF  
J504  
1
GND  
Figure 22. Typical Voltage Inverting Application Schematic  
Value of Components  
Name  
L501  
D501  
C502  
C505  
C503  
Value  
Name  
R501  
R502  
R503  
C501  
C506  
Value  
22 mH, I > 1.5 A  
150 mW, 0.5 W  
16.9 kW  
sat  
1 A, 40 V Schottky Rectifier  
330 mF, 25 V, Low ESR  
470 mF, 35 V, Low ESR  
2.2 nF Ceramic Capacitor  
1.96 kW  
100 nF Ceramic Capacitor  
100 nF Ceramic Capacitor  
Test Results  
Test  
Condition  
= 4.5 V to 6 V, I = 50 mA  
Results  
Line Regulation  
Load Regulation  
Output Ripple  
V
in  
V
in  
V
in  
V
in  
V
in  
1.5 mV  
1.6 mV  
o
= 5 V, I = 10 mA to 100 mA  
o
= 5 V, I = 0 mA to 100 mA  
300 mV  
49.8%  
o
pp  
Efficiency  
= 5 V, I = 100 mA  
o
Short Circuit Current  
= 5 V, R  
= 0.15 W  
0.885 A  
load  
52  
50  
48  
46  
44  
42  
40  
38  
36  
0
20  
40  
60  
80  
100  
OUTPUT LOAD (mA  
)
dc  
Figure 24. Efficiency vs. Output Current for the  
Voltage Inverting Demo Board at Vin = +5 V,  
Figure 23. Voltage Inverting Demoboard Layout  
Vout = 12 V, TA = 255C  
http://onsemi.com  
12  
NCP3063, NCP3063B, NCV3063  
1N5819  
D1  
V
OUT  
= 31 V/0.35 A  
V
IN  
= 8 18 V/0.6 A  
R1  
R2  
82m  
1k  
L1  
10m  
Q1  
NTD18N06  
C5 6n8  
R7  
IC1 NCP3063  
N.C. SWC  
D
8
7
6
5
1
2
3
4
6
2
1G  
4
SWE  
TC  
I
PK  
S
470  
V
CC  
COMP GND  
5
3
IC2 BC846BPD  
C3 10n  
R5  
24k  
C6  
100n  
C7  
C1  
C2  
C4  
+
R3  
R4  
R8  
1k  
M18 1k  
100n  
1n2  
330m  
330m  
0V  
GND  
Figure 25. Typical Boost Application Schematic with External NMOS Transistor  
86  
84  
82  
80  
78  
76  
74  
72  
70  
External transistor is recommended in applications where  
wide input voltage ranges and higher power is required. The  
suitable schematic with an additional NMOS transistor and  
its driving circuit is shown in the Figure 25. The driving  
circuit is controlled from SWE Pin of the NCP3063 through  
frequency compensated resistor divider R7/R8. The driver  
IC2 is ON Semiconductor low cost dual NPN/PNP  
transistor BC846BPD. Its NPN transistor is connected as a  
super diode for charging the gate capacitance. The PNP  
transistor works as an emitter follower for discharging the  
gate capacitor. This configuration assures sharp driving  
edge between 50 100 ns as well as it limits power  
consumption of R7/R8 divider down to 50 mW. The output  
current limit is balanced by resistor R3. The fast switching  
I
= 350 mA  
18  
LOAD  
6
8
10  
12  
14  
16  
20  
INPUT VOLTAGE (V)  
with low R  
NMOS transistor will achieve efficiencies  
DS(on)  
up to 85% in automotive applications.  
Figure 26. Typical Efficiency for Application  
Shown in Figure 25.  
http://onsemi.com  
13  
 
