NCP508SQ18T1G [ONSEMI]

Very Low Noise, Fast Turn On, 50 mA Low Dropout Voltage Regulator; 非常低噪声,快速打开50 mA低压差稳压器
NCP508SQ18T1G
型号: NCP508SQ18T1G
厂家: ONSEMI    ONSEMI
描述:

Very Low Noise, Fast Turn On, 50 mA Low Dropout Voltage Regulator
非常低噪声,快速打开50 mA低压差稳压器

稳压器
文件: 总15页 (文件大小:2350K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP508  
Very Low Noise, Fast Turn  
On, 50 mA Low Dropout  
Voltage Regulator  
The NCP508 is a 50 mA low noise voltage regulator, designed to  
exhibit fast turn on time and high ripple rejection. Each device  
contains a voltage reference unit, an error amplifier, a PMOS power  
transistor, resistors for setting output voltage, current limit, and  
temperature limit protection circuits.  
The NCP508 has been designed for use with ceramic capacitors.  
The device is housed in SC88A and WDFN6 1.5x1.5 packages.  
Standard voltage versions are 1.5, 1.8, 2.5, 2.8, 3.0, and 3.3. Other  
voltages are available in 100 mV steps.  
http://onsemi.com  
4
MARKING  
DIAGRAM  
5
3
2
1
5
SC705/SC88A/SOT353  
SQ SUFFIX  
xxx MG  
G
CASE 419A  
1
XXX  
M
= Specific Device Code  
= Date Code*  
= PbFree Package  
Features  
Very Low Noise at 39 mVrms without a Bypass Capacitor  
High Ripple Rejection of 70 dB at 1 kHz  
Low Dropout Voltage of 140 mV (typ) at 30 mA  
G
(Note: Microdot may be in either location)  
*Date Code orientation and/or position may  
vary depending upon manufacturing location.  
Tight Load Regulation, typically 6 mV for DI = 50 mA  
out  
Fast Enable TurnOn time of 20 msec  
Logic Level Enable  
1
WDFN6  
XX MG  
MN SUFFIX  
CASE 511BJ  
ESR can vary from a few mW to 3 W  
These are PbFree Devices  
XX = Specific Device Code  
M
G
= Date Code  
= PbFree Package  
Typical Applications  
RF Subsystems in Handsets  
Noise Sensitive Circuits; VCOs, PLL  
PIN CONNECTIONS  
Battery or  
Unregulated  
Voltage  
V
out  
V
1
2
5
V
out  
1
2
3
5
4
in  
C1  
1m  
C2  
1m  
GND  
Enable  
3
4
NC  
ON  
OFF  
SC88A  
(Top View)  
Figure 1. Typical Application Diagram  
V
out  
1
6
V
in  
NC  
2
3
5
4
NC  
GND  
Enable  
WDFN6  
(Top View)  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 13 of this data sheet.  
© Semiconductor Components Industries, LLC, 2010  
1
Publication Order Number:  
May, 2010 Rev. 3  
NCP508/D  
 
