NCP4626DMX050TCG [ONSEMI]

300 mA, Low Dropout Voltage Regulator with Reverse Current Protection; 300毫安,低压差稳压器具有反向电流保护
NCP4626DMX050TCG
型号: NCP4626DMX050TCG
厂家: ONSEMI    ONSEMI
描述:

300 mA, Low Dropout Voltage Regulator with Reverse Current Protection
300毫安,低压差稳压器具有反向电流保护

线性稳压器IC 调节器 电源电路 光电二极管 输出元件
文件: 总28页 (文件大小:586K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP4626  
300 mA, Low Dropout  
Voltage Regulator with  
Reverse Current Protection  
The NCP4626 is a CMOS 300 mA low dropout linear regulator with  
a wide input voltage range of 3.5 V to 16 V, low supply current and  
high output voltage accuracy. Through an ECO mode selector pin the  
device can be operated in low power mode to reduce quiescent current  
or fast mode for better transient response and lower dropout. The  
NCP4626 is suitable for applications where the VOUT pin voltage  
may be higher than the VIN pin voltage as it is protected against  
reverse current. The device has a maximum input voltage tolerance of  
18 V, comes with or without an autodischarge feature on the output,  
and is available in a choice of XDFN, SOT89 and SOT23 packages.  
http://onsemi.com  
MARKING  
DIAGRAMS  
6
1
XXX  
XMM  
1
XDFN6  
CASE 711AC  
Features  
Operating Input Voltage Range: 3.5 V to 16.0 V  
Output Voltage Range: 2.0 to 15.0 V (available in 0.1 V steps)  
Low Quiescent current (6 uA typ.) in Low Power Mode  
Dropout Voltage:  
1
XXX  
XMM  
SOT89 5  
CASE 528AB  
550 mV typ. (I  
700 mV typ. (I  
= 300 mA, V  
= 300 mA, V  
= 5 V, Fast Mode)  
OUT  
OUT  
= 5 V, Low Power Mode)  
OUT  
OUT  
Output Voltage Accuracy: 1.5% (Fast Mode)  
2.5% (Low Power Mode)  
High PSRR: 60 dB at 1 kHz  
XXXMM  
SOT235  
CASE 1212  
1
Current Fold Back Protection  
Thermal Shutdown Protection  
XXX, XXXX = Specific Device Code  
Stable with a C = 2.2 mF and C  
= 4.7 mF Ceramic Capacitors  
M, MM  
= Date Code  
IN  
OUT  
A
Y
W
G
= Assembly Location  
= Year  
= Work Week  
= PbFree Package  
Available in 1.6x1.6 XDFN6, SOT895 and SOT235 Package  
These are PbFree Devices  
Typical Applications  
Digital Home Appliances  
Audio Visual Equipment  
Battery backup circuits  
(*Note: Microdot may be in either location)  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 25 of this data sheet.  
NCP4626x  
VIN  
VOUT  
VIN  
VOUT  
C1  
2m2  
C2  
4m7  
CE  
AE  
GND  
Figure 1. Typical Application Schematic  
© Semiconductor Components Industries, LLC, 2013  
1
Publication Order Number:  
August, 2013 Rev. 4  
NCP4626/D  
NCP4626  
NCP4626Hxxxxxxxx  
NCP4626Dxxxxxxxx  
ECO  
ECO  
Thermal Shutdown  
Thermal Shutdown  
VIN  
VOUT  
VIN  
VOUT  
Vref  
Vref  
Short  
Protection  
Short  
Protection  
Reverse  
Detector  
CE  
Reverse  
Detector  
Peak  
Current  
Protection  
CE  
Peak  
Current  
Protection  
GND  
GND  
Figure 2. Simplified Schematic Block Diagram  
PIN FUNCTION DESCRIPTION  
Pin No.  
Pin No.  
Pin No.  
XDFN  
SOT89  
SOT23  
(Note 1)  
Pin Name  
ECO  
VIN  
Description  
1
3
4
5
6
2
4
5
1
2
3
1
5
4
2
3
Mode selector pin. H – fast mode, L – low power mode  
Input voltage pin  
VOUT  
GND  
CE  
Output voltage pin  
Ground pin  
Chip enable pin ( “H” enabled)  
No connection  
NC  
1. Tab is connected to GND. Tab should be connected to GND, but leaving it unconnected is also acceptable  
http://onsemi.com  
2
 
