NCP5215MNR2G [ONSEMI]

Dual Synchronous Buck Controller for Notebook;
NCP5215MNR2G
型号: NCP5215MNR2G
厂家: ONSEMI    ONSEMI
描述:

Dual Synchronous Buck Controller for Notebook

开关
文件: 总22页 (文件大小:2969K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ON Semiconductor  
Is Now  
To learn more about onsemi™, please visit our website at  
www.onsemi.com  
onsemi andꢀꢀꢀꢀꢀꢀꢀand other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or  
subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi  
product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without  
notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality,  
or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws,  
regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/  
or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application  
by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized  
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for  
implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and holdonsemi and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative  
Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.  
NCP5215  
Dual Synchronous Buck  
Controller for Notebook  
Power System  
The NCP5215, a highefficiency and fasttransientresponse  
dualchannel buck controller, provides a multifunctional power  
solution for notebook power system. 180 interleaved operation  
http://onsemi.com  
MARKING  
o
function between the two channels has capabilities of reducing the  
common input capacitor requirement and improving noise immunity.  
AdaptiveVoltagePositioning (AVP) control reduces the  
requirement of output filter capacitors. Programmable powersaving  
operation ensures high efficiency over entire load range. Input  
feedforward voltagemode control is employed to deal with wide  
input voltage range. TransientResponseEnhancement (TRE)  
control for the both channels enables fast transient response.  
DIAGRAM  
QFN40  
MN SUFFIX  
CASE 488AR  
NCP5215  
AWLYYWWG  
1
40  
A
= Assembly Location  
Features  
WL = Wafer Lot  
YY = Year  
WW = Work Week  
Wide Input Voltage Range: 4.5 V to 24 V  
Adjustable Output Voltage Range: 0.8 V to 3.0 V  
Selectable Nominal Fixed Switching Frequency:  
200 kHz, 300 kHz, and 400 kHz  
G
= PbFree Package  
PIN CONNECTIONS  
180° Interleaved Operation Function between the Two Channels  
Programmable AdaptiveVoltagePositioning (AVP) Operation  
Programmable TransientResponseEnhancement (TRE) Control  
Power Saving Operation under Light Load Condition  
Input Feedforward Voltage Mode Control  
Resistive or Inductor’s DCR Current Sensing  
1% Internal 0.8 V Reference  
FSET  
VCC  
BST1  
30  
29  
28  
27  
26  
25  
1
2
VCCP1  
BG1  
AGND  
VREF  
PGOOD1  
PGOOD2  
EN1  
3
PGND1  
VIN  
4
External SoftStart Operation  
5
Output Discharge and SoftStop  
NCP5215  
FPWM#  
6
Builtin Gate Drivers  
7
24 PGND2  
23 BG2  
EN2  
8
Input Supplies Undervoltage Lockout  
Output Overvoltage and Undervoltage Protections  
Accurate Overcurrent Protection  
SS1  
VCCP2  
BST2  
22  
21  
9
SS2  
10  
Thermal Shutdown Protection  
QFN40 Package  
This is a PbFree Device  
(Top View)  
Typical Applications  
Notebook Computers  
CPU Chipset Power Supplies  
ORDERING INFORMATION  
Device  
NCP5215MNR2G  
Package  
Shipping  
QFN40  
2500/Tape & Reel  
(PbFree)  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
©
Semiconductor Components Industries, LLC, 2008  
1
Publication Order Number:  
October, 2008 Rev. 5  
NCP5215/D  
NCP5215  
TRESET1  
CS1+  
40  
33  
TRE1  
5VCC  
Vin  
BST1  
TG1  
30  
31  
32  
CS1/Vo1  
34  
CS1+  
CS1−  
PWM1  
RAMP GENERATOR  
DSCH1  
CDIFF1  
12  
Ohm  
GATE  
DRIVER  
1
SWN1  
&
Vo1  
FB1  
FB1  
37  
PWM LOGIC  
1
5VCC  
CCM1  
LSEN1  
SWN1  
VCCP1  
BG1  
Vo1  
29  
28  
27  
INV1  
VDRP1  
COMP1  
38  
36  
39  
COMP1  
VREF  
PGND1  
VREF  
OVP1  
EN_DRV1  
CLK CLK1  
VIN  
FPWM  
SS1  
EN1  
9
Soft Start 1  
VREF  
VCC  
Vin  
VREF  
7
CDIFF1  
Over Current  
Detector 1  
OC1  
ILIM1  
35  
25  
TSD  
THERMAL  
SHUTDOWN  
FPWM  
FB1  
5VCC  
EN1  
VCC  
FSET  
5VCC  
Vin  
2
1
OC1  
PROTECTION  
and  
DSCH1  
Digital Counter &  
180o Phase Shift  
OSC  
NCP5215  
PGOOD1  
AGND  
VREF  
CONTROL LOGIC  
3
FB2  
0.8V  
4
Vin  
EN2  
VIN  
OC2  
26  
5
DSCH2  
PGOOD2  
PGOOD1  
PGOOD2  
6
CLK CLK2  
VIN  
FPWM  
OVP2  
EN_DRV2  
TRESET2  
CS2+  
11  
18  
TRE2  
5VCC  
Vin  
BST2  
TG2  
21  
20  
19  
CS2/Vo2  
17  
CS2+  
CS2−  
PWM2  
RAMP GENERATOR  
DSCH2  
12  
Ohm  
GATE  
DRIVER  
2
SWN2  
&
Vo2  
FB2  
FB2  
14  
PWM LOGIC  
2
5VCC  
VCCP2  
BG2  
CDIFF2  
CCM2  
LSEN2  
SWN2  
Vo2  
22  
23  
24  
INV2  
VDRP2  
COMP2  
13  
15  
12  
COMP2  
PGND2  
VREF  
VREF  
SS2  
EN2  
10  
8
Soft Start 2  
VREF  
CDIFF2  
Over Current  
Detector 2  
OC2  
ILIM2  
16  
Figure 1. Internal Block Diagram and Typical Application  
http://onsemi.com  
2
NCP5215  
PIN FUNCTION DESCRIPTION  
Pin No.  
Symbol  
FSET  
Description  
1
2
Frequency SET Programmable pin of switching frequency for two channels.  
VCC This pin powers the control section of IC.  
VCC  
3
AGND  
VREF  
PGOOD1  
PGOOD2  
EN1  
Analog Ground Low noise ground for control section of IC.  
Reference Voltage Output Internal 0.8 V reference output.  
Power GOOD 1 Power good indicator of the output voltage of Channel 1. (Open drained)  
Power GOOD 2 Power good indicator of the output voltage of Channel 2. (Open drained)  
Enable 1 Enable logic input of Channel 1.  
4
5
6
7
8
EN2  
Enable 2 Enable logic input of Channel 2.  
9
SS1  
SoftStart 1 Softstarting programmable pin of Channel 1.  
Soft Start 2 Softstarting programmable pin of Channel 2.  
10  
11  
SS2  
TRESET2  
Transient Response Enhancement SET 2 Channel 2 TransientResponseEnhancement (TRE)  
programmable pin.  
12  
13  
14  
15  
COMP2  
INV2  
COMP2 Output of the error amplifier of Channel 2.  
Inverting Input 2 Error amplifier’s inverting input pin of Channel 2.  
Feedback 2 Output voltage feedback of Channel 2.  
FB2  
VDRP2  
Voltage Droop 2 Channel 2 voltage droop output to the compensation. This pin is used to program the  
adaptivevoltageposition (AVP) function for Channel 2.  
16  
17  
18  
19  
20  
21  
ILMT2  
CS2/ Vo2  
CS2+  