NCP508  
PIN FUNCTION DESCRIPTION  
Pin No.  
Pin Name  
Description  
1
2
3
V
Positive power supply input voltage  
Power supply ground  
in  
GND  
Enable  
This input is used to place the device into lowpower stand by. When this input is pulled low, the  
device is disabled. If this function is not used, Enable should be connected to V .  
in  
4
5
N/C  
Not connected pin  
V
out  
Regulated output voltage  
MAXIMUM RATING  
Rating  
Symbol  
Value  
Unit  
V
Input Voltage  
Enable Voltage  
Output Voltage  
V
13.0  
in(max)  
Enable  
Vout  
0.3 to V  
+ 0.3  
+ 0.3  
V
in(max)  
in(max)  
0.3 to V  
V
Power Dissipation and Thermal Characteristics (SC88A)  
Power Dissipation  
P
Internally Limited  
200  
W
°C/W  
D
Thermal Resistance, JunctiontoAmbient (Note 4)  
RqJA  
Power Dissipation and Thermal Characteristics (WDFN6)  
Power Dissipation  
P
Internally Limited  
313  
W
°C/W  
D
Thermal Resistance, JunctiontoAmbient (Note 4)  
RqJA  
Maximum Junction Temperature  
Operating Ambient Temperature  
Storage Temperature  
TJ  
+125  
40 to +85  
55 to +150  
10  
°C  
°C  
TA  
Tstg  
Tsolder  
°C  
Lead Soldering Temperature @ 260°C  
sec  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. This device series contains ESD protection and exceeds the following tests:  
Human Body Model 2000 V per MILSTD883, Method 3015.  
Machine Model Method 200 V  
2. Latch up Capability (85°C) $ 100 mA DC with trigger voltage  
3. Maximum package power dissipation limits must be observed.  
TJ max) * T  
(
A
PD  
+
RqJA  
4. R  
on a 30 x 30 mm PCB Cu thickness 1 oz; T = 25°C.  
A
q
JA  
RECOMMENDED OPERATING CONDITIONS  
Rating  
Symbol  
Max  
Unit  
Maximum Operating Input Voltage  
V
in  
7.0  
V
http://onsemi.com  
2
 
NCP508  
ELECTRICAL CHARACTERISTICS (V = V  
+ 1.0 V, V = V , C = 1.0 mF, C = 1.0 mF, T = 25°C, unless otherwise  
enable in in out J  
in  
out(nom)  
noted)  
Characteristic  
Symbol  
Min  
2  
3  
Typ  
Max  
+2  
+3  
20  
40  
Unit  
%
Output Voltage Tolerance (T = 25°C, I = 10 mA)  
V
out  
A
out  
Output Voltage Tolerance (T = 40°C to 85°C, I = 10 mA)  
V
out  
%
A
out  
Line Regulation (V = V + 1 V to 12 V, I = 10 mA) (Note 5)  
Reg  
2
mV  
mV  
mA  
mV  
in  
out  
out  
line  
Load Regulation (I = 1.0 mA to 50 mA) (Note 5)  
Reg  
6
out  
load  
Output Current (V = V  
– 0.1 V)  
I
out(nom)  
50  
out  
out(nom)  
Dropout Voltage (V = 3.0 V, Measured at V – 100 mV)  
V V  
in out  
out  
= 30 mA  
= 40 mA  
= 50 mA  
out  
I
I
I
140  
155  
180  
250  
300  
out  
out  
out  
Quiescent Current  
(Enable Input = 0V)  
I
mA  
mA  
Q
0.1  
1
Ground Current  
(Enable Input = V , V = V + 1 V, I = 0 mA)  
IGND  
145  
160  
300  
1100  
200  
260  
500  
1900  
in in  
out  
out  
(Enable Input = V , I = 1 mA)  
in out  
(Enable Input = V , I = 10 mA)  
in out  
(Enable Input = V , I = 50 mA)  
in out  
Enable Input Threshold Voltage  
V
th(en)  
V
(Voltage Increasing, Output Turns On, Logic High)  
(Voltage Decreasing, Output Turns Off, Logic Low)  
0.9  
0.15  
Enable Input Current (V  
= 2.4 V)  
I
8.0  
20  
15  
mA  
ms  
enable  
enable  
Output Turn On Time (Note 6)  
Output Short Circuit Current Limit (V = 0 V)  
I
100  
250  
70  
mA  
out  
out(max)  
Ripple Rejection (V = V  
+ 1 Vdc + 0.5 V , f = 1 kHz, Io = 10 mA)  
RR  
dB  
in  
out(nom)  
pp  
Output Noise Voltage (f = 100 Hz to 100 kHz) (V = 1.5 V)  
V
n
39  
mVrms  
out  
5. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
6. Turn on time is defined from Enable at 10% to V at 95% nominal value. Min and max values T = 40°C to 85°C, T = 125°C. V  
enable  
out  
A
jmax  
= 0 V to V . C = 1.0 mF.  
in  
out  
http://onsemi.com  
3
 