NCP4626  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
V
Input Voltage (Note 2)  
V
IN  
0.3 to 18.0  
0.3 to 18.0  
0.3 to 18.0  
Output Voltage  
VOUT  
VCE  
V
Chip Enable Input  
V
Mode Selector Input  
V
0.3 to V + 0.3 18.0  
V
ECO  
OUT  
IN  
Output Current  
I
400  
640  
mA  
mW  
Power Dissipation XDFN  
Power Dissipation SOT89  
Power Dissipation SOT23  
Maximum Junction Temperature  
Operation Temperature Rnage  
Storage Temperature  
P
D
900  
420  
TJ(MAX)  
150  
°C  
°C  
°C  
V
T
A
40 to 85  
55 to 125  
2000  
TSTG  
ESD Capability, Human Body Model (Note 3)  
ESD Capability, Machine Model (Note 3)  
ESDHBM  
ESDMM  
200  
V
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
2. Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.  
3. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AECQ100002 (EIA/JESD22A114)  
ESD Machine Model tested per AECQ100003 (EIA/JESD22A115)  
Latchup Current Maximum Rating tested per JEDEC standard: JESD78.  
THERMAL CHARACTERISTICS  
Rating  
Symbol  
Value  
Unit  
Thermal Characteristics, XDFN6  
R
156  
°C/W  
q
JA  
Thermal Resistance, JunctiontoAir  
Thermal Characteristics, SOT235  
Thermal Resistance, JunctiontoAir  
R
238  
111  
°C/W  
°C/W  
q
JA  
Thermal Characteristics, SOT895  
R
q
JA  
Thermal Resistance, JunctiontoAir  
ELECTRICAL CHARACTERISTICS 40°C T 85°C; V = V = V  
+ 3.0 V; I  
= 1 mA, C = 2.2 mF, C  
= 4.7 mF,  
A
IN  
CE  
OUT(NOM)  
OUT  
IN  
OUT  
unless otherwise noted. Typical values are at T = +25°C  
A
Parameter  
Test Conditions  
2.0 V V < 3.0 V  
Symbol  
Min  
Typ  
Max  
Unit  
Operating Input Voltage  
VIN  
3.5  
14.0  
16.0  
V
OUT  
3.0 V V  
OUT  
Output Voltage  
Fast Mode, V  
= V  
TA = +25 °C  
VOUT  
x0.985  
x0.970  
x0.975  
x0.960  
1.5  
x1.015  
x1.030  
x1.025  
x1.040  
1.5  
V
ECO  
IN  
T = 40 to 85°C  
A
Low Power Mode,  
= GND  
TA = +25 °C  
V
ECO  
T = 40 to 85°C  
A
Output Voltage Deviation  
Fast mode to Low Power mode and back  
DV  
0
%
OUT  
Output Voltage Temp.  
Coefficient  
T = 40 to 85°C  
A
80  
ppm/°C  
Line Regulation  
V
= VOUT + 0.5 V to 16 V  
OUT  
Line  
0.02  
0.10  
%/V  
IN  
Reg  
(If V  
<3.0 V, 3.5 V to 14 V)  
http://onsemi.com  
3
 