Current Limit 2 Current limit programmable pin of Channel 2.  
Current Sense 2Channel 2 inductor current differential sense inverting input.  
Current Sense 2+ Channel 2 inductor current differential sense noninverting input.  
Switch Node 2 Switch node between the top MOSFET and bottom MOSFET of Channel 2.  
Top Gate 2 Gate driver output of the top NChannel MOSFET for Channel 2.  
SWN2  
TG2  
BST2  
BOOTSTRAP Connection 2 Channel 2 top gate driver input supply, a bootstrap capacitor connection  
between SWN2 and this pin.  
22  
23  
24  
25  
VCCP2  
BG2  
VCC Power 2 This pin powers the bottom gate driver of Channel 2.  
Bottom Gate 2 Gate driver output of the bottom NChannel MOSFET for Channel 2.  
Power Ground 2 Ground reference and highcurrent return path for the bottom gate driver of Channel 2.  
PGND2  
FPWM#  
Forced PWM Forced PWM enable logic input. Low to enable forced PWM mode and disable powersaving  
mode for both channels.  
26  
27  
28  
29  
30  
Vin  
Vin Input voltage monitor input.  
PGND1  
BG1  
Power Ground 1 Ground reference and highcurrent return path for the bottom gate driver of Channel 1.  
Bottom Gate 1 Gate driver output of the bottom NChannel MOSFET for Channel 1.  
VCC Power 1 This pin powers the bottom gate driver of Channel 1.  
VCCP1  
BST1  
BOOTSTRAP Connection 1 Channel 1 top gate driver input supply, a bootstrap capacitor connection  
between SWN1 and this pin.  
31  
32  
33  
34  
35  
36  
TG1  
SWN1  
Top Gate 1 Gate driver output of the top NChannel MOSFET for Channel 1.  
Switch Node 1 Switch node between the top MOSFET and bottom MOSFET of Channel 1.  
Current Sense 1+ Channel 1 inductor current differential sense noninverting input.  
Current Sense 1Channel 1 inductor current differential sense inverting input.  
Current Limit 1 Current limit programmable pin of Channel 1.  
CS1+  
CS1/ Vo1  
ILMT1  
VDRP1  
Voltage Droop 1 Channel 1 voltage droop output to the compensation. This pin is used to program the  
AdaptiveVoltagePosition (AVP) function for Channel 1.  
37  
38  
39  
40  
FB1  
INV1  
Feedback 1 Output voltage feedback of Channel 1.  
Inverting Input 1 Error amplifier’s inverting input pin of Channel 1.  
COMP1 Output of the error amplifier of Channel 1.  
COMP1  
TRESET1  
Transient Response Enhancement SET 1 Channel 1 TransientResponseEnhancement (TRE)  
program pin.  
http://onsemi.com  
3
NCP5215  
MAXIMUM RATINGS  
Rating  
Symbol  
, V  
Value  
Unit  
Power Supply Voltages to AGND  
V
,
0.3, 6.0  
V
CC CCP1  
V
CCP2  
HighSide Gate Driver Supplies: BST1 to SWN1, BST2 to SWN2  
HighSide FET Gate Driver Voltages: TG1 to SWN1, TG2 to SWN2  
V
V
V
V  
V  
,
,
,
0.3, 6.0  
0.3, 27  
V
BST1  
SWN1  
BST2  
SWN2  
V  
TG1  
TG2  
SWN1  
V
V  
,
SWN2  
Input Voltage Sense Inputs to AGND  
Switch Nodes  
V
in  
V
V
V
, V  
4.0 (<100 ns),  
0.3 (dc), 32  
SWN1 SWN2  
PGND1, PGND2 to AGND  
V
GND  
0.3, 0.3  
V
Thermal Characteristics  
Thermal Resistance, JunctiontoAir (Pad soldered to PCB)  
R
q
JA  
36  
°C/W  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
Storage Temperature Range  
T
40 to +150  
40 to +85  
55 to +150  
1
°C  
°C  
°C  
J
T
A
T
stg  
Moisture Sensitivity Level  
MSL  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
RecommendedOperating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. This device contains ESD protection and exceeds the following tests:  
Human Body Model (HBM) 2.0kV per JEDEC standard: JESD22A114.  
Machine Model (MM) =200V per JEDEC standard: JESD22A115, except Pin 17 and Pin 34, which are 150V.  
2. Latchup Current Maximum Rating: 150mA per JEDEC standard: JESD78.  
http://onsemi.com  
4
NCP5215  
ELECTRICAL CHARACTERISTICS (V = 5.0 V, V = 12 V, F  
= 5.0 V, Fsw = 300 kHz, T = 40°C to 85°C, unless otherwise  
A
CC  
IN  
SET  
noted.)  
Characteristic  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
SUPPLY VOLTAGE  
Input Voltage  
Vin  
4.5  
4.5  
4.5  
4.5  
24  
5.5  
5.5  
5.5  
V
V
V
V
V
V
V
Operating Voltage  
V
CC  
5.0  
5.0  
5.0  
CC  
Operating Voltage  
Operating Voltage  
V
CCP1  
CCP2  
CCP1  
CCP2  
V
SUPPLY CURRENT  
Quiescent Supply Current in Normal  
V
I
VEN1 = VEN2 = 5.0 V,  
VFPWM# = 0 V TG1, BG1, TG2,  
and BG2 are open  
3.0  
3.0  
6.0  
6.0  
mA  
mA  
CC  
VCC_N  
Operation  
V
CC  
Quiescent Supply Current in  
I
VEN1 = VEN2 = 5.0 V,  
VFPWM# = 5.0 V TG1, BG1,  
TG2, and BG2 are open  
VCC_PS  
PowerSaving Operation  
V
V
Shutdown Current  
I
VEN1 = VEN2 = 0 V  
10  
mA  
CC  
VCC_SD  
Quiescent Supply Current in Normal  
I
,
VEN1 = VEN2 = 5.0 V,  
VFPWM# = 0 V TG1, BG1, TG2,  
and BG2 are open  
1.2  
2.0  
mA  
CCP  
VCCP1_N  
Operation  
I
VCCP2_N  
V
Shutdown Current  
I
,
VEN1 = VEN2 = 0 V  
10  
mA  
CCP  
VCCP1_SD  
I
VCCP2_SD  
BST Quiescent Supply Current in Normal  
Operation  
I
, I  
VEN1 = VEN2 = 5.0 V,  
VFPWM# = 0 V TG1, BG1, TG2,  
and BG2 are open  
1.0  
2.0  
mA  
BST1_N BST2_N  
BST Shutdown Current  
I
,
VEN1 = VEN2 = 0 V  
5.0  
mA  
BST1_SD  
I
BST2_SD  
VOLTAGEMONITOR  
V
CC  
Start Threshold  
VCC  
V
and V are connected to  
CCP  
4.05  
4.25  
4.48  
V
UV+  
CC  
the same voltage source  
V
UVLO Hysteresis  
VCC  
200  
275  
112  
400  
mV  
%
CC  
hys  
Power Good Higher Threshold  
Power Good Lower Threshold  
Output Overvoltage Trip Threshold  
VPGH  
With Respect to Error Comparator  
Threshold of 0.8 V  
VPGL  
With Respect to Error Comparator  
Threshold of 0.8 V  
88  
%
%
FBOVPth  
With respect to Error Comparator  
Threshold of 0.8 V  
113  
117  
121  
Overvoltage Fault Propagation Delay  
Output Undervoltage Trip Threshold  
FB forced 2% above trip threshold  
1.5  
68  
ms  
FBUVPth  
With respect to Error Comparator  
Threshold of 0.8 V  
63  
73  
%
Output Undervoltage Protection Blanking  
Time  
UVPT  
(Note 3)  
16/fsw  
s
blk  
VREF OUTPUT  
Reference Voltage  
V
ref  
T = 25°C  
T = 40 to 85°C  
A
0.796  
0.792  
0.8  
0.804  
0.808  
V
A
Reference Load Regulation  
Sinking Current  
DV  
Ivref = 0 to 100 mA  
4.0  
mV  
ref  
Isink_VREF  
Vref rises 10%  
20  
mA  
CURRENT LIMIT  
Current Limit Threshold  
V
V
= 0.4 V  
72  
80  
88  
mV  
V
((CS+)(CS))  
ILIM  
ILIM Setting Range  
Range  
(Note 3)  
0.8  
ILIM  
3. Guaranteed by design, not tested in production.  
http://onsemi.com  
5
 
