NCP5106AMNTWG [ONSEMI]

MOSFET / IGBT 驱动器,高电压,高压和低压侧;
NCP5106AMNTWG
型号: NCP5106AMNTWG
厂家: ONSEMI    ONSEMI
描述:

MOSFET / IGBT 驱动器,高电压,高压和低压侧

驱动 双极性晶体管 高压 光电二极管 接口集成电路 驱动器
文件: 总18页 (文件大小:148K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP5106A, NCP5106B  
High Voltage, High and Low  
Side Driver  
The NCP5106 is a high voltage gate driver IC providing two  
outputs for direct drive of 2 Nchannel power MOSFETs or IGBTs  
arranged in a halfbridge configuration version B or any other  
highside + lowside configuration version A.  
It uses the bootstrap technique to ensure a proper drive of the  
highside power switch. The driver works with 2 independent inputs.  
http://onsemi.com  
MARKING  
DIAGRAMS  
Features  
1
8
High Voltage Range: Up to 600 V  
dV/dt Immunity 50 V/nsec  
Negative Current Injection Characterized Over the Temperature Range  
Gate Drive Supply Range from 10 V to 20 V  
High and Low Drive Outputs  
SOIC8  
D SUFFIX  
CASE 751  
5106x  
ALYW  
G
1
Output Source / Sink Current Capability 250 mA / 500 mA  
3.3 V and 5 V Input Logic Compatible  
NCP5106x  
AWLG  
1
PDIP8  
P SUFFIX  
CASE 626  
YYWW  
Up to V Swing on Input Pins  
CC  
Extended Allowable Negative Bridge Pin Voltage Swing to 10 V  
for Signal Propagation  
Matched Propagation Delays Between Both Channels  
Outputs in Phase with the Inputs  
Independent Logic Inputs to Accommodate All Topologies (Version A)  
Cross Conduction Protection with 100 ns Internal Fixed Dead Time  
(Version B)  
NCP5106 = Specific Device Code  
x
A
= A or B version  
= Assembly Location  
= Wafer Lot  
L or WL  
Y or YY  
W or WW = Work Week  
G or G  
= Year  
= PbFree Package  
Under V LockOut (UVLO) for Both Channels  
CC  
PintoPin Compatible with Industry Standards  
These are PbFree Devices  
PINOUT INFORMATION  
VBOOT  
VCC  
IN_HI  
IN_LO  
GND  
1
2
3
4
8
7
6
5
DRV_HI  
BRIDGE  
DRV_LO  
Typical Applications  
HalfBridge Power Converters  
Any Complementary Drive Converters (Asymmetrical HalfBridge,  
Active Clamp) (A Version Only).  
8 Pin Package  
FullBridge Converters  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NCP5106APG  
PDIP8  
50 Units / Rail  
(PbFree)  
NCP5106ADR2G  
NCP5106BPG  
SOIC8 2500 / Tape & Reel  
(PbFree)  
PDIP8  
50 Units / Rail  
(PbFree)  
NCP5106BDR2G  
SOIC8 2500 / Tape & Reel  
(PbFree)  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
©
Semiconductor Components Industries, LLC, 2010  
1
Publication Order Number:  
March, 2010 Rev. 5  
NCP5106/D  
NCP5106A, NCP5106B  
+
Vbulk  
Vcc  
C1  
D4  
U1  
GND  
Q1  
L1  
D1  
Out+  
T1  
C3  
+
C4  
8
1
2
3
4
C3  
GND  
VBOOT  
Vcc  
IN_HI DRV_HI  
Bridge  
7
6
5
Lf  
NCP1395  
GND  
Out−  
IN_LO  
D2  
R1  
GND DRV_LO  
NCP5106  
C6  
Q2  
GND  
GND  
D3  
GND  
U2  
Figure 1. Typical Application Resonant Converter (LLC type)  
+
Vbulk  
Vcc  
C1  
C5  
D4  
GND  
Q1  
L1  