NCP4626  
ELECTRICAL CHARACTERISTICS 40°C T 85°C; V = V = V  
+ 3.0 V; I  
= 1 mA, C = 2.2 mF, C = 4.7 mF,  
OUT  
A
IN  
CE  
OUT(NOM)  
OUT  
IN  
unless otherwise noted. Typical values are at T = +25°C  
A
Parameter  
Load Regulation  
Test Conditions  
IOUT = 1 mA to 300 mA Fast Mode, V  
Symbol  
Load  
Reg  
Min  
Typ  
50  
Max  
Unit  
= V  
120  
130  
mV  
ECO  
IN  
Low Power, V  
GND  
=
60  
ECO  
Dropout Voltage  
I
= 300 mA, Fast  
2.0 V V  
2.5 V V  
3.3 V V  
< 2.5 V  
< 3.3 V  
< 5.0 V  
< 12.0 V  
VDO  
1.20  
1.00  
0.75  
0.55  
0.40  
2.50  
2.00  
1.50  
0.70  
0.40  
1.80  
1.50  
1.00  
0.75  
0.60  
3.00  
2.50  
1.80  
1.00  
0.60  
V
OUT  
OUT  
OUT  
OUT  
OUT  
Mode, V  
= V  
ECO  
IN  
5.0 V V  
12.0 V V  
OUT  
I
= 300 mA, Low  
2.0 V V  
< 2.5 V  
OUT  
OUT  
OUT  
OUT  
OUT  
Power Mode, V  
GND  
=
ECO  
2.5 V V  
3.3 V V  
< 3.3 V  
< 5.0 V  
< 12.0 V  
5.0 V V  
12.0 V V  
OUT  
Output Current  
IOUT  
300  
mA  
mA  
mA  
Short Current Limit  
Quiescent Current  
V
= 0 V  
I
50  
50  
6
OUT  
SC  
V
= V , IOUT = 0 mA  
IN  
IQ  
100  
15  
1
ECO  
V
ECO  
= GND, IOUT = 0 mA  
Standby Current  
V
IN  
= 16.0 V  
ISTB  
0.1  
mA  
(If V  
< 3.0 V, V = 14.0 V), T = 25°C  
OUT  
IN  
A
CE and ECO Pin Threshold  
Voltage  
CE Input Voltage “H”  
CE Input Voltage “L”  
VCEH  
VCEL  
1.6  
0
V
V
IN  
0.6  
Power Supply Rejection Ratio  
VIN = V  
ECO  
= V  
+
PP  
2.0 V V  
< 5.0 V  
PSRR  
70  
60  
90  
dB  
OUT  
OUT  
1.0 V, DV = 0.2 V , f  
IN  
5.0 V V  
= 1 kHz  
OUT  
Output Noise Voltage  
V
IN  
= 6.0 V, V  
= 3.0 V, I  
= 30 mA,  
VN  
mV  
rms  
OUT  
OUT  
f = 10 Hz to 100 kHz  
Thermal Shutdown Temperature  
T
150  
130  
°C  
SD  
Thermal Shutdown Release  
Temperature  
T
SDR  
°C  
Reverse Current  
V
OUT  
> 0.6 V, 0 V V 16 V  
I
0
0.1  
mA  
IN  
REV  
Low Output Nch Tr. On  
Resistance  
D Version only, V = 5 V, V = 0 V, V  
=
R
LOW  
150  
W
IN  
CE  
OUT  
0.3 V  
http://onsemi.com  
4
NCP4626  
TYPICAL CHARACTERISTICS  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.5  
3.0  
2.5  
2.0  
1.5  
6.0 V  
5.5 V  
5.0 V  
5.0 V  
5.5 V  
V
= 4.5 V  
V
= 4.5 V  
IN  
IN  
1.0  
0.5  
0.0  
6.0 V  
4.8 V  
4.8 V  
0
100  
200  
300  
400  
500  
600  
700  
0
100  
200  
300  
400  
(mA)  
500  
600  
700  
I
(mA)  
I
OUT  
OUT  
Figure 3. Output Voltage vs. Output Current  
3.0 V, ECO = L  
Figure 4. Output Voltage vs. Output Current  
3.0 V, ECO = H  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
6.5 V  
6.5 V  
V
IN  
= 4.8 V  
V
= 4.8 V  
IN  
6.0 V  
5.5 V  
6.0 V  
5.5 V  
5.0 V  
5.0 V  
0
100  
200  
300  
400  
500  
600  
700  
0
100  
200  
300  
400  
(mA)  
500  
600  
700  
I
(mA)  
I
OUT  
OUT  
Figure 5. Output Voltage vs. Output Current  
3.3 V, ECO = L  
Figure 6. Output Voltage vs. Output Current  
3.3 V, ECO = H  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
5.5 V  
6.0 V  
V
= 5.7 V  
IN  
8.0 V  
V
IN  
= 5.7 V  
7.0 V  
7.0 V  
6.0 V  
5.5 V  
8.0 V  
0
100  
200  
300  
400  
500  
600  
700  
0
100  
200  
300  
400  
(mA)  
500  
600  
700  
I
(mA)  
I
OUT  
OUT  
Figure 7. Output Voltage vs. Output Current  
5.0 V, ECO = L  
Figure 8. Output Voltage vs. Output Current  
5.0 V, ECO = H  
http://onsemi.com  
5
NCP4626  
TYPICAL CHARACTERISTICS  
1.5  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
T = 85°C  
1.2  
0.9  
0.6  
0.3  
0.0  
J
25°C  
40°C  
T = 85°C  
J
25°C  
40°C  
0
50  
100  
150  
(mA)  
200  
250  
300  
0
50  
100  
150  
(mA)  
200  
250  
300  
I
I
OUT  
OUT  
Figure 9. Dropout Voltage vs. Output Current  
3.0 V Version, ECO = L  
Figure 10. Dropout Voltage vs. Output Current  
3.0 V Version, ECO = H  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
1.5  
1.2  
0.9  
0.6  
0.3  
0.0  
T = 85°C  
J
25°C  
T = 85°C  
40°C  
J
25°C  
40°C  
0
50  
100  
150  
(mA)  
200  
250  
300  
0
50  
100  
150  
(mA)  
200  
250  
300  
I
I
OUT  
OUT  
Figure 12. Dropout Voltage vs. Output Current  
3.3 V Version, ECO = H  
Figure 11. Dropout Voltage vs. Output Current  
3.3 V Version, ECO = L  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
T = 85°C  
J
T = 85°C  
J
25°C  
25°C  
40°C  
40°C  
0
50  
100  
150  
(mA)  
200  
250  
300  
0
50  
100  
150  
(mA)  
200  
250  
300  
I
I
OUT  
OUT  
Figure 13. Dropout Voltage vs. Output Current  
5.0 V Version, ECO = L  
Figure 14. Dropout Voltage vs. Output Current  
5.0 V Version, ECO = H  
http://onsemi.com  
6
NCP4626  
TYPICAL CHARACTERISTICS  
3.05  
3.04  
3.03  
3.02  
3.01  
3.00  
2.99  
2.98  
2.97  
2.96  
2.95  
3.05  
V
= 6.0 V  
= 1 mA  
V
= 6.0 V  
= 1 mA  
IN  
IN  
3.04  
3.03  
3.02  
3.01  
3.00  
2.99  
2.98  
2.97  
2.96  
2.95  
I
I
OUT  
OUT  
40  
20  
0
20  
40  
60  
80  
40  
20  
0
20  
40  
60  
80  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 15. Output Voltage vs. Temperature,  
3.0 V Version, ECO = L  
Figure 16. Output Voltage vs. Temperature,  
3.0 V Version, ECO = H  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
V
= 6.3 V  
= 1 mA  
V
= 6.3 V  
= 1 mA  
IN  
IN  
I
I
OUT  
OUT  
40  
20  
0
20  
40  
60  
80  
40  
20  
0
20  
40  
60  
80  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 17. Output Voltage vs. Temperature,  
3.3 V Version, ECO = L  
Figure 18. Output Voltage vs. Temperature,  
3.3 V Version, ECO = H  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
5.05  
5.04  
5.03  
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
4.96  
4.95  
V
= 8.0 V  
= 1 mA  
V
= 8.0 V  
= 1 mA  
IN  
IN  
I
I
OUT  
OUT  
40  
20  
0
20  
40  
60  
80  
40  
20  
0
20  
40  
60  
80  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 19. Output Voltage vs. Temperature,  
5.0 V Version, ECO = L  