NCP508  
TYPICAL CHARACTERISTICS  
300  
250  
200  
150  
100  
50  
300  
V
out  
= V  
0.1 V  
= 40 mA  
V
out  
= V  
0.1 V  
= 40 mA  
out(nom)  
out(nom)  
250  
200  
150  
100  
50  
I
I
load  
load  
0
0
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 2. Dropout Voltage vs. Temperature,  
1.5 V  
Figure 3. Dropout Voltage vs. Temperature,  
3.3 V  
1.506  
1.504  
1.502  
1.5  
3.32  
3.315  
3.31  
V
out  
= V  
+ 1 V  
= 1 mA  
out(nom)  
V
out  
= V  
+ 1 V  
= 1 mA  
out(nom)  
I
load  
I
load  
1.498  
1.496  
1.494  
1.492  
1.49  
3.305  
3.3  
3.295  
3.29  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 4. Output Voltage vs. Temperature,  
1.5 V  
Figure 5. Output Voltage vs. Temperature,  
3.3 V  
230  
220  
210  
200  
190  
180  
170  
160  
150  
250  
200  
150  
100  
50  
V
out  
= V  
0.1 V  
V
out  
= V  
0.1 V  
out(nom)  
out(nom)  
0
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 6. Output Current Limit vs.  
Temperature, 1.5 V  
Figure 7. Output Current Limit vs.  
Temperature, 3.3 V  
http://onsemi.com  
4
NCP508  
TYPICAL CHARACTERISTICS  
330  
310  
290  
270  
250  
230  
210  
190  
170  
150  
400  
V
out  
= 0 V  
V
out  
= 0 V  
350  
300  
250  
200  
150  
100  
50  
0
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 8. ShortCircuit Current Limit vs.  
Figure 9. ShortCircuit Current Limit vs.  
Temperature, 1.5 V  
Temperature, 3.3 V  
300  
250  
200  
150  
100  
50  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
EN  
= 0 V  
V
EN  
= 0 V  
0
0
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 10. Quiescent Current vs. Temperature,  
1.5 V  
Figure 11. Quiescent Current vs. Temperature,  
3.3 V  
145  
140  
135  
130  
125  
120  
146  
144  
142  
140  
138  
136  
134  
132  
130  
128  
V
= V + 1 V  
V
= V + 1 V  
in  
I
out  
in  
I
out  
= 0 mA  
= 0 mA  
out  
out  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. Ground Current vs. Temperature,  
1.5 V  
Figure 13. Ground Current vs. Temperature,  
3.3 V  
http://onsemi.com  
5
NCP508  
TYPICAL CHARACTERISTICS  
400  
350  
300  
250  
200  
150  
100  
50  
500  
V
= V  
in  
= 0 mA  
EN  
V
= V  
in  
= 0 mA  
EN  
2V8,  
No Load  
V
out  
I
out  
450 Voltage Option = 1.5 V  
C
= C = 1 mF  
T = 25°C  
A
in  
out  
C
= C = 1 mF  
T = 25°C  
A
3V3,  
No Load  
in  
out  
400  
350  
300  
250  
1V5,  
No Load  
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
2
3
4
5
6
7
8
9
10 11 12 13  
V , INPUT VOLTAGE (V)  
in  
V , INPUT VOLTAGE (V)  
in  
Figure 14. Quiescent Current vs. Input Voltage  
Figure 15. Output ShortCircuit Current vs.  
Input Voltage  
240  
C
= C = 1 mF  
out  
T = 25°C  
A
in  
220  
200  
180  
160  
140  
120  
100  
80  
2V8  
3V  
1V8  
3V3  
1V5  
0.03  
2V5  
60  
40  
20  
0
0
0.01  
0.02  
0.04  
0.05  
I
, OUTPUT CURRENT (A)  
out  
Figure 16. Dropout Voltage vs. Output Current  
http://onsemi.com  
6
NCP508  
TYPICAL CHARACTERISTICS  
1.6  
1.4  
1.2  
1
3.6  
3.2  
2.8  
2.4  
2
I
= 1.0 mA to  
50 mA  
out  
I
= 1.0 mA to  
50 mA  
out  
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.2  
V
= V  
= 1.5 V  
V = V  
EN in  
EN  
in  
0.8  
0.4  
0
V
out  