D1  
C3  
Out+  
T1  
U1  
VBOOT  
C4  
+
GND  
1
2
3
4
8
7
6
5
Vcc  
C3  
Out−  
IN_HI DRV_HI  
IN_LO Bridge  
GND DRV_LO  
NCP5106  
MC34025  
GND  
D2  
R1  
C6  
Q2  
GND  
GND  
D3  
GND  
U2  
Figure 2. Typical Application Half Bridge Converter  
http://onsemi.com  
2
NCP5106A, NCP5106B  
VCC  
VCC  
VBOOT  
UV  
DETECT  
IN_HI  
S Q  
DRV_HI  
BRIDGE  
PULSE  
TRIGGER  
LEVEL  
SHIFTER  
R
Q
UV  
DETECT  
GND  
GND  
VCC  
IN_LO  
GND  
DRV_LO  
GND  
DELAY  
GND  
GND  
GND  
Figure 3. Detailed Block Diagram: Version A  
VCC  
VCC  
VBOOT  
UV  
DETECT  
IN_HI  
S Q  
DRV_HI  
BRIDGE  
PULSE  
TRIGGER  
LEVEL  
SHIFTER  
R
Q
UV  
DETECT  
CROSS  
CONDUCTION  
PREVENTION  
GND  
GND  
VCC  
DRV_LO  
GND  
IN_LO  
DELAY  
GND  
GND  
Figure 4. Detailed Block Diagram: Version B  
PIN DESCRIPTION  
Pin Name  
IN_HI  
Description  
Logic Input for High Side Driver Output in Phase  
Logic Input for Low Side Driver Output in Phase  
Ground  
IN_LO  
GND  
DRV_LO  
Low Side Gate Drive Output  
V
V
Low Side and Main Power Supply  
Bootstrap Power Supply  
CC  
BOOT  
DRV_HI  
BRIDGE  
High Side Gate Drive Output  
Bootstrap Return or High Side Floating Supply Return  
http://onsemi.com  
3
NCP5106A, NCP5106B  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
0.3 to 20  
23  
Unit  
V
V
Main power supply voltage  
CC  
CC_transient  
V
Main transient power supply voltage:  
IV = 5 mA during 10 ms  
V
CC_max  
V
V
VHV: High Voltage BRIDGE pin  
1 to 600  
10  
V
V
BRIDGE  
Allowable Negative Bridge Pin Voltage for IN_LO Signal Propagation to DRV_LO  
(see characterization curves for detailed results)  
BRIDGE  
V
V
VHV: Floating supply voltage  
VHV: High side output voltage  
0.3 to 20  
V
V
BOOTBRIDGE  
V
V
0.3 to  
DRV_HI  
BRIDGE  
V
+ 0.3  
BOOT  
V
Low side output voltage  
Allowable output slew rate  
Inputs IN_HI, IN_LO  
0.3 to V + 0.3  
V
V/ns  
V
DRV_LO  
CC  
dV  
BRIDGE  
/dt  
50  
V
1.0 to V + 0.3  
IN_XX  
CC  
ESD Capability:  
HBM model (all pins except pins 678 in 8 pins  
package or 111213 in 14 pins package)  
Machine model (all pins except pins 678 in 8 pins  
package or 111213 in 14 pins package)  
2
kV  
V
200  
Latch up capability per JEDEC JESD78  
R
q
JA  
Power dissipation and Thermal characteristics  
PDIP8: Thermal Resistance, JunctiontoAir  
SO8: Thermal Resistance, JunctiontoAir  
°C/W  
100  
178  
T
Storage Temperature Range  
55 to +150  
°C  
°C  
ST  
T
Maximum Operating Junction Temperature  
+150  
J_max  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
RecommendedOperating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
http://onsemi.com  
4
NCP5106A, NCP5106B  
ELECTRICAL CHARACTERISTIC (V = V  
= 15 V, V  
= V , 40°C < T < 125°C, Outputs loaded with 1 nF)  
bridge J  
CC  
boot  
GND  
T 40°C to 125°C  
J
Min  
Typ  
Max  
Rating  
Symbol  
Units  
OUTPUT SECTION  
