NCP5500DADJR2G [ONSEMI]

500 mA LDO Voltage Regulator; 500毫安LDO稳压器
NCP5500DADJR2G
型号: NCP5500DADJR2G
厂家: ONSEMI    ONSEMI
描述:

500 mA LDO Voltage Regulator
500毫安LDO稳压器

稳压器
文件: 总13页 (文件大小:213K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP5500, NCV5500,  
NCP5501, NCV5501  
500 mA LDO Voltage  
Regulator  
These linear low drop voltage regulators provide up to 500 mA over  
a useradjustable output range of 1.25 V to 5.0 V, or at a fixed output  
voltage of 1.5 V, 3.3 V or 5.0 V, with typical output voltage accuracy  
better than 3%. An internal PNP pass transistor permits low dropout  
voltage and operation at full load current at the minimum input  
voltage. NCV versions are qualified for demanding automotive  
applications that require extended temperature operation and site and  
change control. NCP5500 and NCV5500 versions include an  
Enable/Shutdown function and are available in a DPAK 5 and SOIC 8  
packages. NCP5501 and NCV5501 versions are available in DPAK 3  
for applications that do not require logical on/off control.  
http://onsemi.com  
MARKING DIAGRAMS  
DPAK 5  
1
CENTER LEAD CROP  
CASE 175AA  
x5500yG  
ALYWW  
5
Pin 1. EN  
2. V  
TAB,3. GND  
4. V  
in  
1
5
out  
5. NC/ADJ  
This regulator family is ideal for applications that require a broad  
input voltage range, and low dropout performance up to 500 mA load  
using low cost ceramic capacitors. Integral protection features include  
short circuit current and thermal shutdown.  
4
DPAK 3  
SINGLE GAUGE  
CASE 369C  
x5501yG  
ALYWW  
2
1
3
Features  
Pin 1. V  
1
3
in  
TAB,2. GND  
3. V  
Output Current up to 500 mA  
2.9% Output Voltage Accuracy  
Low Dropout Voltage (230 mV at 500 mA)  
Enable Control Pin (NCP5500 / NCV5500)  
Reverse Bias Protection  
Short Circuit Protection  
Thermal Shutdown  
Wide Operating Temperature Range  
out  
x
= P (NCP), V (NCV)  
5500/1 = Device Code  
y
= Output Voltage  
= L = 1.5 V  
= T = 3.3 V  
= U = 5.0 V  
= W = Adjustable  
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
A
L
Y
WW  
G
NCV5500 / NCV5501; 40C to +125C Ambient Temperature  
NCP5500 / NCP5501; 40C to +85C Ambient Temperature  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AECQ100  
Qualified and PPAP Capable  
Stable with Low Cost Ceramic Capacitors  
These are PbFree Devices  
8
5500x  
ALYW  
SOIC8  
CASE 751  
8
1
G
1
Pin 1. V  
in  
Typical Applications  
x
= Output Voltage, NCP/NCV  
A = Adjustable, NCV  
B = Adjustable, NCP  
= Assembly Location  
= Wafer Lot  
2. GND  
3. GND  
Automotive  
4. V  
out  
Industrial and Consumer  
Post SMPS Regulation  
Point of Use Regulation  
A
L
5. NC/ADJ  
6. GND  
7. GND  
8. EN  
Y
= Year  
W = Work Week  
G
= PbFree Package  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 10 of this data sheet.  
Semiconductor Components Industries, LLC, 2013  
1
Publication Order Number:  
April, 2013 Rev. 12  
NCP5500/D  
NCP5500, NCV5500, NCP5501, NCV5501  
NCP5500  
NCV5500  
NCP5501  
NCV5501  
V
out  
V
in  
Output  
Input  
C
10 mF  
in  
C
4.7 mF  
out  
R *  
1
Enable  
EN*  
NC/ADJ*  
R
L
GND  
GND  
OFF ON  
R *  
2
*Applicable to NCP5500/NCV5500 only.  
Figure 1. Typical Application Circuit  
PIN FUNCTION DESCRIPTIONS  
DPAK 3  
Pin No.  
DPAK 5  
Pin No.  
1
SOIC8  
Pin No.  