V
out  
= 3.3 V  
C
= C = 1 mF  
T = 25°C  
A
C = C = 1 mF  
in  
out  
in out  
T = 25°C  
A
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
V , INPUT VOLTAGE (V)  
Figure 17. Oiuntput Voltage vs. Input Voltage  
V , INPUT VOLTAGE (V)  
Figure 18. Output Voltage vs. Input Voltage  
in  
1.6  
1.4  
1.2  
1
3.6  
3.2  
2.8  
2.4  
2
V
in  
= 4.3 V  
V
in  
= 2.5 V  
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.2  
0.8  
0.4  
0
V
= V  
= 1.5 V  
V
= V  
= 3.3 V  
EN  
in  
EN in  
V
out  
V
out  
C
= C = 1 mF  
T = 25°C  
A
C = C = 1 mF  
in  
out  
in out  
T = 25°C  
A
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0
0.05  
0.1  
, OUTPUT CURRENT (A)  
out  
0.15  
0.2  
0.25  
0.3  
I
, OUTPUT CURRENT (A)  
I
out  
Figure 19. Output Voltage vs. Output Current  
Figure 20. Output Voltage vs. Output Current  
16  
14  
12  
Region of Instability  
Region of Stability  
10  
8
6
4
C
= C = 1 mF  
out  
T = 25°C  
A
in  
2
0
0
5
10 15 20 25 30 35 40 45 50  
, OUTPUT CURRENT (mA)  
I
out  
Figure 21. Equivalent Series Resistance vs.  
Output Current, X7R, MLCC Capacitor  
http://onsemi.com  
7
NCP508  
TYPICAL CHARACTERISTICS  
V
= 1.5 V  
= 2.5 V  
Input Voltage (V)  
= 1.5 V  
out  
V
in  
3.5  
2.5  
I
= 1 to 50 mA  
= 1 uF MLCC  
load  
V
V
out  
Load Current (mA)  
C
out  
= 2.5 V to 3.5 V /rate 1 V/ms  
in  
I
C
= 40 mA  
= 1 mF MLCC  
load  
20 mV  
10 mV  
0
out  
60 mV  
30 mV  
0
Output Voltage Deviation (mV)  
Output Voltage Deviation (mV)  
10 mV  
20 mV  
30 mV  
30 mV  
60 mV  
Figure 22. Line Transient Response  
1.5 V/40 mA  
Figure 23. Load Transient Response 1.5 V  
Input voltage (V)  
3.5  
V
V
I
= 1.5 V  
= 2.5 V to 3.5 V /rate 1 V/ms  
= 50 mA  
= 4.7 mF MLCC  
out  
in  
2.5  
load  
C
out  
20 mV  
10 mV  
0
Output Voltage Deviation (mV)  
10 mV  
20 mV  
Figure 24. Line Transient Response  
1.5 V/50 mA  
http://onsemi.com  
8
NCP508  
TYPICAL CHARACTERISTICS  
V
= 3.3 V  
= 4.3 V  
out  
Input Voltage (V)  
V
in  
I
C
= 1 to 40 mA  
= 1 mF MLCC  
load  
5.3  
4.3  
Load Current (mA)  
V
V
= 3.3 V  
= 4.3 V to 5.3 V /rate 1 V/ms  
out  
out  
in  
I
= 40 mA  
load  
20 mV  
10 mV  
0
C
= 1 mF MLCC  
out  
Output Voltage Deviation (mV)  
40 mV  
20 mV  
0
Output Voltage Deviation (mV)  
10 mV  
20 mV  
30 mV  
20 mV  
40 mV  
Figure 25. Load Transient Response 3.3 V  
Figure 26. Line Transient Response  
3.3 V/40 mA  
Input Voltage (V)  
= 3.3 V  
5.3  
V
V
out  
= 4.3 V to 5.3 V /rate 1 V/ms  
in  
I
C
= 50 mA  
= 4.7 mF MLCC  
load  
4.3  
out  
20 mV  
Output Voltage Deviation (mV)  
10 mV  
0
10 mV  
20 mV  
Figure 27. Line Transient Response  
3.3 V/50 mA  
http://onsemi.com  
9
NCP508  
TYPICAL CHARACTERISTICS  
3.0E07  
2.5E07  
2.0E07  
1.5E07  
1.0E07  
0.5E07  
0.0  
RMS Noise Value (100 Hz 100 kHz) = 39 mV  
10  
100  
1000  
10000  
100000  
1000000  
FREQUENCY (Hz)  
Figure 28. Output Voltage Noise  
out = 1.5 V, Iout = 40 mA  
V
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.5 V  
2.5 V  
3.3 V  
10  
100  
1000  
10000  
100000  
1000000  
f
, RIPPLE FREQUENCY (Hz)  
ripple  
Figure 29. Ripple Rejection vs. Frequency  
Iout = 40 mA, 0.5 Vpp  
I
= No Load  
I
= 50 mA  
out  