Output high short circuit pulsed current V  
= 0 V, PW v 10 ms (Note 1)  
I
250  
500  
30  
mA  
mA  
W
DRV  
DRVsource  
Output low short circuit pulsed current V  
= V , PW v 10 ms (Note 1)  
I
DRV  
CC  
DRVsink  
Output resistor (Typical value @ 25°C) Source  
Output resistor (Typical value @ 25°C) Sink  
R
OH  
60  
20  
1.6  
0.6  
R
OL  
10  
W
High level output voltage, V  
V  
@ I  
= 20 mA  
V
0.7  
0.2  
V
BIAS DRV_XX  
DRV_XX  
DRV_H  
Low level output voltage V  
@ I  
= 20 mA  
V
DRV_L  
V
DRV_XX  
DRV_XX  
DYNAMIC OUTPUT SECTION  
Turnon propagation delay (Vbridge = 0 V)  
Turnoff propagation delay (Vbridge = 0 V or 50 V) (Note 2)  
Output voltage rise time (from 10% to 90% @ V = 15 V) with 1 nF load  
t
100  
100  
85  
170  
170  
160  
75  
ns  
ns  
ns  
ns  
ns  
ON  
t
OFF  
tr  
CC  
Output voltage fall time (from 90% to 10% @V = 15 V) with 1 nF load  
tf  
35  
CC  
Propagation delay matching between the High side and the Low side  
@ 25°C (Note 3)  
Dt  
20  
35  
Internal fixed dead time (only valid for B version) (Note 4)  
Minimum input width that changes the output  
Maximum input width that does not change the output  
INPUT SECTION  
DT  
65  
100  
190  
50  
ns  
ns  
ns  
t
PW1  
PW2  
t
20  
Low level input voltage threshold  
V
200  
0.8  
V
kW  
V
IN  
Input pulldown resistor (V < 0.5 V)  
R
V
IN  
IN  
High level input voltage threshold  
2.3  
IN  
Logic “1” input bias current @ V  
Logic “0” input bias current @ V  
SUPPLY SECTION  
= 5 V @ 25°C  
= 0 V @ 25°C  
I
I
5
25  
2.0  
mA  
mA  
IN_XX  
IN_XX  
IN+  
IN−  
V
V
UV Startup voltage threshold  
V
_stup  
8.0  
7.3  
0.3  
8.0  
8.9  
8.2  
0.7  
8.9  
9.9  
9.1  
V
V
V
V
CC  
CC  
CC  
UV Shutdown voltage threshold  
V
CC  
_shtdwn  
Hysteresis on V  
V
CC  
_hyst  
CC  
Vboot Startup voltage threshold reference to bridge pin  
(Vboot_stup = Vboot Vbridge)  
Vboot_stup  
9.9  
Vboot UV Shutdown voltage threshold  
Hysteresis on Vboot  
Vboot_shtdwn  
Vboot_shtdwn  
7.3  
0.3  
8.2  
0.7  
5
9.1  
V
V
Leakage current on high voltage pins to GND  
I
40  
mA  
HV_LEAK  
(V  
BOOT  
= V  
= DRV_HI = 600 V)  
BRIDGE  
Consumption in active mode (V = Vboot, fsw = 100 kHz and 1 nF load on  
ICC1  
4
5
mA  
CC  
both driver outputs)  
Consumption in inhibition mode (V = Vboot)  
ICC2  
ICC3  
ICC4  
250  
200  
50  
400  
mA  
mA  
mA  
CC  
V
CC  
current consumption in inhibition mode  
Vboot current consumption in inhibition mode  
1. Parameter guaranteed by design.  
2. Turnoff propagation delay @ Vbridge = 600 V is guaranteed by design.  
3. See characterization curve for Dt parameters variation on the full range temperature.  
4. Version B integrates a dead time in order to prevent any cross conduction between DRV_HI and DRV_LO. See timing diagram of Figure 10.  
5. Timing diagram definition see: Figure 7, Figure 8 and Figure 9.  
http://onsemi.com  
5
 