NCP5215  
ELECTRICAL CHARACTERISTICS (continued) (V = 5.0 V, V = 12 V, F  
= 5.0 V, Fsw = 300 kHz, T = 40°C to 85°C, unless  
A
CC  
IN  
SET  
otherwise noted)  
Characteristic  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
THERMAL SHUTDOWN  
Thermal Shutdown  
Tsd  
(Note 4)  
(Note 4)  
150  
30  
°C  
°C  
Thermal Shutdown Hysteresis  
Tsdhys  
OSCILLATOR  
Operation Frequency  
Fsw  
FSET pin open loop (T = 25°C)  
160  
200  
240  
kHz  
kHz  
A
Pull high FSET pin (T = 25°C)  
262.5  
255  
300  
337.5  
345  
A
(T = 40°C to 85°C)  
A
Pull low FSET pin (T = 25°C)  
340  
400  
460  
kHz  
A
SOFTSTART  
SoftStart Source Current  
I
3.0  
4.0  
0.9  
5.0  
mA  
SS  
SoftStart Complete Threshold  
V
SSTh  
(Note 4)  
V
SWITCHING REGULATORS  
Main Ramp Amplitude Voltage  
Vramp  
Dmax  
V
IN  
V
IN  
V
IN  
V
IN  
= 5.0 V (Note 4)  
= 5.0 V  
1.25  
92  
V
%
%
%
Maximum Duty Cycle  
= 12 V  
48  
= 24 V  
27  
GATE DRIVERS  
TG Gate PullHIGH Resistance  
R
, R  
, R  
V
V
V  
V  
TG SWN  
= 5.0 V,  
= 4.0 V  
1.5  
1.5  
4.0  
4.0  
W
W
H_TG1  
H_TG2  
BST SWN  
TG Gate PullLOW Resistance  
R
V
V  
V  
TG SWN  
= 5.0 V,  
= 1.0 V  
L_TG1  
L_TG2  
BST SWN  
V
BG Gate PullHIGH Resistance  
BG Gate PullLOW Resistance  
Dead Time  
R
, R  
, R  
V
V
= 5.0 V, V = 4.0 V  
1.5  
0.5  
42  
4.0  
1.5  
W
W
H_BG1  
H_BG2  
CCP  
CCP  
BG  
R
= 5.0 V, V = 1.0 V  
BG  
L_BG1  
L_BG2  
T
LH  
HL  
BG Falling to TG Rising  
TG Falling to BG Rising  
ns  
T
34  
DIFFERENTIAL CURRENT ERROR AMPLIFIER  
Input Bias Current  
CSIIB  
Refer to AGND  
(Note 4)  
200  
200  
3.0  
1.0  
1.0  
nA  
V
CS+ to CSInput Signal Range  
Output Voltage Swing  
VCS_MAX  
VOS_DRP  
Ioffset_DRP  
0.6  
V
Offset Current at VDRP  
(CS+)(CS) = 0 V, no connection  
1.0  
mA  
from VDRP pin to VREF  
[(CS+)(CS)] to VDRP Gain  
Gain_CS  
((V_VDRPVref)/  
((CS+)(CS)))  
(CS+)(CS) = 20 mV  
2.35  
2.4  
2.6  
2.85  
2.9  
V/V  
Internal Droop Resistance  
R
DRP  
From V  
to V  
REF  
2.65  
kW  
DRP  
4. Guaranteed by design, not tested in production.  
http://onsemi.com  
6
 
NCP5215  
ELECTRICAL CHARACTERISTICS (continued) (V = 5.0 V, V = 12 V, F  
= 5.0 V, Fsw = 300 kHz, T = 40°C to 85°C, unless  
A
CC  
IN  
SET  
otherwise noted)  
Characteristic  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
VOLTAGE ERROR AMPLIFIER  
DC Gain  
GAIN_VEA  
Ft_VEA  
(Note 5)  
(Note 5)  
(Note 5)  
80  
13  
dB  
Unity Gain Bandwidth  
Slew Rate  
MHz  
V/ms  
SR_VEA  
1.0  
(COMP PIN TO GND = 100 pF)  
Inverting Input Current  
Output Voltage Swing  
Source Current  
I
, I  
V
= 0.8 V  
0.5  
3.0  
mA  
V
INV1 INV2  
INV  
VOS_EA  
1.0  
2.0  
1.5  
Isource_EA  
Isink_EA  
COMP = 3.0 V  
COMP = 1.0 V  
4.0  
2.0  
mA  
mA  
Sink Current  
CONTROL SECTION  
VEN1, VEN2 Threshold High  
V
, V  
1.4  
V
V
EN1_H EN2_H  
VEN1, VEN2 Threshold Low  
VEN1, VEN2 Source Current  
V
I
, V  
0.5  
0.5  
EN1_L EN2_L  
,
mA  
EN1_SOURCE  
I
EN2_SOURCE  
VEN1, VEN2 Sink Current  
I
,
0.5  
mA  
EN1_SINK  
I
EN2_SINK  
VFPWM# Threshold High  
VFPWM# Threshold Low  
VFPWM# Source Current  
VFPWM# Sink Current  
V
1.4  
V
V
FPWM_H  
V
0.5  
0.5  
0.5  
FPWM_L  
FPWM_SOURCE  
I
mA  
mA  
W
I
FPWM_SINK  
PGOOD Pin ON Resistance  
PGOOD Pin OFF Current  
PGOOD_R  
I_PGOOD = 5.0 mA  
25  
PGOOD_LK  
1.0  
mA  
OUTPUT DISCHARGE MODE  
Output Discharge OnResistance  
R
12  
W
discharge  
System Restart Threshold of the Output  
Voltage  
Vth_SRST  
0.2  
0.3  
0.4  
V
TRE OFFSET  
TRESET Offset Current  
I
3.0  
4.0  
5.0  
mA  
TRE  
5. Guaranteed by design, not tested in production.  
http://onsemi.com  
7
 