out  
C
= C = 1 mF  
C
= C = 1 mF  
in  
out  
in  
out  
V
= V = 2.8 V  
= 1.8 V  
V
= V = 2.8 V  
= 1.8 V  
in  
EN  
in  
EN  
V
in  
= V  
EN  
V
in  
= V  
EN  
V
out  
V
out  
T = 25°C  
A
T = 25°C  
A
V
out  
V
out  
I
in  
I
in  
Figure 30. Startup, No Load  
Figure 31. Startup, Iout = 50 mA  
http://onsemi.com  
10  
NCP508  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
C
= C = 1 mF  
out  
= V = 2.8 V  
EN  
= 2.5 V  
in  
V
in  
V
out  
T = 25°C  
A
I
= 180 mA  
limit  
V
= V  
in  
EN  
C
= C = 1 mF  
T = 85°C  
A
in  
out  
50 mA/div  
500 ms/div  
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
V , INPUT VOLTAGE (V)  
in  
Figure 33. Measured Power Operating Area,  
1.5 V, TA = 855C, Vout_drop = max 0.1 V  
Figure 32. Hard ShortCircuit Current (by Copper Wires)  
350  
0.25  
0.2  
0.15  
0.1  
0.05  
0
300  
250  
200  
150  
100  
50  
P
D
q
JA  
33 x 26 mm  
PCB Copper Thickness = 1.0 oz  
0
0
100 200 300 400 500 600 700 800 900 1000  
2
COPPER HEAT SPREADER AREA (mm )  
Figure 34. Evaluation Board  
Figure 35. SC705 Thermal Resistance vs.  
Copper Heat Spreader Area  
400  
350  
300  
250  
200  
150  
100  
PCB Copper Thickness = 1.0 oz  
50  
0
100 200 300 400 500 600 700 800 900  
2
PCB COPPER HEAT SPREADER AREA (mm )  
Figure 36. WDFN6 Thermal Resistance vs.  
Copper Heat Spreader Area  
http://onsemi.com  
11  
NCP508  
DEFINITIONS  
Load Regulation  
Line Regulation  
The change in output voltage for a change in output  
current at a constant temperature.  
The change in output voltage for a change in input voltage.  
The measurement is made under conditions of low  
dissipation or by using pulse technique such that the average  
chip temperature is not significantly affected.  
Dropout Voltage  
The input/output differential at which the regulator output  
no longer maintains regulation against further reductions in  
input voltage. Measured when the output drops 100 mV  
below its nominal. The junction temperature, load current,  
and minimum input supply requirements affect the dropout  
level.  
Line Transient Response  
Typical over and undershoot response when input voltage  
is excited with a given slope.  
Thermal Protection  
Internal thermal shutdown circuitry is provided to protect  
the integrated circuit in the event that the maximum junction  
temperature is exceeded. When activated at typically 125°C,  
the regulator turns off. This feature is provided to prevent  
failures from accidental overheating.  
Maximum Power Dissipation  
The maximum total dissipation for which the regulator  
will operate within its specifications.  
Quiescent Current  
The quiescent current is the current which flows through  
the ground when the LDO operates without a load on its  
output: internal IC operation, bias, etc. When the LDO  
becomes loaded, this term is called the Ground current. It is  
actually the difference between the input current (measured  
through the LDO input pin) and the output current.  
Maximum Package Power Dissipation  
The maximum power package dissipation is the power  
dissipation level at which the junction temperature reaches  
its maximum operating value, i.e. 150°C. Depending on the  
