NCP511SN15T1 [ONSEMI]

150 mA CMOS Low Iq Low-Dropout Voltage Regulator; 150毫安CMOS低Iq低压差稳压器
NCP511SN15T1
型号: NCP511SN15T1
厂家: ONSEMI    ONSEMI
描述:

150 mA CMOS Low Iq Low-Dropout Voltage Regulator
150毫安CMOS低Iq低压差稳压器

线性稳压器IC 调节器 电源电路 光电二极管 输出元件
文件: 总12页 (文件大小:89K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP511  
150 mA CMOS Low Iq  
Low−Dropout Voltage  
Regulator  
The NCP511 series of fixed output low dropout linear regulators are  
designed for handheld communication equipment and portable battery  
powered applications which require low quiescent current. The  
NCP511 series features an ultra−low quiescent current of 40 m A. Each  
device contains a voltage reference unit, an error amplifier, a PMOS  
power transistor, resistors for setting output voltage, current limit, and  
temperature limit protection circuits.  
http://onsemi.com  
5
1
The NCP511 has been designed to be used with low cost ceramic  
capacitors and requires a minimum output capacitor of 1.0 m F. The  
device is housed in the micro−miniature TSOP−5 surface mount  
package. Standard voltage versions are 1.5 V, 1.8 V, 2.5 V, 2.7 V, 2.8 V,  
3.0 V, 3.3 V, and 5.0 V. Other voltages are available in 100 mV steps.  
TSOP−5  
(SOT23−5, SC59−5)  
SN SUFFIX  
CASE 483  
PIN CONNECTIONS AND  
MARKING DIAGRAM  
Features  
Low Quiescent Current of 40 m A Typical  
Low Dropout Voltage of 100 mV at 100 mA  
Excellent Line and Load Regulation  
Maximum Operating Voltage of 6.0 V  
Low Output Voltage Option  
V
1
2
5
V
in  
out  
GND  
Enable  
3
4
N/C  
High Accuracy Output Voltage of 2.0%  
Industrial Temperature Range of −40°C to 85°C  
Pb−Free Packages are Available  
xxx = Version  
Y
= Year  
W
= Work Week  
Typical Applications  
(Top View)  
Cellular Phones  
Battery Powered Instruments  
Hand−Held Instruments  
Camcorders and Cameras  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 10 of this data sheet.  
V
in  
V
out  
1
3
5
Driver w/  
Current  
Limit  
Thermal  
Shutdown  
Enable  
ON  
OFF  
2
GND  
This device contains 82 active transistors  
Figure 1. Representative Block Diagram  
Semiconductor Components Industries, LLC, 2004  
1
Publication Order Number:  
March, 2004 − Rev. 9  
NCP511/D  
NCP511  
PIN FUNCTION DESCRIPTION  
Pin No.  
Pin Name  
Description  
1
2
3
V
Positive power supply input voltage.  
Power supply ground.  
in  
GND  
Enable  
This input is used to place the device into low−power standby. When this input is pulled low, the device is  
disabled. If this function is not used, Enable should be connected to V  
in.  
4
5
N/C  
No internal connection.  
V
out  
Regulated output voltage.  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
V
Input Voltage  
Enable Voltage  
Output Voltage  
V
in  
0 to 6.0  
Enable  
−0.3 to V +0.3  
V
in  
V
out  
−0.3 to V +0.3  
V
in  
Power Dissipation and Thermal Characteristics  
Power Dissipation  
Thermal Resistance, Junction to Ambient  
P
Internally Limited  
250  
W
°C/W  
D
R
q
JA  
Operating Junction Temperature  
Operating Ambient Temperature  
Storage Temperature  
T
+125  
°C  
°C  
°C  
J
T
A
−40 to +85  
−55 to +150  
T
stg  
1. This device series contains ESD protection and exceeds the following tests:  
Human Body Model 2000 V per MIL−STD−883, Method 3015  
Machine Model Method 200 V  
2. Latch up capability (85°C) "100 mA DC with trigger voltage.  
http://onsemi.com  
2
NCP511  
ELECTRICAL CHARACTERISTICS (V = V  
+ 1.0 V, V  
= V , C = 1.0 m F, C  
= 1.0 m F, T = 25°C, unless  
out J  
in  
out(nom.)  
enable  
in  
in  
otherwise noted.)  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Output Voltage (TA = 25°C, I = 1.0 mA)  
V
out  
V
out  
1.5 V  
1.8 V  
2.5 V  
2.7 V  
2.8 V  
3.0 V  
3.3 V  
5.0 V  
1.455  
1.746  
2.425  
2.646  
2.744  
2.94  
1.5  
1.8  
2.5  
2.7  
2.8  
3.0  
3.3  
5.0  
1.545  
1.854  
2.575  
2.754  
2.856  
3.06  
3.234  
4.900  
3.366  
5.100  
Output Voltage (TA = −40°C to 85°C, I = 1.0 mA)  
V
out  
V
out  
1.5 V  
1.8 V  
2.5 V  
2.7 V  
2.8 V  
3.0 V  
3.3 V  
5.0 V  
1.455  
1.746  
2.425  
2.619  
2.716  
2.910  
3.201  
4.900  
1.5  
1.8  
2.5  
2.7  
2.8  
3.0  
3.3  
5.0  
1.545  
1.854  
2.575  
2.781  
2.884  
3.09  
3.399  
5.100  
Line Regulation (I = 10 mA)  
Reg  
mV/V  
out  
line  
1.5 V−4.4 V (V = V  
+ 1.0 V to 6.0 V)  
1.0  
1.0  
3.5  
3.5  
in  
out(nom.)  
4.5 V−5.0 V (V = 5.5 V to 6.0 V)  
in  
Load Regulation (I = 1.0 mA to 150 mA)  
Reg  
0.3  
0.8  
mV/mA  
mA  
out  
load  
Output Current (V = (V at I = 150 mA) −3%)  
I
out(nom.)  
out  
out  
out  
1.5 V−1.8 V (V = 4.0 V)  
150  
150  
150  
in  