NCP5106A, NCP5106B  
IN_HI  
IN_LO  
DRV_HI  
DRV_LO  
Figure 5. Input/Output Timing Diagram (A Version)  
IN_HI  
IN_LO  
DRV_HI  
DRV_LO  
Figure 6. Input/Output Timing Diagram (B Version)  
50%  
50%  
IN_HI  
(IN_LO)  
t
r
t
f
t
on  
t
off  
90%  
90%  
DRV_HI  
(DRV_LO)  
10%  
10%  
Figure 7. Propagation Delay and Rise / Fall Time Definition  
http://onsemi.com  
6
NCP5106A, NCP5106B  
IN_LO  
&
IN_HI  
50%  
50%  
ton_HI  
toff_HI  
90%  
Delta_t  
DRV_HI  
10%  
ton_LO  
Delta_t  
90%  
toff_LO  
DRV_LO  
Matching Delay 1 = ton_HI ton_LO  
Matching Delay 2 = toff_LO toff_HI  
10%  
Figure 8. Matching Propagation Delay (A Version)  
50%  
50%  
IN_HI  
toff_HI  
ton_HI  
90%  
DRV_HI  
IN_LO  
10%  
Matching Delay1=ton_HIton_LO  
Matching Delay2=toff_HItoff_LO  
50%  
50%  
toff_LO  
ton_LO  
10%  
90%  
DRV_LO  
Figure 9. Matching Propagation Delay (B Version)  
http://onsemi.com  
7
NCP5106A, NCP5106B  
IN_HI  
IN_LO  
DRV_HI  
DRV_LO  
Internal Deadtime  
Internal Deadtime  
Figure 10. Input/Output Cross Conduction Output Protection Timing Diagram (B Version)  
http://onsemi.com  
8
NCP5106A, NCP5106B  
CHARACTERIZATION CURVES  
140  
120  
100  
80  
140  
T
ON  
Low Side  
120  
100  
80  
T
ON  
High Side  
60  
60  
T
ON  
High Side  
T
ON  
Low Side  
40  
40  
20  
0
20  
0
10  
12  
14  
16  
18  
20  
40  
20  
0
20  
40  
60  
80  
100  
120  
V , VOLTAGE (V)  
CC  
TEMPERATURE (°C)  
Figure 11. Turn ON Propagation Delay vs.  
Figure 12. Turn ON Propagation Delay vs.  
Temperature  
Supply Voltage (VCC = VBOOT  
)
140  
120  
100  
80  
140  
120  
100  
T
Low Side  
OFF  
T
OFF  
Low Side  
80  
60  
40  
20  
0
T
OFF  
High Side  
60  
T
High Side  
OFF  
40  
20  
0
10  
12  
14  
16  
18  
20  
40  
20  
0
20  
40  
60  
80  
100  
120  
V , VOLTAGE (V)  
CC  
TEMPERATURE (°C)  
Figure 13. Turn OFF Propagation Delay vs.  
Supply Voltage (VCC = VBOOT  
Figure 14. Turn OFF Propagation Delay vs.  
Temperature  
)
160  
140  
120  
100  
80  
140  
120  
100  
80  
60  
60  
40  
40  
20  
20  
0
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
BRIDGE PIN VOLTAGE (V)  
BRIDGE PIN VOLTAGE (V)  
Figure 15. High Side Turn ON Propagation  
Delay vs. VBRIDGE Voltage  
Figure 16. High Side Turn OFF Propagation  
Delay vs. VBRIDGE Voltage  
http://onsemi.com  
9
NCP5106A, NCP5106B  
CHARACTERIZATION CURVES  
160  
140  
120  
100  
80  
140  
120  
100  
t Low Side  
r
t High Side  
r
80  
60  
40  
20  
0
t High Side  
r
60  
40  
t Low Side  
r
20  
0
10  
40 20  
0
20  
40  
60  
80  
100 120  
12  
14  
16  
18  
20  
V , VOLTAGE (V)  
CC  
TEMPERATURE (°C)  
Figure 17. Turn ON Risetime vs. Supply  
Voltage (VCC = VBOOT  
Figure 18. Turn ON Risetime vs. Temperature  
)
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
t Low Side  
f
t High Side  
f
t High Side  
f
t Low Side  
f
10  
12  
14  
16  
18  
20  
40 20  
0
20  
40  
60  
80  
100  
120  
V , VOLTAGE (V)  
CC  
TEMPERATURE (°C)  
Figure 19. Turn OFF Falltime vs. Supply  
Voltage (VCC = VBOOT  
Figure 20. Turn OFF Falltime vs. Temperature  
)
20  
200  
180  
160  
140  