Figure 20. Output Voltage vs. Temperature,  
5.0 V Version, ECO = H  
http://onsemi.com  
7
NCP4626  
TYPICAL CHARACTERISTICS  
70  
60  
50  
40  
30  
20  
10  
0
10  
9
8
7
6
5
4
3
2
1
0
0
0
0
2
4
6
8
10  
12  
14  
16  
16  
16  
0
0
0
2
4
6
8
10  
V , INPUT VOLTAGE (V)  
IN  
12  
14  
16  
16  
16  
V
, INPUT VOLTAGE (V)  
IN  
Figure 21. Supply Current vs. Input Voltage,  
3.0 V Version, ECO = L  
Figure 22. Supply Current vs. Input Voltage,  
3.0 V Version, ECO = H  
10  
9
8
7
6
5
4
3
2
1
0
70  
60  
50  
40  
30  
20  
10  
0
2
4
6
8
10  
12  
14  
2
4
6
8
10  
V , INPUT VOLTAGE (V)  
IN  
12  
14  
V
IN  
, INPUT VOLTAGE (V)  
Figure 23. Supply Current vs. Input Voltage,  
3.3 V Version, ECO = L  
Figure 24. Supply Current vs. Input Voltage,  
3.3 V Version, ECO = H  
10  
9
8
7
6
5
4
3
2
1
0
70  
60  
50  
40  
30  
20  
10  
0
2
4
6
8
10  
12  
14  
2
4
6
8
10  
V , INPUT VOLTAGE (V)  
IN  
12  
14  
V
IN  
, INPUT VOLTAGE (V)  
Figure 25. Supply Current vs. Input Voltage,  
5.0 V Version, ECO = L  
Figure 26. Supply Current vs. Input Voltage,  
5.0 V Version, ECO = H  
http://onsemi.com  
8
NCP4626  
TYPICAL CHARACTERISTICS  
10  
9
8
7
6
5
4
3
2
1
0
70  
V
= 6.0 V  
V
IN  
= 6.0 V  
IN  
60  
50  
40  
30  
20  
10  
0
40  
20  
0
20  
40  
60  
80  
40  
20  
0
20  
40  
60  
80  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 27. Supply Current vs. Temperature,  
3.0 V Version, ECO = L  
Figure 28. Supply Current vs. Temperature,  
3.0 V Version, ECO = H  
10  
9
8
7
6
5
4
3
2
1
0
70  
60  
50  
40  
30  
20  
10  
0
V
= 6.3 V  
V
IN  
= 6.3 V  
IN  
40  
20  
0
20  
40  
60  
80  
40  
20  
0
20  
40  
60  
80  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 29. Supply Current vs. Temperature,  
3.3 V Version, ECO = L  
Figure 30. Supply Current vs. Temperature,  
3.3 V Version, ECO = H  
10  
9
8
7
6
5
4
3
2
1
0
70  
60  
50  
40  
30  
20  
10  
0
V
= 8.0 V  
V
IN  
= 8.0 V  
IN  
40  
20  
0
20  
40  
60  
80  
40  
20  
0
20  
40  
60  
80  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 31. Supply Current vs. Temperature,  
5.0 V Version, ECO = L  
Figure 32. Supply Current vs. Temperature,  
5.0 V Version, ECO = H  
http://onsemi.com  
9
NCP4626  
TYPICAL CHARACTERISTICS  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
I
= 50 mA  
OUT  
I
= 50 mA  
OUT  
30 mA  
1 mA  
30 mA  
1 mA  
0 mA  
0 mA  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
, INPUT VOLTAGE (V)  
IN  
12  
14  
16  
V
IN  
, INPUT VOLTAGE (V)  
V
Figure 33. Output Voltage vs. Input Voltage,  
3.0 V Version, ECO = L  
Figure 34. Output Voltage vs. Input Voltage,  
3.0 V Version, ECO = H  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
I
= 50 mA  
I
= 50 mA  
OUT  
OUT  
30 mA  
1 mA  
30 mA  
1 mA  
0 mA  
4
0 mA  
0
2
4
6
8
10  
12  
14  
16  
0
2
6
8
10  
V , INPUT VOLTAGE (V)  
IN  
12  
14  
16  
V
IN  
, INPUT VOLTAGE (V)  
Figure 35. Output Voltage vs. Input Voltage,  
3.3 V Version, ECO = L  
Figure 36. Output Voltage vs. Input Voltage,  
3.3 V Version, ECO = H  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
I
= 50 mA  
OUT  
30 mA  
I
= 50 mA  
OUT  
30 mA  
1 mA  
0 mA  
1 mA  
0 mA  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
, INPUT VOLTAGE (V)  
IN  
12  
14  
16  
V
IN  
, INPUT VOLTAGE (V)  
V
Figure 37. Output Voltage vs. Input Voltage,  
5.0 V Version, ECO = L  
Figure 38. Output Voltage vs. Input Voltage,  
5.0 V Version, ECO = H  
http://onsemi.com  
10  
NCP4626  
TYPICAL CHARACTERISTICS  
100  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
I
= 1 mA  
OUT  
I
= 1 mA  
OUT  
60  
50  
40  
30  
20  
10  
0
30 mA  
300 mA  
30 mA  
150 mA  
300 mA  
150 mA  
0.1  
1
10  
FREQUENCY (kHz)  
100  
1000  
0.1  
1
10  
FREQUENCY (kHz)  
100  
1000  
Figure 39. PSRR, 3.0 V Version, VIN = 6.0 V,  
ECO = L  
Figure 40. PSRR, 3.0 V Version, VIN = 6.0 V,  
ECO = H  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
= 1 mA  
OUT  
I
= 1 mA  
OUT  
30 mA  
300 mA  
30 mA  
300 mA  
150 mA  
150 mA  
100  
0.1  
1
10  
FREQUENCY (kHz)  
1000  
0.1  
1
10  
FREQUENCY (kHz)  
100  
1000  
Figure 41. PSRR, 3.3 V Version, VIN = 6.3 V,  
ECO = L  
Figure 42. PSRR, 3.3 V Version, VIN = 6.3 V,  
ECO = H  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
30 mA  
I
= 1 mA  
OUT  
I
= 1 mA  
OUT  
30 mA  
300 mA  
150 mA  
100  
300 mA  
150 mA  
0.1  
1
10  
FREQUENCY (kHz)  
100  
1000  
0.1  
1
10  
1000  
FREQUENCY (kHz)  
Figure 43. PSRR, 5.0 V Version, VIN = 8.0 V,  
ECO = L  
Figure 44. PSRR, 5.0 V Version, VIN = 8.0 V,  
ECO = H  
http://onsemi.com  
11  
NCP4626  
TYPICAL CHARACTERISTICS  
14  
12  
10  
8.0  
6.0  
4.0  
2.0  
0
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 45. Output Voltage Noise, 3.0 V Version,  
IN = 6.0 V, IOUT = 30 mA, ECO = L  
Figure 46. Output Voltage Noise, 3.0 V Version,  
IN = 6.0 V, IOUT = 30 mA, ECO = H  
V
V
14  
12  
10  
8.0  
6.0  
4.0  
2.0  
0
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 47. Output Voltage Noise, 3.3 V version,  
VIN = 6.3 V, IOUT = 30 mA, ECO = L  
Figure 48. Output Voltage Noise, 3.3 V Version,  
VIN = 6.3 V, IOUT = 30 mA, ECO = H  
14  
12  
10  
8.0  
6.0  
4.0  
2.0  
0
14  
12  
10  
8.0  
6.0  
4.0  
2.0  
0
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 49. Output Voltage Noise, 5.0 V Version,  
IN = 8.0 V, IOUT = 30 mA, ECO = L  
Figure 50. Output Voltage Noise, 5.0 V Version,  
IN = 8.0 V, IOUT = 30 mA, ECO = H  
V
V
http://onsemi.com  
12  
NCP4626  
TYPICAL CHARACTERISTICS  
6.5  
6.0  
5.5  
5.0  
3.15  
3.10  
3.05  
3.00  
2.95  
2.90  
2.85  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
t (ms)  
Figure 51. Line Transients, 3.0 V Version,  