NCP5215  
TYPICAL OPERATING CHARACTERISTICS  
0.803  
0.802  
0.801  
0.8  
306  
304  
302  
300  
298  
296  
294  
0.799  
0.798  
0.797  
40  
15  
10  
35  
60  
85  
40  
15  
10  
35  
60  
85  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 2. Reference Voltage vs. Ambient  
Temperature  
Figure 3. Switching Frequency vs. Ambient  
Temperature  
2.9  
4.3  
4.2  
4.1  
4
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
3.9  
3.8  
3.7  
40  
15  
10  
35  
60  
85  
40  
15  
10  
35  
60  
85  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 4. SoftStart Current vs. Ambient  
Figure 5. VDRP Gain vs. Ambient Temperature  
Temperature  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
4.3  
4.2  
4.1  
4
3.9  
3.8  
3.7  
40  
15  
10  
35  
60  
85  
40  
15  
10  
35  
60  
85  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 6. Internal Droop Resistance vs.  
Ambient Temperature  
Figure 7. TRESET Offset Current vs. Ambient  
Temperature  
http://onsemi.com  
8
NCP5215  
TYPICAL OPERATING CHARACTERISTICS  
1.1  
1.09  
1.08  
1.07  
1.06  
1.05  
1.54  
1.52  
1.5  
1.48  
1.46  
1.44  
1.42  
1.4  
V
= 20 V, PS  
V
= 20 V, PS  
IN  
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
= 12 V, PS  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
= 12 V, PS  
1.04  
1.03  
1.02  
= 9 V, PS  
= 9 V, PS  
= 20 V, FPWM  
= 12 V, FPWM  
= 9 V, FPWM  
= 20 V, FPWM  
= 12 V, FPWM  
= 9 V, FPWM  
1.38  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
I , OUTPUT CURRENT (A)  
O
I , OUTPUT CURRENT (A)  
O
Figure 8. Output Voltage vs. Output Current  
(VO = 1.5 V, without AVP Function)  
Figure 9. Output Voltage vs. Output Current (Vo  
= 1.05 V, Without AVP Function)  
1.54  
1.52  
1.5  
1.1  
1.09  
1.08  
1.07  
1.06  
1.05  
1.04  
1.03  
1.02  
V
= 20 V, PS  
V
= 20 V, PS  
IN  
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
= 12 V, PS  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
= 12 V, PS  
= 9 V, PS  
= 9 V, PS  
= 20 V, FPWM  
= 12 V, FPWM  
= 9 V, FPWM  
= 20 V, FPWM  
= 12 V, FPWM  
= 9 V, FPWM  
1.48  
1.46  
1.44  
1.42  
1.4  
1.38  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
I , OUTPUT CURRENT (A)  
O
I , OUTPUT CURRENT (A)  
O
Figure 10. Output Voltage vs. Output Current  
(VO = 1.5 V, with AVP Function)  
Figure 11. Output Voltage vs. Output Current  
(VO = 1.05 V, with AVP Function)  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
V
= 20 V, PS  
V
= 20 V, PS  
IN  
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
= 12 V, PS  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
= 12 V, PS  
= 9 V, PS  
= 9 V, PS  
= 20 V, FPWM  
= 12 V, FPWM  
= 9 V, FPWM  
= 20 V, FPWM  
= 12 V, FPWM  
= 9 V, FPWM  
0
0
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
I , OUTPUT CURRENT (A)  
O
I , OUTPUT CURRENT (A)  
O
Figure 12. Switching Frequency vs. Output  
Current (VO = 1.5 V)  
Figure 13. Switching Frequency vs. Output  
Current (VO = 1.05 V)  
http://onsemi.com  
9
NCP5215  
TYPICAL OPERATING CHARACTERISTICS  
100  
100  
80  
60  
40  
20  
0
12 V, PS  
12 V, PS  
9 V, PS  
V
= 20 V, PS  
V
IN  
= 20 V, PS  
IN  
9 V, PS  
80  
20 V, FPWM  
12 V, FPWM  
20 V, FPWM  
60  
12 V, FPWM  
40  
20  
0
9 V, FPWM  
9 V, FPWM  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
I , OUTPUT CURRENT (A)  
O
I , OUTPUT CURRENT (A)  
O
Figure 14. Efficiency vs. Output Current  
(VO = 1.5 V)  
Figure 15. Efficiency vs. Output Current  
(VO = 1.05 V)  
http://onsemi.com  
10  
NCP5215  
TYPICAL OPERATING CHARACTERISTICS  
Top: Vin, Input Voltage Ripple, (100mV/div)  
Top: SWN1, CH1 Switching Node Voltage, (10V/div)  
Middle 1: Vo1, CH1 Output Voltage Ripple, (50mV/div)  
Middle 2: SWN2, CH2 Switching Node Voltage, (10V/div)  
Bottom: Vo2, CH2 Output Voltage Ripple, (50mV/div)  
Time: 2ms/div  
Middle: SWN1, CH1 Switching Node Voltage, (10V/div)  
Bottom: SWN2, CH2 Switching Node Voltage, (10V/div)  
Time: 2ms/div  
Figure 16. Input Voltage Ripple with  
Interleaved Operation (VO1 = 1.5 V, IO1 = 4 A,  
VO2 = 1.05 V, IO2 = 6 A)  
Figure 17. Output Voltage Ripple with  
Interleaved Operation (VO1 = 1.5 V, IO1 = 4 A,  
VO2 = 1.05 V, IO2 = 6 A)  
Top: EN1, CH1 Enable Signal, (5V/div)  
Top: EN2, CH2 Enable Signal, (5V/div)  
Middle 1: PGOOD1, CH1 Power Good Signal, (5V/div)  
Middle 2: SWN1, CH1 Switching Node Voltage, (10V/div)  
Middle 1: PGOOD2, CH2 Power Good Signal, (5V/div)  
Middle 2: SWN2, CH2 Switching Node Voltage, (10V/div)  
Bottom: V 1, CH1 Output Voltage, (1V/div)  
Bottom: V 2, CH2 Output Voltage, (1V/div)  
O
O
Time: 200ms/div  
Time: 200ms/div  
Figure 19. Powerup Operation (VO2 = 1.05 V,  
Figure 18. Powerup Operation (VO1 = 1.5 V,  
IO1 = 4 A)  
IO2 = 6 A)  
Top: EN1, CH1 Enable Signal, (5V/div)  
Middle 1: PGOOD1, CH1 Power Good Signal, (5V/div)  
Middle 2: SWN1, CH1 Switching Node Voltage, (10V/div)  
Top: EN2, CH2 Enable Signal, (5V/div)  
Middle 1: PGOOD2, CH2 Power Good Signal, (5V/div)  
Middle 2: SWN2, CH2 Switching Node Voltage, (10V/div)  
Bottom: Vo2, CH2 Output Voltage, (1V/div)  
Time: 5ms/div  
Bottom: V 1, CH1 Output Voltage, (1V/div)  
O
Time: 5ms/div  
Figure 20. Powerdown Operation (VO1 = 1.5 V,  
Figure 21. Powerdown Operation  
IO1 = 0 A, FPWM)  
(VO2 = 1.05 V, IO2 = 0 A, FPWM)  
http://onsemi.com  
11  
NCP5215  
TYPICAL OPERATING CHARACTERISTICS  
Top: Vo1, CH1 Output Voltage Ripple, (50mV/div)  
Top: Vo2, CH2 Output Voltage Ripple, (50mV/div)  
Middle: Io2, CH2 Output Current, (5A/div)  
Bottom: SWN2, CH2 Switching Node Voltage, (10V/div)  
Time: 20ms/div  
Middle: Io1, CH1 Output Current, (5A/div)  
Bottom: SWN1, CH1 Switching Node Voltage, (10V/div)  
Time: 20ms/div  
Figure 22. Load Transient Response with  
Figure 23. Load Transient Response with  
FPWM Operation (VO1 = 1.5 V,  
FPWM Operation (VO2 = 1.05 V, IO2 =  
IO1 = 0 A4 A0 A)  
0 A6 A0 A)  
Top: Vo1, CH1 Output Voltage Ripple, (50mV/div)  
Middle: Io1, CH1 Output Current, (5A/div)  
Bottom: SWN1, CH1 Switching Node Voltage, (10V/div)  
Time: 50ms/div  
Top: Vo2, CH2 Output Voltage Ripple, (50mV/div)  
Middle: Io2, CH2 Output Current, (5A/div)  
Bottom: SWN2, CH2 Switching Node Voltage, (10V/div)  
Time: 50ms/div  
Figure 24. Load Transient Response with  
Figure 25. Load Transient Response with  
SkipMode Operation (VO1 = 1.5 V, IO1 =  
0.1 A4 A0.1 A)  
SkipMode Operation (VO2 = 1.05 V, IO2 =  
0.1 A6 A0.1 A)  
Top: FPWM#, FPWM# Signal, (5V/div)  
Top: FPWM#, FPWM# Signal, (5V/div)  
Middle 1: Vo1, CH1 Output Voltage Ripple, (50mV/div)  
Middle 2: iL1, CH1 Inductor Current, (5A/div)  
Bottom: SWN1, CH1 Switching Node Voltage, (10V/div)  
Time: 50ms/div  
Middle 1: Vo2, CH2 Output Voltage Ripple, (50mV/div)  
Middle 2: iL2, CH2 Inductor Current, (5A/div)  
Bottom: SWN2, CH2 Switching Node Voltage, (10V/div)  
Time: 50ms/div  
Figure 26. OnLine ModeChanging Operation  
Figure 27. OnLine ModeChanging Operation  
(VO1 = 1.5 V, IO1 = 0.2 A, FPWMSkip  
ModeFPWM)  
(VO2 = 1.05 V, IO2 = 0.2 A, FPWMSkip  
ModeFPWM)  
http://onsemi.com  
12  
NCP5215  
OPERATION DESCRIPTION  
1.2MHz  
General  
The  
NCP5215,  
a
highefficiency  
and  
PWM1  
Fast  
fasttransientresponse dualchannel buck controller,  
provides a multifunctional power solution for notebook  
power system. 180° interleaved operation function  
between the two channels has capabilities of reducing the  
common input capacitor requirement and improving noise  
immunity. AdaptiveVoltagePositioning (AVP) control  
reduces the requirement of output filter capacitors.  
Programmable powersaving operation ensures high  
efficiency over entire load range. Input feedforward  
voltagemode control is employed to deal with wide input  
voltage range. TransientResponseEnhancement (TRE)  
control for the both channels enables fast transient  
response.  
Response  
CLK1  
300kHz  
Digital Counter & 180°  
OSC  
1.2MHz  
Interleaved in CCM  
Phase Shift  
(4*F  
)
SW  
300kHz  
CLK2  
High Sampling  
Rate  
PWM2  
1.2MHz  
Figure 28. Internal Clocks in the NCP5215 as FSW  
300 kHz  
=
PWM Operation  
The NCP5215 operates at a pinselectable normal  
operation switching frequency, allowing 200 kHz,  
300 kHz, or 400 kHz. As shown in Table 1, the connection  
of the pin FSET determines normal operation frequency in  
continuousconductionmode (CCM).  
LightLoad PulseSkipping Operation (Skip Mode)  
If the skip mode is enabled by pulling high FPWM# pin,  
the NCP5215 works in pulseskipping enabled operation  
(PS).  
In medium and high load range, the converter still runs  
in CCM, and the switching frequency is fixed as the  
selected frequency. If both channels run in CCM, they  
operate interleaved.  
Table 1. SWITCHING FREQUENCY SELECTION  
FSET Pin  
Fsw (kHz)  
Float  
200  
VCC  
300  
GND  
400  
In light load range, the converter will enter skip mode if  
negative inductor current appears continuously. In the skip  
mode, the bottom MOSFET will be turned off when the  
inductor current is going negative. The top MOSFET’s  
ontime is fixed to around 1.5 times as the ontime in  
CCM. The NCP5215 continuously monitors the voltage at  
FB pin and comparing to the voltage at VDRP Pin. When  
the FB voltage drops below the VDRP voltage, a fixed  
ontime will be initiated at the time of the next coming  
highfrequency clock edge, which can be either rising edge  
or falling edge. The minimum offtime is half  
highfrequency cycle.  
To speed up transient response and increase sampling  
rate, an internal highfrequency clock is employed, which  
frequency is four times of the selected normal operating  
frequency. As an instance, if the FSET pin is connected to  
V , the normal switching frequency is set to 300 kHz. The  
CC  
internal highfrequency clock is 1.2 MHz. Figure 28  
shows internal clocks of the NCP5215 in this case. The  
1.2MHz highfrequency clock with 50% dutyratio  
introduced to the two PWM channels. A digital circuitry  
generates two interleaved 300 kHz clocks using the  
1.2 MHz clock and output them to the two PWM channels  
as normal operation clocks in CCM, respectively.  
When the load increases and the inductor current  
becomes continuous, the controller will automatically  
return to fixedfrequency operation and be synchronized to  
the normal operation clock.  
ForcedPWM Operation (FPWM Mode)  
If the FPWM# pin is pulled low, the NCP5215 works  
under forcedPWM operation and thus always in CCM.  
The two channels always run in selected fixed frequency  
and 180° interleaved operation. In this mode, the lowside  
gatedrive signal is forced to be the complement of the  
highside gatedrive signal. This mode allows reverse  
inductor current, in such a way that it provides more  
accurate voltage regulation and fast transient response.  
During softstart operation, the NCP5215 automatically  
runs in FPWM mode regardless of the FPWM# pin’s setting  
to guarantee smooth powerup.  
Transient Response Enhancement (TRE)  
In the skip mode, the operation of the NCP5215 is similar  
to constant ontime scheme. The response time of the  
controller is between half to one cycle of the  
highfrequency clock. However, for a conventional  
trailingedge PWM controller in CCM, the fastest  
response time is one switching cycle in the worst case. To  
further improve transient response in CCM, a transient  
http://onsemi.com  
13  
 