1.9 V−3.0 V (V = 5.0 V)  
in  
3.1 V−5.0 V (V = 6.0 V)  
in  
Dropout Voltage (I = 100 mA, Measured at V −3.0%)  
V −V  
in out  
mV  
out  
out  
1.5 V  
1.8 V  
2.5 V  
2.7 V  
2.8 V  
3.0 V  
3.3 V  
5.0 V  
245  
160  
110  
100  
100  
100  
90  
350  
200  
200  
200  
200  
200  
200  
200  
75  
Quiescent Current  
(Enable Input = 0 V)  
I
Q
m A  
0.1  
40  
1.0  
100  
(Enable Input = V , I = 1.0 mA to I  
)
in out  
o(nom.)  
Output Voltage Temperature Coefficient  
Enable Input Threshold Voltage  
T
"100  
ppm/°C  
C
V
V
th(en)  
(Voltage Increasing, Output Turns On, Logic High)  
(Voltage Decreasing, Output Turns Off, Logic Low)  
1.3  
0.3  
Output Short Circuit Current (V = 0 V)  
I
mA  
out  
out(max)  
1.5 V−1.8 V (V = 4.0 V)  
200  
200  
200  
400  
400  
400  
800  
800  
800  
in  
1.9 V−3.0 V (V = 5.0 V)  
in  
3.1 V−5.0 V (V = 6.0 V)  
in  
Ripple Rejection (f = 1.0 kHz, I = 60 mA)  
RR  
50  
dB  
o
Output Noise Voltage (f = 20 Hz to 100 kHz, I = 60 mA)  
V
n
110  
m
V
r
m
s
out  
3. Maximum package power dissipation limits must be observed.  
T
*T  
A
qJA  
J(max)  
PD +  
R
4. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
http://onsemi.com  
3
NCP511  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
200  
180  
160  
140  
120  
100  
80  
V
= 3.0 V  
out(nom.)  
I
= 150 mA  
= 100 mA  
out  
I
out  
V
= 3.0 V  
out(nom.)  
= 0 mA  
I
O
I
= 50 mA  
= 10 mA  
out  
C
C
= 1.0 m F  
= 1.0 m F  
60  
in  
out  
40  
I
= 1 mA  
out  
T = 25°C  
A
I
out  
20  
V
enable  
= V  
in  
0
0
0
0
1
2
3
4
5
6
7
−60 −40 −20  
0
20 40  
60 80 100 120 140  
V , INPUT VOLTAGE (V)  
in  
TEMPERATURE (°C)  
Figure 2. Dropout Voltage vs. Temperature  
Figure 3. Output Voltage vs. Input Voltage  
50  
45  
40  
45  
43  
41  
39  
37  
35  
33  
31  
29  
27  
25  
35  
30  
25  
20  
V
V
I
= V  
+ 0.5 V  
V
V
= 3.0 V  
125  
in  
out(nom.)  
out(nom.)  
= 5.0 V  
= 3.0 V  
out(nom.)  
= 0 mA  
in  
T = 25°C  
O
A
−50  
−25  
0
25  
50  
75  
100  
125  
25  
50  
75  
100  
150  
TEMPERATURE (°C)  
I
, OUTPUT CURRENT (mA)  
out  
Figure 4. Quiescent Current vs. Temperature  
Figure 5. Ground Pin Current vs. Output Current  
45  
40  
35  
30  
25  
20  
15  
10  
5
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
= 3.0 V  
out(nom.)  
= 50 mA  
T = 25°C  
V
C
= 3.0 V  
= 1.0 m F  
I
out(nom.)  
out  
in  
A
0
0
0
1
2
3
4
5
6
1
2
3
4
5
6
V , INPUT VOLTAGE (V)  
in  
V , INPUT VOLTAGE (V)  
in  
Figure 6. Ground Pin Current vs. Input Voltage  
Figure 7. Current Limit vs. Input Voltage  
http://onsemi.com  
4
NCP511  
5
4
5
4
3
3
60  
40  
20  
0
100  
V
V
C
= 3.5 V to 4.5 V  
= 3.0 V  
in  
50  
0
out  
= 1 m F  
out  
I
= 1 mA  
out  
−50  
V
= 3.5 V to 4.5 V  
= 3.0 V  
C
= 1 m F  
out  
= 100 mA  
in  
−100  
−20  
−40  
V
out  
I
out  
20 40 60 80 100 120 140 160 180  
100 200 300 400 500 600 700 800 900  
TIME (m s)  
TIME (m s)  
Figure 9. Line Transient Response  
Figure 8. Line Transient Response  
5
4
3
150  
100  
50  
C
= 1 m F  
= 150 mA  
out  
I
out  
0
−50  
V
= 3.5 V to 4.5 V  
= 3.0 V  
in  
−100  
−150  
−200  
V
out  
20 40 60 80 100 120 140 160 180  
TIME (m s)  
Figure 10. Line Transient Response  
150  
150  
V
out  
C
= 3.5 V  
in  
V
= 3.0 V  
V
in  
= 3.5 V  
= 1 m F  
in  
V
out  
= 3.0 V  
C
out  
= 10 m F  
out  
I
= 1 mA to 150 mA  
0
0
C
C
= 1 m F  
in  
200  
= 1 m F  
out  
20  
10  
100  
I
O
= 1 mA to 150 mA  
0
0
−100  
−10  
−200  
200 400 600 800 1000 1200 1400 1600 1800  
200 400 600 800 1000 1200 1400 1600 1800  
TIME (m s)  
TIME (m s)  
Figure 11. Load Transient Response  
Figure 12. Load Transient Response  
http://onsemi.com  
5
NCP511  
V
V
= 3.5 V  
= 3.0 V  
in  
2
1
0
4
3
2
1
0
out  
T = 25°C  
A
I
= 1 mA  
= 1 m F  
out  
C
in  
C
= 10 m F  
C
= 1 m F  
out  
out  
20  
40 60 80 100 120 140 160 180  
TIME (m s)  
Figure 13. Turn−On Response  
70  
1.6  
1.4  
1.2  
V
V
= 1.5 V  
= 2.5 V  
= 60 mA  
= 2.2 m F  
V
out  
= 3.0 V  
out  
V
in  
= 3.5 V ± 0.25 V  
in  
DC  
60  
I
I
= 60 mA  
out  
out  
C
C
= 1.0 m F  
out  
out  
50  
40  
1.0  
0.8  
0.6  
0.4  
30  
20  
10  
0
0.2  
0
0.01  
0.1  
1.0  
10  
100  
1000  
100  
1 k  
10 k  
f, FREQUENCY (Hz)  
100 k  
1 M  
f, FREQUENCY (kHz)  
Figure 14. Output Noise Density  
Figure 15. Ripple Rejection vs. Frequency  
http://onsemi.com  
6
NCP511  
DEFINITIONS  
Load Regulation  
Line Regulation  
The change in output voltage for a change in output  
current at a constant temperature.  
The change in output voltage for a change in input voltage.  
The measurement is made under conditions of low  