120  
100  
80  
15  
10  
60  
5
0
40  
20  
0
40  
40  
20  
0
20  
40  
60  
80  
100  
120  
20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 21. Propagation Delay Matching  
Between High Side and Low Side Driver vs.  
Temperature  
Figure 22. Dead Time vs. Temperature  
http://onsemi.com  
10  
NCP5106A, NCP5106B  
CHARACTERIZATION CURVES  
1.4  
1.2  
1
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.8  
0.6  
0.4  
0.2  
0
10  
12  
14  
16  
18  
20  
40 20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
V , VOLTAGE (V)  
CC  
Figure 23. Low Level Input Voltage Threshold  
vs. Supply Voltage (VCC = VBOOT  
Figure 24. Low Level Input Voltage Threshold  
vs. Temperature  
)
2.5  
2
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.5  
1
0.5  
0
10  
12  
14  
16  
18  
20  
40 20  
0
20  
40  
60  
80  
100  
120  
V , VOLTAGE (V)  
CC  
TEMPERATURE (°C)  
Figure 25. High Level Input Voltage Threshold  
vs. Supply Voltage (VCC = VBOOT  
Figure 26. High Level Input Voltage Threshold  
vs. Temperature  
)
4
6
5.5  
5
3.5  
3
2.5  
2
4.5  
4
3.5  
3
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
40  
20  
0
20  
40  
60  
80  
100 120  
10  
12  
14  
16  
18  
20  
TEMPERATURE (°C)  
V , VOLTAGE (V)  
CC  
Figure 27. Logic “0” Input Current vs. Supply  
Voltage (VCC = VBOOT  
Figure 28. Logic “0” Input Current vs.  
Temperature  
)
http://onsemi.com  
11  
NCP5106A, NCP5106B  
CHARACTERIZATION CURVES  
8
7
6
5
4
3
2
1
0
10  
8
6
4
2
0
40  
10  
12  
14  
16  
18  
20  
20  
0
20  
40  
60  
80  
100  
120  
V , VOLTAGE (V)  
CC  
TEMPERATURE (°C)  
Figure 30. Logic “1” Input Current vs.  
Temperature  
Figure 29. Logic “1” Input Current vs. Supply  
Voltage (VCC = VBOOT  
)
1.0  
1
0.8  
0.6  
0.4  
0.2  
0.0  
0.8  
0.6  
0.4  
0.2  
0
10  
12  
14  
16  
18  
20  
40 20  
0
20  
40  
60  
80  
100  
120  
V , VOLTAGE (V)  
CC  
TEMPERATURE (°C)  
Figure 31. Low Level Output Voltage vs.  
Supply Voltage (VCC = VBOOT  
Figure 32. Low Level Output Voltage vs.  
Temperature  
)
1.6  
1.2  
0.8  
0.4  
0.0  
1.6  
1.2  
0.8  
0.4  
0
40 20  
0
20  
40  
60  
80  
100 120  
10  
12  
14  
16  
18  
20  
TEMPERATURE (°C)  
V , VOLTAGE (V)  
CC  
Figure 33. High Level Output Voltage vs.  
Supply Voltage (VCC = VBOOT  
Figure 34. High Level Output Voltage vs.  
Temperature  
)
http://onsemi.com  
12  
NCP5106A, NCP5106B  
CHARACTERIZATION CURVES  
400  
350  
300  
250  
200  
150  
100  
50  
400  
I
src  
High Side  
350  
300  
250  
200  
150  
100  
50  
I
src  
High Side  
I
src  
Low Side  
I
src  
Low Side  
0
10  
0
40  
20  
0
20  
40  
60  
80  
100 120  
12  
14  
16  
18  
20  
V , VOLTAGE (V)  
CC  
TEMPERATURE (°C)  
Figure 35. Output Source Current vs. Supply  
Voltage (VCC = VBOOT  
Figure 36. Output Source Current vs.  
Temperature  
)
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
I
High Side  
I
High Side  
sink  
sink  
I
Low Side  
sink  
I
Low Side  
sink  
10  
12  
14  
16  
18  
20  
40  
20  
0
20  
40  
60  
80  
100 120  
V , VOLTAGE (V)  
CC  
TEMPERATURE (°C)  
Figure 37. Output Sink Current vs. Supply  