NCP5215  
response enhancement circuitry is introduced to the  
where I  
is a sourcing current out the TRESET pin. A  
TRE  
NCP5215.  
recommended value for V  
is around 1.5 times of  
th_TRE  
In CCM operation, the controller continuously monitors  
the output voltage (COMP) of the error amplifier to detect  
load transient events. As shown in Figure 1, there is a  
threshold voltage in each channel made in a way that a  
filtered COMP signal pluses an adjustable offset voltage,  
which is set by an external resistor. Once large load  
transient occurs, the COMP signal is possible to exceed the  
threshold and then TRE signal will be high in a short period,  
which is typically around one normal switching cycle. In  
this short period, the controller will be running at high  
frequency and therefore has faster response. After that the  
controller comes back to normal switching frequency  
operation. Figure 29 shows TRE effect on a load transient  
response.  
peaktopeak value of the COMP signal in CCM  
operation. The higher V , the lower sensitivity to load  
transient. The TRE function can be disabled by pulling  
th_TRE  
high the TRESET pin to V or just leaving it float.  
CC  
Adaptive Voltage Positioning (AVP)  
For applications with fast transient currents, adaptive  
voltage positioning can reduce peaktopeak output  
voltage deviations due to load transients and allow use of  
a smaller output filter. Adaptive voltage positioning sets  
output voltage higher than nominal at light loads, and  
output voltage is allowed limited sag when the load current  
is applied. Upon removal of the load, output voltage returns  
no higher than the original level, allowing one output  
transient peak to be canceled over a load stepup and release  
cycle.  
+5% x V  
O
V
V
with AVP  
O
without AVP  
O
Figure 30. Adaptive Voltage Positioning  
Figure 30 shows how AVP works. The waveform labeled  
Vo without AVP” shows output voltage waveform in a  
converter without AVP. On the left, the output voltage sags  
when the output current is stepped up and later overshoots  
when current is stepped back down. With AVP, the  
peaktopeak excursions are cut around in half. The  
controller can be configured to adjust the output voltage  
based on the output current of the converter as shown in  
Figure 31. In order to realize the AVP function, a resistor  
Top: Vo (50mV/div), Middle: Transient signal (20V/div),  
Bottom: SWN (10V/div), Time: (10us/div)  
(a) TRE disabled  
is connected between V  
and V . During noload  
REF  
DRP  
conditions, the VDRP Pin voltage stays at the same voltage  
level as the V . As the output current increases, the  
REF  
VDRP Pin voltage decreases. This causes V  
according to a loadline set by the resistor.  
to droop  
OUT  
In the NCP5215, the output current of each channel is  
sensed differentially. A high gain and low offsetvoltage  
differential amplifier in each channel allows  
lowresistance currentsensing resistor or lowDCR  
inductor to be used to minimize power dissipation. For  
lossless inductor current sensing as shown in Figure 31, the  
sensing RC network should satisfy  
Top: Vo (50mV/div), Middle: Transient signal (20V/div),  
Bottom: SWN (10V/div), Time: (10us/div)  
(b) TRE enabled  
Figure 29. Transient Response Comparison on TRE  
The internal offset voltage of the TRE threshold is set by  
L
(eq. 2)  
RCS   CCS  
+
an external resistor R  
connected from the TRESET Pin  
TRE  
DCR  
to AGND.  
where DCR is a DC resistance of a inductor, and normally  
is selected to be around 0.1 mF. In high accuracy  
I
TRE @ RTRE  
(eq. 1)  
C
Vth_TRE  
+
cs  
4
http://onsemi.com  
14  
 