dissipation or by using pulse technique such that the average  
chip temperature is not significantly affected.  
Dropout Voltage  
The input/output differential at which the regulator output  
no longer maintains regulation against further reductions in  
input voltage. Measured when the output drops 3.0% below  
its nominal. The junction temperature, load current, and  
minimum input supply requirements affect the dropout level.  
Line Transient Response  
Typical over and undershoot response when input voltage  
is excited with a given slope.  
Thermal Protection  
Internal thermal shutdown circuitry is provided to protect  
the integrated circuit in the event that the maximum junction  
temperature is exceeded. When activated at typically 160°C,  
the regulator turns off. This feature is provided to prevent  
failures from accidental overheating.  
Maximum Power Dissipation  
The maximum total dissipation for which the regulator  
will operate within its specifications.  
Quiescent Current  
The quiescent current is the current which flows through  
the ground when the LDO operates without a load on its  
output: internal IC operation, bias, etc. When the LDO  
becomes loaded, this term is called the Ground current. It is  
actually the difference between the input current (measured  
through the LDO input pin) and the output current.  
Maximum Package Power Dissipation  
The maximum power package dissipation is the power  
dissipation level at which the junction temperature reaches  
its maximum operating value, i.e. 125°C. Depending on the  
ambient power dissipation and thus the maximum available  
output current.  
http://onsemi.com  
7
NCP511  
APPLICATIONS INFORMATION  
Thermal  
A typical application circuit for the NCP511 series is  
shown in Figure 16.  
As power across the NCP511 increases, it might become  
necessary to provide some thermal relief. The maximum  
power dissipation supported by the device is dependent  
upon board design and layout. Mounting pad configuration  
on the PCB, the board material and also the ambient  
temperature effect the rate of temperature rise for the part.  
This is stating that when the NCP511 has good thermal  
conductivity through the PCB, the junction temperature will  
be relatively low with high power dissipation applications.  
The maximum dissipation the package can handle is  
given by:  
Input Decoupling (C1)  
A 1.0 m F capacitor either ceramic or tantalum is  
recommended and should be connected close to the NCP511  
package. Higher values and lower ESR will improve the  
overall line transient response.  
Output Decoupling (C2)  
The NCP511 is a stable Regulator and does not require any  
specific Equivalent Series Resistance (ESR) or a minimum  
output current. Capacitors exhibiting ESRs ranging from a  
few mW up to 3.0 W can thus safely be used. The minimum  
decoupling value is 1.0 m F and can be augmented to fulfill  
stringent load transient requirements. The regulator accepts  
ceramic chip capacitors as well as tantalum devices. Larger  
values improve noise rejection and load regulation transient  
response.  
T
*T  
A
qJA  
J(max)  
PD +  
R
If junction temperature is not allowed above the  
maximum 125°C, then the NCP511 can dissipate up to  
400 mW @ 25°C.  
The power dissipated by the NCP511 can be calculated  
from the following equation:  
Enable Operation  
[
]
(I ) ) V * V  
in gnd out in  
[
]
P
+ V * I  
* I  
tot  
out out  
The enable pin will turn on or off the regulator. These  
limits of threshold are covered in the electrical specification  
section of this data sheet. If the enable is not used then the  
or  
)
*
I
P
V
tot  
I
out out  
) I  
V
+
pin should be connected to V .  
inMAX  
in  
gnd  
out  
Hints  
If a 150 mA output current is needed then the ground  
current from the data sheet is 40 m A. For an NCP511SN30T1  
(3.0 V), the maximum input voltage will then be 5.6 V.  
Please be sure the V and GND lines are sufficiently wide.  
in  
When the impedance of these lines is high, there is a chance  
to pick up noise or cause the regulator to malfunction.  
Set external components, especially the output capacitor,  
as close as possible to the circuit, and make leads a short as  
possible.  
100  
UNSTABLE  
10  
C
= 1 m F to 10 m F  
out  
1
0.1  
T = 25°C to 125°C  
A
V
in  
= up to 6.0 V  
Battery or  
Unregulated  
Voltage  
V
out  
1
2
3
5
4
+
C1  
STABLE  
50  
+
C2  
ON  
0.01  
0
25  
75  
100  
125  
150  
OFF  
I , OUTPUT CURRENT (mA)  
O
Figure 16. Typical Application Circuit  
Figure 17. Output Capacitor vs. Output Current  
http://onsemi.com  
8
 