NCP3063, NCP3063B, NCV3063  
Q2  
V
= 3V3/3 A  
OUT  
V
IN  
= 8 19 V  
NTGS4111P  
R1  
50m  
L1  
10m  
T1  
6
R5  
1k  
BC848CPD  
2
1
5
IC1 NCP3063  
N.C. SWC  
3
4
8
7
6
5
1
2
3
4
SWE  
TC  
I
PK  
R6  
V
CC  
22k  
COMP GND  
R2  
1k7  
C6  
100n  
C7  
+
D1  
C1  
C2  
100n  
C5  
C4  
+
R3  
1k  
R8  
470  
2n2  
6n8  
330m  
1N5822  
330m  
0V  
GND  
Figure 27. Typical Buck Application Schematic with External PMOS Transistor  
100  
Figure 27 shows typical buck configuration with external  
PMOS transistor. The principle of driving the Q2 gate is the  
same as shown in Figure 27.  
95  
90  
85  
80  
75  
70  
65  
60  
Resistor R6 connected between TC and SWE pin provides  
a pulsed feedback voltage. It is recommended to use this  
pulsed feedback approach on applications with a wide input  
voltage range, applications with the input voltage over  
+12 V or applications with tighter specifications on output  
ripple. The suitable value of resistor R6 is between  
10k 68k. The pulse feedback approach increases the  
operating frequency by about 20%. It also creates more  
regular switching waveforms with constant operating  
frequency which results in lower output ripple voltage and  
improved efficiency.  
The pulse feedback resistor value has to be selected so that  
the capacitor charge and discharge currents as listed in the  
electrical characteristic table, are not exceeded. Improper  
selection will lead to errors in the oscillator operation. The  
maximum voltage at the TC Pin cannot exceed 1.4 V when  
implementing pulse feedback.  
V
= 8 V  
IN  
V
= 18 V  
IN  
0
0.5  
1
1.5  
2
2.5  
3
OUTPUT LOAD (Adc)  
Figure 28. NCP3063 Efficiency vs. Output Current for  
Buck External PMOS at Vout = 3.3 V, f = 220 kHz,  
TA = 255C  
http://onsemi.com  
14  
 
NCP3063, NCP3063B, NCV3063  
V
OUT  
= 3V3/1 A  
R1  
V
IN  
= 8 19 V  
L1  
33m  
Q1  
NSS35200  
D2  
150m  
R4  
33  
NSR0130  
IC1 NCP3063  
N.C. SWC  
8
7
6
5
1
2
3
4
R5  
33  
SWE  
TC  
I
PK  
V
CC  
COMP GND  
R3  
1k7  
D1  
C5  
C6  
+
C1  
C2  
100n  
C3  
+
R2  
1k  
100m  
2n2  
100n 100m  
1N5819  
0V  
GND  
Figure 29. Typical Buck Application Schematic with External Low VCE(sat) PNP Transistor  
100  
Typical application of the buck converter with external  
bipolar transistor is shown in the Figure 29. It is an ideal  
solution for configurations where the input and output  
voltage difference is small and high efficiency is required.  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
NSS35200, the low  
V
(
transistor from  
CE sat)  
ON Semiconductor will be ideal for applications with 1 A  
output current, the input voltages up to 15 V and operating  
frequency 100 150 kHz. The switching speed could be  
improved by using desaturation diode D2.  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  
OUTPUT LOAD (Adc)  
1
Figure 30. NCP3063 Efficiency vs. Output Current for  
External Low VCE(sat) at Vin = +5 V, f = 160 kHz,  
TA = 255C  
http://onsemi.com  
15  
 
NCP3063, NCP3063B, NCV3063  
R1  
IC1 NCP3063  
N.C. SWC  
8
7
6
5
1
2
3
4
L1  
SWE  
TC  
I
PK  
V
CC  
R5  
22k  
COMP GND  
R2  
10R  
R4  
C3  
C4  
C1  
C2  
D1  
R3  
4n7  
0V  
0V  
Figure 31. Typical Schematic of Buck Converter with RC Snubber and Pulse Feedback  
In some cases where there are oscillations on the output  
due to the input/output combination, output load variations  
or PCB layout a snubber circuit on the SWE Pin will help  
minimize the oscillation. Typical usage is shown in the  
Figure 31. C3 values can be selected between 2.2 nF and  
6.8 nF and R4 can be from 10 W to 22 W.  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NCP3063PG  
PDIP8  
(PbFree)  
50 Units / Rail  
NCP3063BPG  
PDIP8  
50 Units / Rail  
4000 / Tape & Reel  
2500 / Tape & Reel  
2500 / Tape & Reel  
4000 / Tape & Reel  
50 Units / Rail  
(PbFree)  
NCP3063BMNTXG  
NCP3063DR2G  
NCP3063BDR2G  
NCP3063MNTXG  
NCV3063PG  
DFN8  
(PbFree)  
SOIC8  
(PbFree)  
SOIC8  
(PbFree)  
DFN8  
(PbFree)  
PDIP8  
(PbFree)  
NCV3063DR2G  
NCV3063MNTXG  
SOIC8  
2500 / Tape & Reel  
4000 / Tape & Reel  
(PbFree)  
DFN8  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
NCV prefix is for automotive and other applications requiring site and change control.  
http://onsemi.com  
16  
 