8
Pin  
Name  
Description  
EN  
Enable. This pin allows for on/off control of the regulator. High level turns on the  
output. To disable the device, connect to ground. If this function is not in use, con-  
nect to V .  
in  
1
2, Tab  
3
2
1
V
Positive power supply input voltage.  
in  
3, Tab  
2, 3, 6, 7  
GND  
Ground. This pin is internally connected to the Tab heat sink.  
Regulated output voltage.  
4
5
4
5
V
out  
NC/ADJ  
No connection (Fixed output versions).  
Voltageadjust input (Adjustable output version). Use an external voltage divider  
to set the output voltage over a range of 1.25 V to 5.0 V.  
V
in  
V
out  
Current Limit and  
Saturation Sense  
Error  
Amplifier  
Bandgap  
Reference  
+
Thermal  
Shutdown  
Connection for Fixed Output  
Enable  
Block*  
EN*  
GND  
Connection for Adjustable Output  
NC / ADJ*  
*Applicable to NCP5500/NCV5500 only.  
Figure 2. Block Diagram  
http://onsemi.com  
2
NCP5500, NCV5500, NCP5501, NCV5501  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Min  
0.3 (Note 2)  
0.3  
Max  
+18  
Unit  
V
Input Voltage (Note 1)  
Output, Enable Voltage  
V
in  
V
out  
, EN  
+16 or  
V
V
+ 0.3  
in  
(Notes 2 and 5)  
Maximum Junction Temperature  
Storage Temperature  
T
150  
C  
C  
J
T
Stg  
55  
+150  
Moisture Sensitivity Level  
All Packages  
MSL  
1
Lead Temperature Soldering  
C  
Reflow (SMD Styles Only), PbFree Versions (Note 3)  
ESD Capability, Human Body Model (Note 4)  
ESD Capability, Machine Model (Note 4)  
T
265 Peak  
sld  
ESD  
4000  
200  
V
V
V
HBM  
ESD  
MM  
ESD Capability, Charged Device Model (Note 4)  
ESD  
1000  
CDM  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
*Latchup Current Maximum Rating: 100 mA per JEDEC standard: JESD78.  
1. Refer to Electrical Characteristics and Application Information for Safe Operating Area.  
2. Reverse bias protection feature valid only if V V v 7 V.  
out  
in  
3. PbFree, 60 sec –150 sec above 217C, 40 sec max at peak temperature  
4. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AECQ100002 (EIA/JESD22A114)  
ESD Machine Model tested per AECQ100003 (EIA/JESD22A115)  
ESD Charged Device Model tested per EIA/JES D22/C101, Field Induced Charge Model  
5. Maximum = +16 V or (V + 0.3 V), whichever is lower.  
in  
THERMAL CHARACTERISTICS  
Rating  
Symbol  
Min  
Max  
Unit  
Package Dissipation  
P
D
Internally Limited  
W
Thermal Characteristics, DPAK 3 and DPAK 5 (Note 1)  
Thermal Resistance, JunctiontoAir (Note 6)  
Thermal Resistance, JunctiontoCase  
C/W  
C/W  
R
q
60  
q
JA  
JC  
5.2  
R
Thermal Characteristics, SOIC8 (Note 1)  
Thermal Resistance, JunctiontoAir (Note 6)  
Thermal Reference, JunctiontoLead  
80  
22  
R
R
q
JA  
JL  
Y
2
6. As measured using a copper heat spreading area of 650 mm , 1 oz copper thickness.  
OPERATING RANGES  
Rating  
Operating Input Voltage (Note 1)  
Symbol  
Min  
Max  
Unit  
V
in  
V
out  
+ V , 2.5 V  
16  
V
DO  
(Note 7)  
Adjustable Output Voltage Range (Adjustable Version Only)  
V
out  
1.25  
5.0  
V
Operating Ambient Temperature Range  
NCP5500, NCP5501  
T
A
C  
40  
40  
85  
125  
NCV5500, NCV5501  
7. Minimum V = 2.5 V or (V + V ), whichever is higher.  
in  
out  
DO  
http://onsemi.com  
3
 
NCP5500, NCV5500, NCP5501, NCV5501  
ELECTRICAL CHARACTERISTICS V = 2.5 V or V + 1.0 V (whichever is higher), C = 10 mF, C = 4.7 mF, for typical values T  
in  
out  
in  
out  
A
= 25C, for min/max values T = 40C to 85C (NCP Version), T = 40C to 125C (NCV Version) unless otherwise noted (Note 13).  