Voltage (VCC = VBOOT  
Figure 38. Output Sink Current vs.  
Temperature  
)
20  
15  
10  
5
0.2  
0.16  
0.12  
0.08  
0.04  
0
0
40  
0
100  
200  
300  
400  
500  
600  
20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
HV PINS VOLTAGE (V)  
Figure 39. Leakage Current on High Voltage  
Pins (600 V) to Ground vs. VBRIDGE Voltage  
Figure 40. Leakage Current on High Voltage  
Pins (600 V) to Ground vs. Temperature  
(VBRIDGE = VBOOT = VDRv_HI = 600 V)  
(VBRIGDE = VBOOT = VDRV_HI  
)
http://onsemi.com  
13  
NCP5106A, NCP5106B  
CHARACTERIZATION CURVES  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
0
4
8
12  
, VOLTAGE (V)  
16  
20  
40  
20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
V
BOOT  
Figure 41. VBOOT Supply Current vs. Bootstrap  
Supply Voltage  
Figure 42. VBOOT Supply Current vs.  
Temperature  
240  
200  
160  
120  
80  
400  
300  
200  
100  
0
40  
0
0
4
8
12  
16  
20  
40  
20  
0
20  
40  
60  
80  
100  
120  
V , VOLTAGE (V)  
CC  
TEMPERATURE (°C)  
Figure 43. VCC Supply Current vs. VCC Supply  
Voltage  
Figure 44. VCC Supply Current vs. Temperature  
10.0  
9.8  
9.6  
9.4  
9.2  
9.0  
8.8  
8.6  
8.4  
8.2  
8.0  
9.0  
8.8  
8.6  
8.4  
8.2  
8.0  
7.8  
7.6  
7.4  
7.2  
7.0  
V
UVLO Shutdown  
CC  
V
UVLO Startup  
CC  
V
UVLO Shutdown  
BOOT  
V
UVLO Startup  
BOOT  
40  
20  
0
20  
40  
60  
80  
100  
120  
40  
20  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 45. UVLO Startup Voltage vs.  
Temperature  
Figure 46. UVLO Shutdown Voltage vs.  
Temperature  
http://onsemi.com  
14  
NCP5106A, NCP5106B  
CHARACTERIZATION CURVES  
40  
25  
20  
15  
10  
5
C
LOAD  
= 2.2 nF/Q = 33 nC  
C
LOAD  
= 1 nF/Q = 15 nC  
R
GATE  
= 0 R  
35  
30  
25  
20  
15  
10  
5
R
GATE  
= 10 R  
R
GATE  
= 22 R  
R
GATE  
= 0 R to 22 R  
0
0
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
SWITCHING FREQUENCY (kHz)  
SWITCHING FREQUENCY (kHz)  
Figure 47. ICC1 Consumption vs. Switching  
Frequency with 15 nC Load on Each Driver @  
VCC = 15 V  
Figure 48. ICC1 Consumption vs. Switching  
Frequency with 33 nC Load on Each Driver @  
VCC = 15 V  
70  
60  
120  
100  
80  
60  
40  
20  
0
C
LOAD  
= 6.6 nF/Q = 100 nC  
C
LOAD  
= 3.3 nF/Q = 50 nC  
R
= 0 R  
GATE  
R
= 0 R  
GATE  
50  
40  
30  
20  
10  
0
R
= 10 R  
R
GATE  
= 10 R  
GATE  
R
GATE  
= 22 R  
R
GATE  
= 22 R  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
SWITCHING FREQUENCY (kHz)  
SWITCHING FREQUENCY (kHz)  
Figure 49. ICC1 Consumption vs. Switching  
Figure 50. ICC1 Consumption vs. Switching  
Frequency with 50 nC Load on Each Driver @  
VCC = 15 V  
Frequency with 100 nC Load on Each Driver @  
VCC = 15 V  
0
5  
0
5  
40°C  
40°C  
25°C  
10  
15  
20  
25  
30  
35  
10  
15  
20  
25  
30  
35  
25°C  
125°C  
125°C  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
NEGATIVE PULSE DURATION (ns)  
NEGATIVE PULSE DURATION (ns)  
Figure 51. NCP5106A, Negative Voltage Safe  
Operating Area on the Bridge Pin  
Figure 52. NCP5106B, Negative Voltage Safe  
Operating Area on the Bridge Pin  
http://onsemi.com  
15  
 