NCP511  
APPLICATION CIRCUITS  
Input  
Input  
R1  
R2  
Q1  
Q1  
Q2  
R3  
R
Output  
Output  
1
2
3
5
4
1
2
3
5
4
1.0 m F  
1.0 m F  
1.0 m F  
1.0 m F  
Figure 18. Current Boost Regulator  
Figure 19. Current Boost Regulator  
with Short Circuit Limit  
The NCP511 series can be current boosted with a PNP transis-  
tor. Resistor R in conjunction with V of the PNP determines  
when the pass transistor begins conducting; this circuit is not  
short circuit proof. Input/Output differential voltage minimum is  
BE  
Short circuit current limit is essentially set by the V of Q2 and  
BE  
− ib * R2) / R1) + I  
O(max) Regulator  
R1. I = ((V  
SC  
BEQ2  
increased by V of the pass resistor.  
BE  
4
3
2
1
0
3
2
Input  
Output  
1
1.0 m F  
2
5
T = 25°C  
A
V
in  
= 3.5 V  
1.0 m F  
V
out  
= 3.0 V  
Enable  
3
4
5
Output  
1
1.0 m F  
2
R = 1.0 M  
W
1.0 m F  
No Delay  
R = 1.0 m
C = 1.0 m F  
1
0
C = 0.1 m F  
3
4
R
C
0
20  
40 60  
80  
100 120  
140  
160  
Time (ms)  
Figure 20. Delayed Turn−on  
Figure 21. Delayed Turn−on  
If a delayed turn−on is needed during power up of several volt-  
ages then the above schematic can be used. Resistor R, and  
capacitor C, will delay the turn−on of the bottom regulator. A  
few values were chosen and the resulting delay can be seen in  
Figure 21.  
The graph shows the delay between the enable signal and  
output turn−on for various resistor and capacitor values.  
Input  
Q1  
Output  
5
1
2
3
1.0 m F  
R
1.0 m F  
4
5.6 V  
Figure 22. Input Voltages Greater than 6.0 V  
A regulated output can be achieved with input voltages that  
exceed the 6.0 V maximum rating of the NCP511 series with  
the addition of a simple pre−regulator circuit. Care must be  
taken to prevent Q1 from overheating when the regulated  
output (V ) is shorted to GND.  
out  
http://onsemi.com  
9
 