NCP5215  
applications, to compensate measurement error caused by  
temperature, an additional resistance network including a  
negativetemperaturecoefficient (NTC) thermistor can  
If an additional current sensing resistor (R ) is employed  
CS  
to improve accuracy, as shown in Figure 32, the load line  
resistance can be calculated by  
be connected with C in parallel.  
(eq. 6)  
CS  
RDRP_ext  
VO0  
R
LL + RCS Gain_CS @  
@
R
DRP_int ) RDRP_ext VREF  
The AVP function can be easily disabled by shorting  
VDRP pin and VREF pin together.  
Control Logic  
The internal control logic is powered by V . Figure 33  
CC  
shows a powerup and powerdown timing diagram for  
each channel. Figure 34 shows a state diagram for each  
channel.  
The NCP5215 continuously monitors V and V level  
CC  
IN  
with an undervoltage lockout (UVLO) function. If both  
and V are in operation range, and output voltage is  
below 0.3 V, the converter has a softstart after ENBL  
signal goes high. The softstart time is programmed by an  
V
CC  
IN  
Figure 31. Programmable AVP with Lossless Inductor  
Current Sensing  
external capacitor C connected from the SS Pin to  
SS  
AGND, which can be calculated by  
0.8   CSS  
(eq. 7)  
tSS  
+
ISS  
where I is a sourcing current output from the SS pin.  
SS  
When the ENBL goes low, or the internal fault latch is set  
by over current or output undervoltage, the device operates  
in soft stop and output discharge mode. The output is  
discharged to GND through an internal 12 W switch  
connected from the CS/Vo pin to the PGND Pin, until the  
output voltage decreases to 0.3 V. Also if restart the system  
when the output voltage is still above 0.3 V, the device will  
discharge the output voltage to 0.3 V first and then start  
softstart.  
Figure 32. Figure 32. Programmable AVP with  
Resistive Current Sensing  
Overcurrent Protection (OCP)  
The output voltage with AVP is  
The NCP5215 protects power system if overcurrent  
occurs. The current through each channel is continuously  
monitored with the differential current sense. Current limit  
VO + VO0 * IO @ RLL  
(eq. 3)  
where I is load current, noload output voltage V is set  
o
O0  
threshold is related to an external voltage at the I  
pin,  
LIM  
by the external resistor divider, that is  
which is normally produced by an external resistor divider  
(R and R ) connected from the V pin to AGND. The  
RFO  
il1  
il2  
REF  
(eq. 4)  
+ ǒ1 ) Ǔ  
VO0  
@ VREF  
RFG  
currentlimit threshold for peak current is set by  
R
il2 @ VREF  
R
is a resistor connected between the output and the FB  
FO  
ILIM(Peak) + 0.2 @  
(eq. 8)  
pin, and R is a resistor connected between the FB Pin to  
ǒ
R
Ǔ
FG  
il1 ) Ril2 @ DCR  
AGND. The loadline impedance R by the AVP function  
is given by  
LL  
or  
R
il2 @ VREF  
(eq. 5)  
RDRP_ext  
ILIM(Peak) + 0.2 @  
VO0  
(eq. 9)  
ǒ
R
Ǔ
R
LL + DCR Gain_CS @  
@
il1 ) Ril2 @ RCS  
R
DRP_int ) RDRP_ext VREF  
If inductor current exceeds the current threshold  
continuously, the top gate drive will be turned off  
cyclebycycle. In the meanwhile, an internal fault timer  
will be triggered to count normal operation clock. After 16  
continuous clock pulses, if the fault still exists the part  
latches off, both the top gate drive and the bottom gate drive  
where DCR is DC resistance of the inductor, Gain_CS is a  
gain from [(CS+)(CS)] to (VDRPVREF), R is a  
DRP_int  
internal resistance connected between the output reference  
and the VDRP Pin, R is a external resistance  
DRP_ext  
connected between the output reference and the VDRP pin.  
http://onsemi.com  
15  
NCP5215  
are turned off and their outputs are float. The fault remains  
voltage level. If the output voltage is below this threshold,  
a UV fault is set. If an OV protection is set before, the  
bottom gate drive is forced high. If no OV protection set,  
an internal fault timer will be triggered to count normal  
operation clock. After 16 continuous clock pulses, if the  
fault still exists the part latches off, both the top gate drive  
and the bottom gate drive are turned off and their outputs  
are float. The fault remains set until the system has  
shutdown and reapplied power or the enable input signal  
to the regulator controller has toggled states.  
set until the system has shutdown and reapplied power or  
the enable input signal to the regulator controller has  
toggled states.  
Overvoltage Protection (OVP)  
An OVP circuit monitors the output voltages to prevent  
from over voltage. OVP limit is typically 117% of the  
nominal output voltage level. If the output voltage is above  
this threshold, an OV fault is set, the top gate drive is turned  
OFF, and then the bottom gate drive is latched ON to  
discharge the output. The fault remains set until the system  
has shutdown and reapplied power or the enable input  
signal to the regulator controller has toggled states.  
Thermal Protection  
The NCP5215 has a thermal shutdown protection to  
protect the device from overheating when the die  
temperature exceeds 150°C. Once the thermal protection is  
Undervoltage Protection (UVP)  
A UVP circuit monitors the output voltages to detect  
undervoltage. UVP limit is 68% of the nominal output  
triggered, the fault state can be ended by reapplying V  
,
CC  
V , or ENBL when the temperature drops down below  
IN  
120°C.  
VCCA  
t
SFT_START  
VIN  
ENBL  
Vo  
PGOOD  
32 Cycles  
VCCA goes  
above 4.4V to  
enable the IC  
PGOOD Goes High  
ENBL goes high. Vo is enabled but not  
actived until VIN goes above 3.5V.  
SoftStart  
Completed  
PGOOD Goes Low  
Figure 33. Powerup and Powerdown Timing Diagram per Channel  
http://onsemi.com  
16  
NCP5215  
Power Up  
Reapply  
VCC or VIN or ENBL  
VCC > 4.25V ?  
& VIN > 4.0V ?  
& ENBL= HIGH ?  
yes  
no  
& no OV  
Vo Discharge  
Mode  
TG Latch Off  
BG Latch On  
Vo < 0.3V  
yes  
OV  
VCC < 4.0V  
or VIN < 3.5V  
OVP  
or ENBL = LOW  
OV  
Soft Start and  
Normal Operation  
OC  
UV  
TG & BG  
Latch Off  
OCP  
UVP  
Vo Discharge  
Mode  
Figure 34. State Diagram per Channel  
http://onsemi.com  
17  
NCP5215  
Vin  
M1  
M3  
M2  