tR = tF = 5 ms, IOUT = 30 mA, ECO = L  
6.5  
6.0  
5.5  
5.0  
3.010  
3.005  
3.000  
2.995  
2.990  
2.985  
0
40 80 120 160 200 240 280 320 360 400  
t (ms)  
Figure 52. Line Transients, 3.0 V Version,  
tR = tF = 5 ms, IOUT = 30 mA, ECO = H  
6.8  
6.3  
5.8  
5.3  
3.45  
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
t (ms)  
Figure 53. Line Transients, 3.3 V Version,  
tR = tF = 5 ms, IOUT = 30 mA, ECO = L  
http://onsemi.com  
13  
NCP4626  
TYPICAL CHARACTERISTICS  
6.8  
6.3  
5.8  
5.3  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
0
40 80 120 160 200 240 280 320 360 400  
t (ms)  
Figure 54. Line Transients, 3.3 V Version,  
tR = tF = 5 ms, IOUT = 30 mA, ECO = H  
8.5  
8.0  
7.5  
7.0  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
t (ms)  
Figure 55. Line Transients, 5.0 V Version,  
tR = tF = 5 ms, IOUT = 30 mA, ECO = L  
8.5  
8.0  
7.5  
7.0  
5.010  
5.005  
5.000  
4.995  
4.990  
4.985  
0
40 80 120 160 200 240 280 320 360 400  
t (ms)  
Figure 56. Line Transients, 5.0 V Version,  
tR = tF = 5 ms, IOUT = 30 mA, ECO = H  
http://onsemi.com  
14  
NCP4626  
TYPICAL CHARACTERISTICS  
45  
30  
15  
0
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
0
0
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
t (ms)  
Figure 57. Load Transients, 3.0 V Version,  
OUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 6.0 V,  
ECO = L  
I
45  
30  
15  
0
3.02  
3.01  
3.00  
2.99  
2.98  
2.97  
40 80 120 160 200 240 280 320 360 400  
t (ms)  
Figure 58. Load Transients, 3.0 V Version,  
I
OUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 6.0 V,  
ECO = H  
45  
30  
15  
0
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
t (ms)  
Figure 59. Load transients, 3.3 V version,  
IOUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 6.3 V,  
ECO = L  
http://onsemi.com  
15  
NCP4626  
TYPICAL CHARACTERISTICS  
45  
30  
15  
0
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
0
40 80 120 160 200 240 280 320 360 400  
t (ms)  
Figure 60. Load Transients, 3.3 V Version,  
OUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 6.3 V,  
ECO = H  
I
I
I
45  
30  
15  
0
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
t (ms)  
Figure 61. Load Transients, 5.0 V Version,  
OUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 8.0 V,  
ECO = L  
45  
30  
15  
0
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
0
40 80 120 160 200 240 280 320 360 400  
t (ms)  
Figure 62. Load Transients, 5.0 V Version,  
OUT = 1 – 30 mA, tR = tF = 0.5 ms, VIN = 8.0 V,  
ECO = H  
http://onsemi.com  
16  
NCP4626  
TYPICAL CHARACTERISTICS  
150  
100  
50  
0
3.2  
3.1  
3.0  
2.9  
2.8  
2.7  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
t (ms)  
Figure 63. Load Transients, 3.0 V Version,  
OUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 6.0 V,  
ECO = L  
I
150  
100  
50  
0
3.02  
3.01  
3.00  
2.99  
2.98  
2.97  
0
40 80 120 160 200 240 280 320 360 400  
t (ms)  
Figure 64. Load Transients, 3.0 V Version,  
IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 6.0 V,  
ECO = H  
150  
100  
50  
0
3.5  
3.4  
3.3  
3.2  
3.1  
3.0  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
t (ms)  
Figure 65. Load Transients, 3.3 V Version,  
OUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 6.3 V,  
ECO = L  
I
http://onsemi.com  
17  
NCP4626  
TYPICAL CHARACTERISTICS  
150  
100  
50  
0
3.32  
3.31  
3.30  
3.29  
3.28  
3.28  
0
40 80 120 160 200 240 280 320 360 400  
t (ms)  
Figure 66. Load Transients, 3.3 V Version,  
OUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 6.3 V,  
ECO = H  
I
150  
100  
50  
0
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
t (ms)  
Figure 67. Load Transients, 5.0 V Version,  
OUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 8.0 V,  
ECO = L  
I
150  
100  
50  
0
5.02  
5.01  
5.00  
4.99  
4.98  
4.97  
0
40 80 120 160 200 240 280 320 360 400  
t (ms)  
Figure 68. Load Transients, 5.0 V Version,  
IOUT = 50 – 100 mA, tR = tF = 0.5 ms, VIN = 8.0 V,  
ECO = H  
http://onsemi.com  
18  
NCP4626  
TYPICAL CHARACTERISTICS  
450  
300  
150  
0
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
0
0
0
1
2
3
4
5
6
7
8
9
10  
t (ms)  
Figure 69. Load Transients, 3.0 V Version,  
OUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 6.0 V,  
ECO = L  
I
450  
300  
150  
0
3.1  
3.1  
3.0  
3.0  
2.9  
2.9  
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
t (ms)  
Figure 70. Load Transients, 3.0 V Version,  
OUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 6.0 V,  
ECO = H  
I
450  
300  
150  
0
4.8  
4.3  
3.8  
3.3  
2.8  
2.3  
1.8  
1
2
3
4
5
6
7
8
9
10  
t (ms)  
Figure 71. Load Transients, 3.3 V Version,  
OUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 6.3 V,  
ECO = L  
I
http://onsemi.com  
19  
NCP4626  
TYPICAL CHARACTERISTICS  
450  
300  
150  
0
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
t (ms)  
Figure 72. Load Transients, 3.3 V Version,  
OUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 6.3 V,  
ECO = H  
I
450  
300  
150  
0
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
0
1
2
3
4
5
6
7
8
9
10  
t (ms)  
Figure 73. Load Transients, 5.0 V Version,  
OUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 8.0 V,  
ECO = L  
I
450  
300  
150  
0
5.10  
5.05  
5.00  
4.95  
4.90  
4.85  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
t (ms)  
Figure 74. Load Transients, 5.0 V Version,  
IOUT = 1 – 300 mA, tR = tF = 0.5 ms, VIN = 8.0 V,  
ECO = H  
http://onsemi.com  
20  
NCP4626  
TYPICAL CHARACTERISTICS  
9
6
3
0
Chip Enable  
I
= 1 mA  
4
3
OUT  
2
I
= 150 mA  
OUT  
1
I
= 30 mA  
OUT  
0
1  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