NCP5106A, NCP5106B  
APPLICATION INFORMATION  
Negative Voltage Safe Operating Area  
Summary:  
When the driver is used in a half bridge configuration, it  
is possible to see negative voltage appearing on the bridge  
pin (pin 6) during the power MOSFETs transitions. When  
the highside MOSFET is switched off, the body diode of  
the lowside MOSFET starts to conduct. The negative  
voltage applied to the bridge pin thus corresponds to the  
forward voltage of the body diode. However, as pcb copper  
tracks and wire bonding introduce stray elements  
(inductance and capacitor), the maximum negative voltage  
of the bridge pin will combine the forward voltage and the  
oscillations created by the parasitic elements. As any  
CMOS device, the deep negative voltage of a selected pin  
can inject carriers into the substrate, leading to an erratic  
behavior of the concerned component. ON Semiconductor  
provides characterization data of its halfbridge driver to  
show the maximum negative voltage the driver can safely  
operate with. To prevent the negative injection, it is the  
designer duty to verify that the amount of negative voltage  
pertinent to his/her application does not exceed the  
characterization curve we provide, including some safety  
margin.  
In order to estimate the maximum negative voltage  
accepted by the driver, this parameter has been  
characterized over full the temperature range of the  
component. A test fixture has been developed in which we  
purposely negatively bias the bridge pin during the  
freewheel period of a buck converter. When the upper gate  
voltage shows signs of an erratic behavior, we consider the  
limit has been reached.  
Figure 51 (or 52), illustrates the negative voltage safe  
operating area. Its interpretation is as follows: assume a  
negative 10 V pulse featuring a 100 ns width is applied on  
the bridge pin, the driver will work correctly over the whole  
die temperature range. Should the pulse swing to 20 V,  
keeping the same width of 100 ns, the driver will not work  
properly or will be damaged for temperatures below  
125°C.  
If the negative pulse characteristic (negative voltage  
level & pulse width) is above the curves the driver  
runs in safe operating area.  
If the negative pulse characteristic (negative voltage  
level & pulse width) is below one or all curves the  
driver will NOT run in safe operating area.  
Note, each curve of the Figure 51 (or 52) represents the  
negative voltage and width level where the driver starts to  
fail at the corresponding die temperature.  
If in the application the bridge pin is too close of the safe  
operating limit, it is possible to limit the negative voltage  
to the bridge pin by inserting one resistor and one diode as  
follows:  
Vcc  
D2  
Vbulk  
MUR160  
U1  
C1  
100n  
NCP5106A  
M1  
1
2
3
4
8
7
6
5
VCC VBOOT  
IN_Hi  
IN_HI  
IN_LO BRIDGE  
GND DRV_LO  
DRV_HI  
R1  
10R  
IN_LO  
M2  
0
D1  
MUR160  
0
Figure 53. R1 and D1 Improves the Robustness of the  