ambient power dissipation and thus the maximum available  
output current.  
APPLICATIONS INFORMATION  
Hints  
Typical application circuit for the NCP508 series is shown  
in Figure 1.  
Please be sure the V and GND lines are sufficiently wide.  
When the impedance of these lines is high, there is a chance  
to pick up noise or cause the regulator to malfunction.  
Set external components, especially the output capacitor,  
as close as possible to the circuit, and make leads as short as  
possible.  
in  
Input Decoupling (C1)  
An input capacitor of at least 1.0 mF,(ceramic or tantalum)  
is recommended to improve the transient response of the  
regulator and/or if the regulator is located more than a few  
inches from the power source. It will also reduce the circuit’s  
sensitivity to the input line impedance at high frequencies.  
The capacitor should be mounted with the shortest possible  
track length directly across the regular’s input terminals.  
Higher values and lower ESR will improve the overall line  
transient response.  
Thermal Considerations  
Internal thermal limiting circuitry is provided to protect  
the integrated circuit in the event that the maximum junction  
temperature is exceeded.  
The maximum power dissipation supported by the device  
is dependent upon board design and layout. Mounting pad  
configuration on the PCB, the board material and also the  
ambient temperature effect the rate of temperature rise for  
the part. This is stating that when the NCP508 has good  
thermal conductivity through the PCB, the junction  
temperature will be relatively low with high power  
dissipation applications.  
Output Decoupling (C2)  
The NCP508 is a stable regulator and does not require a  
minimum output current. Capacitors exhibiting ESRs  
ranging from a few mW up to 3 W can safely be used. The  
minimum decoupling value is 1.0 mF and can be augmented  
to fulfill stringent load transient requirements. The regulator  
accepts ceramic chip capacitors as well as tantalum devices.  
Larger values improve noise rejection and load regulation  
transient response.  
The maximum dissipation the package can handle is given  
by:  
TJ max) * T  
(
A
(eq. 1)  
PD  
+
Enable Operation  
RqJA  
The enable pin will turn on or off the regulator. The limits  
of threshold are covered in the electrical specification  
section of this datasheet. If the enable is not used then the pin  
where:  
T  
is the maximum allowable junction temperature  
J{max)  
of the die, which is 150°C  
should be connected to V .  
in  
T is the ambient operating temperature  
A
R is dependent on the surrounding PCB layout  
qja  
http://onsemi.com  
12  
NCP508  
ORDERING INFORMATION  
Device  
Nominal Output Voltage  
Marking  
Package  
Shipping  
NCP508SQ15T1G  
1.5  
D5A  
SC88A  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
(PbFree)  
NCP508SQ18T1G  
NCP508SQ25T1G  
NCP508SQ28T1G  
NCP508SQ30T1G  
NCP508SQ33T1G  
NCP508MN15TBG  
NCP508MN18TBG  
NCP508MN25TBG  
NCP508MN28TBG  
NCP508MN30TBG  
NCP508MN33TBG  
1.8  
2.5  
2.8  
3.0  
3.3  
1.5  
1.8  
2.5  
2.8  
3.0  
3.3  
D5C  
D5D  
D5E  
D5F  
D5G  
AA  
SC88A  