M4  
L1  
2.2uH  
L2  
1.5uH  
Vo1  
Cin1 Cin2  
10uF 10uF  
Vo2  
1.5V / 5A  
1.05V/6A  
Co2 Co21  
10uF  
Co11 Co1  
220uF  
Cs1  
Cs2  
10uF  
220uF*2  
0.1uF  
0.1uF  
PGND  
PGND  
PGND  
5VCC  
Db1  
5VCC  
Db2  
Cpf1  
1uF  
Cpf2  
1uF  
BAT54WT1  
BAT54WT1  
Cb1  
Cb2  
30 29 28 27 26 25 24 23 22 21  
0.1uF  
0.1uF  
TG1  
TG2  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
SWN1  
SWN2  
CS2+  
CS1+  
VREF  
VREF  
CS1/Vo1  
ILIM1  
CS2/Vo2  
ILIM2  
Ril11  
Ril12  
Ril22  
Ril21  
100k  
Rdp2  
100k  
Rdp1  
82k  
Cdp1  
36k  
Cdp2  
NCP5215MNR2G  
VDRP1  
FB1  
VDRP2  
FB2  
47pF  
2k  
47pF  
3k  
R11  
R21  
13k  
INV1  
INV2  
10k  
COMP1  
TRESET1  
COMP2  
TRESET2  
1
2
3
4
5
6
7
8
9
10  
5VCC  
Rcf  
Cref  
1uF  
Css2  
Ccf  
20  
4.7nF  
1uF  
PGND  
Figure 35. Typical Application Schematic Diagram  
http://onsemi.com  
18  
NCP5215  
Table 2. BILL OF MATERIALS FOR THE TYPICAL APPLICATION  
Part  
Reference  
Item  
PCS  
Description  
Value  
Package  
QFN40  
SO8  
Part Number  
NCP5215MNR2G  
NTMS4705N  
Manufacturer  
ON Semiconductor  
ON Semiconductor  
1
2
1
4
IC1  
NCP5215  
M1, M2,  
M3, M4  
Power MOSFET 30 V, 12 A,  
Single NChannel SO8  
3
4
2
2
Db1, Db2  
Schottky Diode, 30V  
SC70  
0603  
BAT54WT1G  
ON Semiconductor  
Panasonic  
TDK  
Cdp1,  
Cdp2  
MLCC Cap 50V, $5%, Char:  
COG  
47pF  
68pF  
ECJ1VB1H470J  
C1608C0G1H470J  
ECJ1VB1H680J  
C1608C0G1H680J  
ECJ1VC1H221J  
C1608C0G1H221J  
ECJ1VC1H821J  
C1608C0G1H821J  
ECJ1VC1H102J  
C1608C0G1H102J  
ECJ1VB1H472K  
C1608X7R1H472K  
ECJ1VB1H153K  
C1608X7R1H153K  
ECJ1VB1C104K  
C1608X7R1H104K  
ECJ2FB1E105K  
C3216X5R1H105K  
ECJ3YB1C106M  
C3216X7R1C106M  
C4532X7R1E106M  
5
6
2
2
1
1
2
1
4
4
2
C11, C22  
C12, C22  
C23  
MLCC Cap 50V, $5%, Char:  
COG  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0805  
0805  
Panasonic  
TDK  
MLCC Cap 50V, $5%, Char:  
COG  
220pF  
820pF  
1000pF  
4700pF  
15nF  
Panasonic  
TDK  
7
MLCC Cap 50V, $5%, Char:  
COG  
Panasonic  
TDK  
8
C13  
MLCC Cap 50V, $5%, Char:  
COG  
Panasonic  
TDK  
9
CSS1,  
CSS2  
MLCC Cap 50V, $10%, Char:  
X7R  
Panasonic  
TDK  
10  
11  
12  
13  
CIF  
MLCC Cap 50V, $10%, Char:  
X7R  
Panasonic  
TDK  
Cb1, Cb2,  
Cs1, Cs2  
MLCC Cap 16V, $10%, Char:  
X7R  
0.1mF  
1mF  
Panasonic  
TDK  
Ccf, Cpf1,  
Cpf2, Cref  
MLCC Cap 25V, $10%, Char:  
X5R  
Panasonic  
TDK  
Co11,  
Co21  
MLCC Cap 10V, $20%, Char:  
X7R  
10mF  
Panasonic  
TDK  
14  
15  
2
3
CIN1,  
CIN2  
MLCC Cap 25V, $20%, Char:  
X7R  
10mF  
1812  
7343  
TDK  
Co1, Co2  
(x2)  
SPCap/Polymer Aluminum Ca-  
pacitors, 22 mF, 2 V, ESR =  
12 mW  
220mF  
EEFUD0D221XR  
Panasonic  
16  
17  
18  
19  
20  
21  
22  
23  
2
1
1
1
1
1
1
1
Rcf, Rif  
R13  
Thick Film Chip Resistors,  
20W  
750W  
910W  
2kW  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
ERJ3EKF20R0V  
ERJ3EKF7500V  
ERJ3EKF9100V  
ERJ3EKF2001V  
ERJ3EKF3001V  
ERJ3EKF3601V  
ERJ3EKF4301V  
ERJ3EKF1002V  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Power Rating 0.1W, Tol: $1%  
Thick Film Chip Resistors,  
Power Rating 0.1W, Tol: $1%  
R23  
Thick Film Chip Resistors,  
Power Rating 0.1W, Tol: $1%  
Rdp1  
Rdp2  
RS1  
Thick Film Chip Resistors,  
Power Rating 0.1W, Tol: $1%  
Thick Film Chip Resistors,  
Power Rating 0.1W, Tol: $1%  
3kW  
Thick Film Chip Resistors,  
Power Rating 0.1W, Tol: $1%  
3.6kW  
4.3kW  
10kW  
RS2  
Thick Film Chip Resistors,  
Power Rating 0.1W, Tol: $1%  
R11  
Thick Film Chip Resistors,  
Power Rating 0.1W, Tol: $1%  
http://onsemi.com  
19  
NCP5215  
Part  
Reference  
Item  
PCS  
Description  
Value  
Package  
Part Number  
Manufacturer  
24  
1
R14  
Thick Film Chip Resistors,  
Power Rating 0.1W, Tol: $1%  
11kW  
0603  
ERJ3EKF1102V  
Panasonic  
25  
26  
27  
28  
29  
30  
31  
32  
33  
1
2
1
1
2
2
1
1
1
R21  
Thick Film Chip Resistors,  
13kW  
36kW  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
ERJ3EKF1302V  
ERJ3EKF3602V  
ERJ3EKF7502V  
ERJ3EKF8202V  
ERJ3EKF1003V  
ERJ3EKF2003V  
ERJ3EKF3903V  
PCMC104T2R2MN  
PCMC104T1R5MN  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
Cyntec  
Power Rating 0.1W, Tol: $1%  
R24, Ril22  
R12  
Thick Film Chip Resistors,  
Power Rating 0.1W, Tol: $1%  
Thick Film Chip Resistors,  
Power Rating 0.1W, Tol: $1%  
75kW  
Ril12  
Thick Film Chip Resistors,  
Power Rating 0.1W, Tol: $1%  
82kW  
Ril11,  
Ril21  
Thick Film Chip Resistors,  
Power Rating 0.1W, Tol: $1%  
100kW  
200kW  
390kW  
2.2mH  
1.5mH  
R22, Rt2  
Thick Film Chip Resistors,  
Power Rating 0.1W, Tol: $1%  
Rt1  
Thick Film Chip Resistors,  
Power Rating 0.1W, Tol: $1%  
L1  
Power Choke Coil, DCR =  
7.0mW, IDC = 12A, ISAT = 27A  
L2  
Power Choke Coil, DCR =  
4.2mW, IDC = 16A, ISAT = 33A  
Cyntec  
http://onsemi.com  
20  
NCP5215  
PACKAGE DIMENSIONS  
QFN40 6x6, 0.5P  
MN SUFFIX  
CASE 488AR01  
ISSUE A  
NOTES:  
D
A B  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSIONS: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.25 AND 0.30mm FROM TERMINAL  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN ONE  
LOCATION  
E
MILLIMETERS  
DIM MIN  
MAX  
1.00  
0.05  
2X  
0.15  
C
A
A1  
A3  
b
0.80  
0.00  
0.20 REF  
0.18  
6.00 BSC  
TOP VIEW  
0.30  
2X  
0.15  
C
D
D2  
E
E2  
e
L
K
4.00  
6.00 BSC  
4.00  
0.50 BSC  
0.30  
0.20  
4.20  
(A3)  
0.10  
C
C
4.20  
A
0.50  
−−−  
40X  
0.08  
SIDE VIEW  
D2  
A1  
SEATING  
PLANE  
SOLDERING FOOTPRINT*  
C
6.30  
4.20  
L
K
40X  
11  
20  
40X  
21  
40X  
10  
0.65  
EXPOSED PAD  
1
E2  
40X b  
4.20 6.30  
1
30  
0.10  
0.05  
C
A B  
40  
31  
C
36X  
e
BOTTOM VIEW  
40X  
0.30  
36X  
0.50 PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
MountingTechniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any  
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental  
damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over  
time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under  
its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death  
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part.  
SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your loca  
Sales Representative  
NCP5215/D  