t (ms)  
Figure 75. Startup, 3.0 V Version, VIN = 6.0 V,  
ECO = L  
9
6
3
0
Chip Enable  
4
3
I
= 1 mA  
OUT  
2
I
= 30 mA  
OUT  
1
I
= 150 mA  
0
OUT  
1  
0
20 40 60 80 100 120 140 160 180 200  
t (ms)  
Figure 76. Startup, 3.0 V Version, VIN = 6.0 V,  
ECO = H  
9.45  
Chip Enable  
6.30  
3.15  
0.00  
I
= 1 mA  
OUT  
4
3
I
= 30 mA  
OUT  
2
1
I
= 150 mA  
OUT  
0
1  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
t (ms)  
Figure 77. Startup, 3.3 V Version, VIN = 6.3 V,  
ECO = L  
http://onsemi.com  
21  
NCP4626  
TYPICAL CHARACTERISTICS  
9.45  
6.30  
3.15  
0.00  
Chip Enable  
4
3
I
= 1 mA  
OUT  
2
I
= 30 mA  
OUT  
1
I
= 150 mA  
OUT  
0
1  
0
20 40 60 80 100 120 140 160 180 200  
t (ms)  
Figure 78. Startup, 3.3 V Version, VIN = 6.3 V,  
ECO = H  
12  
Chip Enable  
8
4
0
I
= 1 mA  
OUT  
5
4
I
= 30 mA  
OUT  
3
2
I
= 150 mA  
OUT  
1
0
1  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
t (ms)  
Figure 79. Start-up, 5.0 V Version, VIN = 8.0 V,  
ECO = L  
12  
8
Chip Enable  
4
0
5
4
I
= 1 mA  
OUT  
3
2
I
= 30 mA  
OUT  
1
0
I
= 150 mA  
OUT  
1  
0
20 40 60 80 100 120 140 160 180 200  
t (ms)  
Figure 80. Start-up, 5.0 V Version, VIN = 8.0 V,  
ECO = H  
http://onsemi.com  
22  
NCP4626  
TYPICAL CHARACTERISTICS  
9
6
3
0
Chip Enable  
4
3
I
= 1 mA  
OUT  
I
= 30 mA  
OUT  
2
I
= 150 mA  
OUT  
1
0
1  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
t (ms)  
Figure 81. Shutdown, 3.0 V Version D,  
V
IN = 6.0 V  
9.45  
6.30  
3.15  
0.00  
Chip Enable  
4
3
I
= 1 mA  
OUT  
I
= 30 mA  
OUT  
2
I
= 150 mA  
OUT  
1
0
1  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
t (ms)  
Figure 82. Shutdown, 3.3 V Version D,  
V
IN = 6.3 V  
12  
8
4
Chip Enable  
= 30 mA  
0
5
4
I
= 1 mA  
OUT  
I
3
OUT  
2
I
= 150 mA  
OUT  
1
0
1  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
t (ms)  
Figure 83. Shutdown, 5.0 V Version D,  
V
IN = 8.0 V  
http://onsemi.com  
23  
NCP4626  
APPLICATION INFORMATION  
A typical application circuit for NCP4626 series is shown  
in Figure 84.  
current capability in normal operation, but when over  
current occurs, output voltage and current decrease until  
over current condition ends. Typical characteristics of this  
protection type can be observed in the Output Voltage versus  
Output Current graphs shown in the typical characteristics  
chapter of this datasheet.  
NCP4626x  
VIN VOUT  
VIN  
VOUT  
C1  
2m2  
C2  
4m7  
CE  
AE  
ECO Function  
The IC can be switched between two modes by ECO pin.  
One mode is low power mode, where IC’s self current  
consumption is low, but IC has slower dynamic behavior or  
in to fast mode, where current consumption is higher, but the  
IC has better dynamic response and lower dropout voltage.  
GND  
Do not leave the ECO pin unconnected or between V  
CEH  
and V  
voltage levels as this may cause indefinite and  
CEL  
Figure 84. Typical Application Schematic  
unexpected currents flows internally.  
Thermal Considerations  
Input Decoupling Capacitor (C1)  
As power across the IC increases, it might become  
necessary to provide some thermal relief. The maximum  
power dissipation supported by the device is dependent  
upon board design and layout. Mounting pad configuration  
on the PCB, the board material, and the ambient temperature  
effect the rate of temperature rise for the part. That is to say,  
when the device has good thermal conductivity through the  
PCB, the junction temperature will be relatively low with  
high power dissipation applications.  
The IC includes internal thermal shutdown circuit that  
stops the regulator operating if the junction temperature is  
higher than 150°C. After shutdown, when the junction  
temperature decreases below 130°C, the voltage regulator  
would restarts. As long as the high power dissipation  
condition exists, the regulator will start and stop repeatedly  
to protect itself against overheating. Care should be taken in  
the PCB layout to try to avoid this temperature cycling  
condition.  
A 2.2 mF (or larger) ceramic input decoupling capacitor  
should be connected as close as possible to the input and  
ground pin of the NCP4626. Higher capacitor values and  
lower ESR improves line transient response.  
Output Decoupling Capacitor (C2)  
A 4.7 mF (or larger) ceramic output decoupling capacitor  
is sufficient to achieve stable operation of the IC. It is  
necessary to use a capacitor with good frequency  
characteristics and low ESR. The capacitor should be  
connected as close as possible to the output and ground pins.  
Larger capacitor values and lower ESR improves dynamic  
parameters.  
Enable Operation  
The enable pin CE may be used to turn the regulator on and  
off. The IC is switched on when a high level voltage is  
applied to the CE pin. The enable pin has an internal pull  
down resistor. If the enable function is not needed, connect  
the CE pin to VIN.  
PCB Layout  
Make the VIN and GND lines as large as possible. If their  
impedance is high, noise pickup or unstable operation may  
result. Connect capacitors C1 and C2 as close as possible to  
the IC, and make wiring as short as possible. The tab under  
the XDFN package is internally connected to GND: it is best  
practice to connect it to GND on the PCB, but leaving it  
unconnected is also acceptable.  
Output Discharger  
The D version of the NCP4626 includes a transistor  
between VOUT and GND that is used for faster discharging  
of the output capacitor. This function is activated when the  
IC goes into disable mode.  
Current Limit  
This regulator includes fold-back type current limit  
circuit. This type of protection doesn’t limit current up to  
http://onsemi.com  
24  
 