A
A
Characteristic  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
OUTPUT  
Output Voltage (Note 14)  
5 V Regulator  
V
NOM  
2.9%  
V
V
V
3.3 V Regulator  
1.5 V Regulator  
ADJ Regulator  
V
out  
T = 25C, I = 50 mA  
A out  
Output Voltage (Note 8)  
5 V Regulator  
(4.9%)  
4.755  
3.138  
1.427  
1.189  
V
5.0  
3.3  
1.5  
1.25  
(+4.9%)  
5.245  
3.462  
1.574  
1.311  
NOM  
V
V
V
3.3 V Regulator  
1.5 V Regulator  
ADJ Regulator  
V
out  
1.0 mA < I < 500 mA  
out  
Line Regulation  
REG  
I
= 50 mA  
1.0  
0.1  
1.0  
%
LINE  
out  
2.5 V or (V + 1.0 V) < V < 16 V  
out  
in  
Load Regulation  
REG  
1.0 mA < I < 500 mA  
1.0  
0.35  
1.0  
%
LOAD  
out  
Dropout Voltage (Note 9)  
5.0 V Version  
V
DO  
mV  
I
= 1.0 mA, DV = 2%  
5
230  
5
230  
5
230  
90  
700  
90  
out  
out  
I
I
I
I
= 500 mA, DV = 2%  
out  
out  
out  
out  
out  
out  
out  
out  
3.3 V Version  
I
= 1.0 mA, DV = 2%  
out  
700  
1073  
1073  
90  
= 500 mA, DV = 2%  
out  
1.5 V Version (Note 10)  
I
= 1.0 mA, DV = 2%  
out  
= 500 mA, DV = 2%  
out  
Adjustable Version (Note 11)  
I
= 1.0 mA, DV = 2%  
out  
700  
= 500 mA, DV = 2%  
out  
Ground Current  
I
I
= 100 mA  
= 500 mA  
300  
10  
500  
20  
mA  
mA  
GND  
out  
I
out  
Disable Current in Shutdown  
(NCP5500, NCV5500)  
I
Adjustable and 1.5 V versions  
All other versions  
30  
40  
50  
50  
mA  
SD  
Current Limit  
I
V
= 90% of V  
120 Hz  
= 100 mA, 1 kHz  
10 kHz  
500  
700  
900  
mA  
dB  
out(LIM)  
out  
out(nom)  
Ripple Rejection Ratio (Notes 9 & 14)  
RR  
75  
75  
70  
I
out  
Output Noise Voltage (Notes 12 & 14)  
V
n
f = 10 Hz to 100 kHz, V = 2.5 V  
mVrms  
in  
V
= 1.25 V, I = 1.0 mA  
18  
35  
out  
out  
f = 10 Hz to 100 kHz, V = 2.5 V  
in  
V
out  
= 1.25 V, I = 100 mA  
out  
ENABLE (NCP5500, NCV5500 Only)  
Enable Voltage  
V
V
OFF (shutdown) State  
ON (enabled) State  
0.4  
1.0  
V
ENoff  
ENon  
2.0  
Enable Pin Bias Current  
ADJUST  
I
V
EN  
= V , I = 1.0 mA  
mA  
EN  
in out  
Adjust Pin Current (Note 14)  
THERMAL SHUTDOWN  
Thermal Shutdown Temperature (Note 14)  
I
V
EN  
= V , V  
= 1.25 V, V = 1.25 V  
60  
nA  
ADJ  
in ADJ  
out  
TSD  
I
= 100 mA  
150  
210  
C  
out  
8. Deviation from nominal. For adjustable versions, Pin ADJ connected to V  
9. See Typical Characteristics section for additional information.  
.
out  
10.V is constrained by the minimum input voltage of 2.5 V.  