NCP3063, NCP3063B, NCV3063  
PACKAGE DIMENSIONS  
SOIC8 NB  
CASE 75107  
ISSUE AJ  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
B
0.25 (0.010)  
Y
1
K
Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
0.050 BSC  
Z−  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
0.10 (0.004)  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
17  
NCP3063, NCP3063B, NCV3063  
PACKAGE DIMENSIONS  
8 LEAD PDIP  
CASE 62605  
ISSUE L  
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
8
5
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
B−  
MILLIMETERS  
INCHES  
MIN  
0.370  
1
4
DIM MIN  
MAX  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
A
B
C
D
F
9.40  
6.10  
3.94  
0.38  
1.02  
10.16  
6.60 0.240  
4.45 0.155  
0.51 0.015  
1.78 0.040  
F
A−  
NOTE 2  
L
G
H
J
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
1.27 0.030  
0.30 0.008  
0.050  
0.012  
0.135  
K
L
3.43  
0.115  
C
7.62 BSC  
0.300 BSC  
M
N
---  
0.76  
10  
---  
1.01 0.030  
10  
0.040  
_
_
J
T−  
SEATING  
PLANE  
STYLE 1:  
N
PIN 1. AC IN  
2. DC + IN  
3. DC - IN  
4. AC IN  
M
D
K
G
H
5. GROUND  
6. OUTPUT  
7. AUXILIARY  
M
M
M
0.13 (0.005)  
T A  
B
8. V  
CC  
http://onsemi.com  
18  
NCP3063, NCP3063B, NCV3063  
PACKAGE DIMENSIONS  
8 PIN DFN, 4x4  
CASE 488AF01  
ISSUE C  
NOTES:  
A
B
D
1. DIMENSIONS AND TOLERANCING PER  
ASME Y14.5M, 1994.  
L
L
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.15 AND 0.30MM FROM TERMINAL TIP.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
5. DETAILS A AND B SHOW OPTIONAL  
CONSTRUCTIONS FOR TERMINALS.  
L1  
PIN ONE  
DETAIL A  
E
REFERENCE  
OPTIONAL  
CONSTRUCTIONS  
2X  
0.15  
C
MILLIMETERS  
2X  
DIM MIN  
0.80  
A1 0.00  
MAX  
1.00  
0.05  
0.15  
C
A3  
TOP VIEW  
A
EXPOSED Cu  
MOLD CMPD  
A3  
b
D
0.20 REF  
0.25  
0.35  
DETAIL B  
4.00 BSC  
0.10  
C
C
D2 1.91  
2.21  
A1  
A
E
4.00 BSC  
E2 2.09  
2.39  
DETAIL B  
8X  
0.08  
(A3)  
e
K
L
0.80 BSC  
ALTERNATE  
NOTE 4  
A1  
0.20  
0.30  
−−−  
−−−  
0.50  
0.15  
CONSTRUCTIONS  
SEATING  
PLANE  
C
SIDE VIEW  
L1  
SOLDERING FOOTPRINT*  
D2  
8X L  
DETAIL A  
8X  
0.63  
2.21  
1
4
E2  
8
5
2.39  
4.30  
K
e
8X b  
PACKAGE  
OUTLINE  
0.10  
0.05  
C
C
A B  
NOTE 3  
BOTTOM VIEW  
8X  
0.35  
0.80  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP3063/D  

相关型号:

NCP3063BPG

1.5 A, Step−Up/Down/Inverting Switching Regulators
ONSEMI

NCP3063D

1.5 A, Step−Up/Down/Inverting Switching Regulators
ONSEMI

NCP3063DR2G

1.5 A, Step−Up/Down/Inverting Switching Regulators
ONSEMI

NCP3063MNTXG

1.5 A, Step-Up/Down/ Inverting Switching Regulators
ONSEMI

NCP3063PG

1.5 A, Step−Up/Down/Inverting Switching Regulators
ONSEMI

NCP3064

1.5 A, Step-Up/Down/ Inverting Switching Regulator with ON/OFF Function
ONSEMI

NCP3064B

1.5 A, Step-Up/Down/ Inverting Switching Regulator with ON/OFF Function
ONSEMI

NCP3064BDR2G

1.5 A, Step-Up/Down/ Inverting Switching Regulator with ON/OFF Function
ONSEMI

NCP3064BMNTXG

1.5 A, Step-Up/Down/ Inverting Switching Regulator with ON/OFF Function
ONSEMI

NCP3064BPG

1.5 A, Step-Up/Down/ Inverting Switching Regulator with ON/OFF Function
ONSEMI

NCP3064DR2G

1.5 A, Step-Up/Down/ Inverting Switching Regulator with ON/OFF Function
ONSEMI

NCP3064MNTXG

1.5 A, Step-Up/Down/ Inverting Switching Regulator with ON/OFF Function
ONSEMI