NCP4626  
ORDERING INFORMATION  
Nominal Output  
Voltage  
Device  
Description  
Marking  
Package  
Shipping  
NCP4626DSN030T1G  
3.0 V  
Auto discharge  
630  
SOT23  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
5000 / Tape & Reel  
5000 / Tape & Reel  
5000 / Tape & Reel  
5000 / Tape & Reel  
5000 / Tape & Reel  
5000 / Tape & Reel  
5000 / Tape & Reel  
5000 / Tape & Reel  
(PbFree)  
NCP4626DSN033T1G  
NCP4626DSN045T1G  
NCP4626DSN050T1G  
NCP4626HSN030T1G  
NCP4626HSN033T1G  
NCP4626HSN045T1G  
NCP4626HSN050T1G  
NCP4626DMX030TCG  
NCP4626DMX033TCG  
NCP4626DMX045TCG  
NCP4626DMX050TCG  
NCP4626HMX030TCG  
NCP4626HMX033TCG  
NCP4626HMX045TCG  
NCP4626HMX050TCG  
3.3 V  
4.5 V  
5.0 V  
3.0 V  
3.3 V  
4.5 V  
5.0 V  
3.0 V  
3.3 V  
4.5 V  
5.0 V  
3.0 V  
3.3 V  
4.5 V  
5.0 V  
Auto discharge  
Auto discharge  
Auto discharge  
Standard  
633  
SOT23  
(PbFree)  
645  
SOT23  
(PbFree)  
650  
SOT23  
(PbFree)  
430  
SOT23  
(PbFree)  
Standard  
433  
SOT23  
(PbFree)  
Standard  
445  
SOT23  
(PbFree)  
Standard  
450  
SOT23  
(PbFree)  
Auto discharge  
Auto discharge  
Auto discharge  
Auto discharge  
Standard  
CH11  
CH14  
CH26  
CH31  
CF11  
CF14  
CF26  
CF31  
XDFN  
(PbFree)  
XDFN  
(PbFree)  
XDFN  
(PbFree)  
XDFN  
(PbFree)  
XDFN  
(PbFree)  
Standard  
XDFN  
(PbFree)  
Standard  
XDFN  
(PbFree)  
Standard  
XDFN  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*To order other package and voltage variants, please contact your ON Semiconductor sales representative.  
http://onsemi.com  
25  
NCP4626  
PACKAGE DIMENSIONS  
XDFN6 1.6x1.6, 0.5P  
CASE 711AC01  
ISSUE O  
NOTES:  
A
B
D
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2X  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
0.05  
C
MILLIMETERS  
PIN ONE  
E
A
DIM MIN  
−−−  
A1 0.00  
MAX  
0.40  
0.05  
0.25  
REFERENCE  
A
2X  
b
D
0.15  
1.60 BSC  
0.05  
C
D2 1.25  
1.35  
TOP VIEW  
E
1.60 BSC  
E2 0.65  
0.75  
E3  
e
L
0.15 REF  
0.50 BSC  
0.15 0.25  
0.05 BSC  
A1  
0.05  
0.05  
C
C
L1  
SEATING  
NOTE 3  
C
SIDE VIEW  
D2  
PLANE  
RECOMMENDED  
MOUNTING FOOTPRINT*  
M
0.05  
C A B  
1.70  
L
3
1
2X  
L1  
E2  
6X  
0.77 1.79  
0.38  
PACKAGE  
OUTLINE  
M
0.05  
C A B  
C A B  
3X E3  
6
4
6X b  
1
M
0.05  
e
0.50  
PITCH  
6X  
0.36  
BOTTOM VIEW  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
26  
NCP4626  
PACKAGE DIMENSIONS  
SOT89, 5 LEAD  
CASE 528AB01  
ISSUE O  
NOTES:  
D
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. LEAD THICKNESS INCLUDES LEAD FINISH.  
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS.  
5. DIMENSIONS L, L2, L3, L4, L5, AND H ARE MEAS-  
URED AT DATUM PLANE C.  
E
H
MILLIMETERS  
DIM MIN  
MAX  
1.60  
0.52  
0.57  
0.50  
4.60  
1.80  
2.60  
1.60  
4.45  
1.50  
1.20  
1.35  
1.05  
0.60  
A
b
1.40  
0.32  
0.37  
0.30  
4.40  
1.40  
2.40  
1.40  
4.25  
1.10  
0.80  
0.95  
0.65  
0.20  
1
b1  
c
D
TOP VIEW  
SIDE VIEW  
D2  
E
e
c
A
H
L
L2  
L3  
L4  
L5  
0.10  
C
C
e
b1  
e
RECOMMENDED  
MOUNTING FOOTPRINT*  
b
L2  
4X  
0.57  
L
1
2
3
4
1.75  
1.50  
0.45  
L5  
2.79  
5
4.65  
L3  
D2  
BOTTOM VIEW  
L4  
1.65  
1.30  
1
2X  
0.62  
2X  
1.50  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
27  
NCP4626  
PACKAGE DIMENSIONS  
SOT23 5LEAD  
CASE 121201  
ISSUE A  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSIONS: MILLIMETERS.  
3. DATUM C IS THE SEATING PLANE.  
A
A2  
0.05  
B
A
D
S
A1  
MILLIMETERS  
5
1
4
DIM MIN  
MAX  
1.45  
0.10  
1.30  
0.50  
0.25  
3.10  
3.10  
1.80  
E
L
A
A1  
A2  
b
---  
0.00  
1.00  
0.30  
0.10  
2.70  
2.50  
1.50  
2
3
E1  
5X b  
L1  
C
c
M
S
S
D
0.10  
C B  
A
e
C
E
E1  
e
0.95 BSC  
L
0.20  
0.45  
---  
L1  
0.75  
RECOMMENDED  
SOLDERING FOOTPRINT*  
5X  
0.85  
3.30  
5X  
0.95  
0.56  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,  
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. SCILLC  
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications  
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC  
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,  
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture  
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP4626/D  