NCP511  
ORDERING INFORMATION  
Nominal  
Output Voltage  
Device  
NCP511SN15T1  
Marking  
Package  
Shipping  
1.5  
1.5  
1.8  
1.8  
2.5  
2.5  
2.7  
2.7  
2.8  
2.8  
3.0  
3.0  
3.3  
3.3  
5.0  
5.0  
LBU  
LBU  
LBV  
LBV  
LBW  
LBW  
LBX  
LBX  
LBY  
LBY  
LBZ  
LBZ  
LCA  
LCA  
LCB  
LCB  
NCP511SN15T1G  
NCP511SN18T1  
NCP511SN18T1G  
NCP511SN25T1  
NCP511SN25T1G  
NCP511SN27T1  
NCP511SN27T1G  
NCP511SN28T1  
NCP511SN28T1G  
NCP511SN30T1  
NCP511SN30T1G  
NCP511SN33T1  
NCP511SN33T1G  
NCP511SN50T1  
NCP511SN50T1G  
3000 Units/  
7Tape & Reel  
TSOP−5  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
NOTE: Additional voltages in 100 mV steps are available upon request by contacting your ON Semiconductor representative.  
http://onsemi.com  
10  
NCP511  
PACKAGE DIMENSIONS  
TSOP−5/SOT23−5/ SC59−5  
SN SUFFIX  
PLASTIC PACKAGE  
CASE 483−02  
ISSUE C  
NOTES:  
D
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. MAXIMUM LEAD THICKNESS INCLUDES  
LEAD FINISH THICKNESS. MINIMUM LEAD  
THICKNESS IS THE MINIMUM THICKNESS  
OF BASE MATERIAL.  
4. A AND B DIMENSIONS DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5
4
3
B
C
S
1
2
L
G
A
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
A
B
C
D
G
H
J
K
L
M
S
2.90  
1.30  
0.90  
0.25  
0.85  
3.10 0.1142 0.1220  
1.70 0.0512 0.0669  
1.10 0.0354 0.0433  
0.50 0.0098 0.0197  
1.05 0.0335 0.0413  
J
0.05 (0.002)  
H
M
K
0.013 0.100 0.0005 0.0040  
0.10  
0.20  
1.25  
0
0.26 0.0040 0.0102  
0.60 0.0079 0.0236  
1.55 0.0493 0.0610  
10  
0
10  
_
_
_
_
2.50  
3.00 0.0985 0.1181  
SOLDERING FOOTPRINT*  
1.9  
0.074  
0.95  
0.037  
2.4  
0.094  
1.0  
0.039  
0.7  
0.028  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
TSOP−5/THIN SOT23−5/SC59−5  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
11  
NCP511  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NCP511/D  