Driver  
R1 and D1 should be placed as close as possible of the  
driver. D1 should be connected directly between the bridge  
pin (pin 6) and the ground pin (pin 4). By this way the  
negative voltage applied to the bridge pin will be limited  
by D1 and R1 and will prevent any wrong behavior.  
http://onsemi.com  
16  
NCP5106A, NCP5106B  
PACKAGE DIMENSIONS  
SOIC8 NB  
CASE 75107  
ISSUE AJ  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
X−  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
B
0.25 (0.010)  
Y
1
K
Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
G
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189 0.197  
4.00 0.150 0.157  
1.75 0.053 0.069  
0.51 0.013 0.020  
0.050 BSC  
0.25 0.004 0.010  
0.25 0.007 0.010  
1.27 0.016 0.050  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
Z−  
0.10  
0.19  
0.40  
0
0.10 (0.004)  
M
J
H
D
8
0
8
_
_
_
_
0.25  
5.80  
0.50 0.010 0.020  
6.20 0.228 0.244  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
ǒinches  
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
MountingTechniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
17  
NCP5106A, NCP5106B  
PACKAGE DIMENSIONS  
8 LEAD PDIP  
CASE 62605  
ISSUE L  
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
8
5
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
B−  
MILLIMETERS  
INCHES  
MIN  
1
4
DIM MIN  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
A
B
C
D
F
9.40  
6.10  
3.94  
0.38  
1.02  
0.370  
0.240  
0.155  
0.015  
0.040  
F
A−  
NOTE 2  
L
G
H
J
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.050  
0.012  
0.135  
K
L
C
7.62 BSC  
0.300 BSC  
M
N
---  
0.76  
10  
_
1.01  
---  
0.030  
10  
0.040  
_
J
T−  
SEATING  
PLANE  
N
M
D
K
G
H
M
M
M
B
0.13 (0.005)  
T A  
The product described herein is covered by U.S. patents: 6,097,075; 7,176,723; 6,362,067. There may be some other patents pending.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental  
damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over  
time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under  
its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death  
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part.  
SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your loca  
Sales Representative  
NCP5106/D  

相关型号:

NCP5106APG

High Voltage, High and Low Side Driver
ONSEMI

NCP5106B

High Voltage, High and Low Side Driver
ONSEMI

NCP5106BDR2G

High Voltage, High and Low Side Driver
ONSEMI

NCP5106BMNTWG

MOSFET / IGBT 驱动器,高电压,高压和低压侧
ONSEMI

NCP5106BPG

High Voltage, High and Low Side Driver
ONSEMI

NCP5109

High Voltage, High and Low Side Driver
ONSEMI

NCP5109A

High Voltage, High and Low Side Driver
ONSEMI

NCP5109ADR2G

High Voltage, High and Low Side Driver
ONSEMI

NCP5109AMNTWG

High Voltage, High and Low Side Driver
ONSEMI

NCP5109A_17

High Voltage, High and Low Side Driver
ONSEMI

NCP5109B

High Voltage, High and Low Side Driver
ONSEMI

NCP5109BDR2G

High Voltage, High and Low Side Driver
ONSEMI