相关型号:

NCP4626DSN030T1G

300 mA, Low Dropout Voltage Regulator with Reverse Current Protection
ONSEMI

NCP4626DSN033T1G

300 mA, Low Dropout Voltage Regulator with Reverse Current Protection
ONSEMI

NCP4626DSN045T1G

300 mA, Low Dropout Voltage Regulator with Reverse Current Protection
ONSEMI

NCP4626DSN050T1G

300 mA, Low Dropout Voltage Regulator with Reverse Current Protection
ONSEMI

NCP4626HMX030TCG

300 mA, Low Dropout Voltage Regulator with Reverse Current Protection
ONSEMI

NCP4626HMX033TCG

300 mA, Low Dropout Voltage Regulator with Reverse Current Protection
ONSEMI

NCP4626HMX045TCG

300 mA, Low Dropout Voltage Regulator with Reverse Current Protection
ONSEMI

NCP4626HMX050TCG

300 mA, Low Dropout Voltage Regulator with Reverse Current Protection
ONSEMI

NCP4626HSN030T1G

300 mA, Low Dropout Voltage Regulator with Reverse Current Protection
ONSEMI

NCP4626HSN033T1G

300 mA, Low Dropout Voltage Regulator with Reverse Current Protection
ONSEMI

NCP4626HSN045T1G

300 mA, Low Dropout Voltage Regulator with Reverse Current Protection
ONSEMI

NCP4626HSN050T1G

300 mA, Low Dropout Voltage Regulator with Reverse Current Protection
ONSEMI