相关型号:

NCP511SN15T1G

150 mA CMOS Low Iq Low-Dropout Voltage Regulator
ONSEMI

NCP511SN18T1

150 mA CMOS Low Iq Low-Dropout Voltage Regulator
ONSEMI

NCP511SN18T1G

150 mA CMOS Low Iq Low-Dropout Voltage Regulator
ONSEMI

NCP511SN25T1

150 mA CMOS Low Iq Low-Dropout Voltage Regulator
ONSEMI

NCP511SN25T1G

150 mA CMOS Low Iq Low-Dropout Voltage Regulator
ONSEMI

NCP511SN27T1

150 mA CMOS Low Iq Low-Dropout Voltage Regulator
ONSEMI

NCP511SN27T1G

150 mA CMOS Low Iq Low-Dropout Voltage Regulator
ONSEMI

NCP511SN28T1

150 mA CMOS Low Iq Low-Dropout Voltage Regulator
ONSEMI

NCP511SN28T1G

150 mA CMOS Low Iq Low-Dropout Voltage Regulator
ONSEMI

NCP511SN30T1

150 mA CMOS Low Iq Low-Dropout Voltage Regulator
ONSEMI

NCP511SN30T1G

150 mA CMOS Low Iq Low-Dropout Voltage Regulator
ONSEMI

NCP511SN33T1

150 mA CMOS Low Iq Low-Dropout Voltage Regulator
ONSEMI