相关型号:

NCP5217A

Single Synchronous Step-Down Controller
ONSEMI

NCP5217AMNTXG

Single Synchronous Step-Down Controller
ONSEMI

NCP5218

2−in−1 Notebook DDR Power Controller
ONSEMI

NCP5218MNR2G

2−in−1 Notebook DDR Power Controller
ONSEMI

NCP5220

3−in−1 PWM Dual Buck and Linear Power Controller
ONSEMI

NCP5220A

3−in−1 PWM Dual Buck and Linear Power Controller
ONSEMI

NCP5220AMNR2

3−in−1 PWM Dual Buck and Linear Power Controller
ONSEMI

NCP5220AMNR2G

2A SWITCHING CONTROLLER, 566kHz SWITCHING FREQ-MAX, DSO20, 6 X 5 MM, DFN-20
ROCHESTER

NCP5220AMNR2G

3−in−1 PWM Dual Buck and Linear Power Controller
ONSEMI

NCP5220MNR2

3−in−1 PWM Dual Buck and Linear Power Controller
ONSEMI

NCP5220MNR2G

3−in−1 PWM Dual Buck and Linear Power Controller
ONSEMI

NCP5222

High Performance Dual-Channel / Two-Phase Synchronous Buck Controller for Notebook Power System
ONSEMI