(PbFree)  
SC88A  
(PbFree)  
SC88A  
(PbFree)  
SC88A  
(PbFree)  
SC88A  
(PbFree)  
WDFN6  
(PbFree)  
AC  
WDFN6  
(PbFree)  
AD  
WDFN6  
(PbFree)  
AE  
WDFN6  
(PbFree)  
AF  
WDFN6  
(PbFree)  
AG  
WDFN6  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
NOTE: Additional voltages in 100 mV steps are available upon request by contacting your ON Semiconductor representative.  
http://onsemi.com  
13  
NCP508  
PACKAGE DIMENSIONS  
SC705, SC88A, SOT353  
SQ SUFFIX  
CASE 419A02  
ISSUE J  
A
NOTES:  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
G
2. CONTROLLING DIMENSION: INCH.  
3. 419A01 OBSOLETE. NEW STANDARD  
419A02.  
4. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5
4
3
B−  
S
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
1.80  
1.15  
0.80  
0.10  
MAX  
2.20  
1.35  
1.10  
0.30  
1
2
A
B
C
D
G
H
J
0.071  
0.045  
0.031  
0.004  
0.087  
0.053  
0.043  
0.012  
0.026 BSC  
0.65 BSC  
M
M
D 5 PL  
0.2 (0.008)  
B
---  
0.004  
0.004  
0.004  
0.010  
0.012  
---  
0.10  
0.10  
0.10  
0.25  
0.30  
K
N
S
N
0.008 REF  
0.20 REF  
0.079  
0.087  
2.00  
2.20  
J
C
K
H
SOLDERING FOOTPRINT*  
0.50  
0.0197  
0.65  
0.025  
0.65  
0.025  
0.40  
0.0157  
1.9  
0.0748  
mm  
inches  
ǒ
Ǔ
SCALE 20:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
14  
NCP508  
PACKAGE DIMENSIONS  
WDFN6 1.5x1.5, 0.5P  
CASE 511BJ01  
ISSUE O  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
L
D
A
B
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.15 AND 0.30mm FROM TERMINAL TIP.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
L1  
DETAIL A  
ALTERNATE TERMINAL  
CONSTRUCTIONS  
E
MILLIMETERS  
PIN ONE  
DIM  
A
MIN  
0.70  
0.00  
MAX  
0.80  
0.05  
REFERENCE  
A3  
A1  
A3  
b
EXPOSED Cu  
MOLD CMPD  
2X  
0.10  
C
0.20 REF  
0.20  
0.30  
1.50 BSC  
1.50 BSC  
0.50 BSC  
D
2X  
0.10  
C
E
TOP VIEW  
e
A1  
L
0.40  
---  
0.60  
0.15  
0.70  
DETAIL B  
A3  
L1  
L2  
DETAIL B  
0.05  
0.05  
C
C
0.50  
ALTERNATE  
CONSTRUCTIONS  
A
A1  
RECOMMENDED  
MOUNTING FOOTPRINT*  
NOTE 4  
SEATING  
C
SIDE VIEW  
PLANE  
5X  
0.73  
6X  
0.35  
DETAIL A  
1
5X  
L
e
3
L2  
1.80  
0.50  
PITCH  
0.83  
6
4
DIMENSIONS: MILLIMETERS  
6X b  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
0.10  
C
C
A
B
NOTE 3  
0.05  
BOTTOM VIEW  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP508/D  

相关型号:

NCP508SQ25T1G

Very Low Noise, Fast Turn On, 50 mA Low Dropout Voltage Regulator
ONSEMI

NCP508SQ28T1G

Very Low Noise, Fast Turn On, 50 mA Low Dropout Voltage Regulator
ONSEMI

NCP508SQ30T1G

Very Low Noise, Fast Turn On, 50 mA Low Dropout Voltage Regulator
ONSEMI

NCP508SQ33T1G

Very Low Noise, Fast Turn On, 50 mA Low Dropout Voltage Regulator
ONSEMI

NCP508_11

Very Low Noise, Fast Turn On, 50 mA Low Dropout Voltage Regulator
ONSEMI

NCP5104

High Voltage, Half Bridge Driver
ONSEMI

NCP5104BA36WGEVB

High Voltage, Half Bridge Driver
ONSEMI

NCP5104DR2G

High Voltage, Half Bridge Driver
ONSEMI

NCP5104PG

High Voltage, Half Bridge Driver
ONSEMI

NCP5104_15

High Voltage, Half Bridge Driver
ONSEMI

NCP5106A

High Voltage, High and Low Side Driver
ONSEMI

NCP5106ADR2G

High Voltage, High and Low Side Driver
ONSEMI