DO  
11. V is set by external resistor divider to 5 V.  
out  
12.V for other fixed voltage versions, as well as adjustable versions set to other output voltages, can be calculated from the following formula:  
n
n
V = V  
* V / 1.25, where V  
is the typical value from the table above.  
n(x)  
out  
n(x)  
13.Performance guaranteed over specified operating conditions by design, guard banded test limits, and/or characterization, production tested  
at T = T = 25C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as  
J
A
possible.  
14.Values are based on design and/or characterization.  
http://onsemi.com  
4
 
NCP5500, NCV5500, NCP5501, NCV5501  
TYPICAL CHARACTERISTICS  
3.45  
3.42  
5.25  
5.20  
5.15  
5.10  
5.05  
5.00  
4.95  
4.90  
V
= 13.2 V  
V = 13.2 V  
in  
R = 1 kW  
L
in  
R = 1 kW  
3.39  
3.36  
3.33  
3.30  
3.27  
3.24  
3.21  
3.18  
3.15  
L
4.85  
4.80  
4.75  
V
= 5 V  
120  
V
= 3.3 V  
120  
out(nom)  
out(nom)  
40  
0
40  
80  
40  
0
40  
80  
T , AMBIENT TEMPERATURE (C)  
A
T , AMBIENT TEMPERATURE (C)  
A
Figure 3. Output Voltage vs. Ambient  
Temperature  
Figure 4. Output Voltage vs. Ambient  
Temperature  
1.30  
1.29  
1.28  
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
1.58  
1.56  
1.54  
1.52  
1.50  
1.48  
1.46  
V
= 13.2 V  
V
= 13.2 V  
in  
in  
R = 1 kW  
R = 1 kW  
L
L
1.44  
1.42  
V
= 1.25 V (ADJ)  
80 120  
V
= 1.5 V  
120  
out(nom)  
out(nom)  
40  
0
40  
80  
40  
0
40  
T , AMBIENT TEMPERATURE (C)  
A
T , AMBIENT TEMPERATURE (C)  
A
Figure 5. Output Voltage vs. Ambient  
Temperature  
Figure 6. Output Voltage vs. Ambient  
Temperature  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
400  
T = 125C  
T = 125C  
A
A
300  
200  
T = 25C  
A
T = 25C  
A
T = 40C  
A
T = 40C  
A
100  
0
V
= 5 V  
out(nom)  
V
= 3.3 V  
500 600  
out(nom)  
0
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
I
, OUTPUT CURRENT (mA)  
I
out  
, OUTPUT CURRENT (mA)  
out  
Figure 7. Dropout Voltage vs. Output Current  
Figure 8. Dropout Voltage vs. Output Current  
http://onsemi.com  
5
NCP5500, NCV5500, NCP5501, NCV5501  
TYPICAL CHARACTERISTICS  
18  
16  
14  
12  
10  
8
18  
T = 40C  
A
16  
14  
12  
10  
8
T = 40C  
A
T = 25C  
A
T = 25C  
A
T = 125C  
A
T = 125C  
A
6
6
4
4
2
2
0
V
= 5 V  
600  
out(nom)  
V
= 1.25 V (ADJ)  
out(nom)  
0
0
100  
200  
300  
400  
500  
700  
0
100  
200  
I , OUTPUT CURRENT (mA)  
out  
300  
400  
500  
600  
700  
I
, OUTPUT CURRENT (mA)  
out  
Figure 9. Ground Current vs. Output Current  
Figure 10. Ground Current vs. Output Current  
6
5
4
3
2
1
0
6
5
4
3
2
V
= 5 V  
V
= 3.3 V  
out(nom)  
out(nom)  
R = 1 kW  
R = 1 kW  
L
L
1
0
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
V , INPUT VOLTAGE (V)  
in  
V , INPUT VOLTAGE (V)  
in  
Figure 11. Ground Current vs. Input Voltage  
Figure 12. Ground Current vs. Input Voltage  
6
5
4
3
2
1
0
6
5
4
3
2
R = 1 kW  
R = 1 kW  
L
V
= 1.25 V (ADJ)  
L
out(nom)  
V
= 1.5 V  
out(nom)  
1
0
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
V , INPUT VOLTAGE (V)  
in  
V , INPUT VOLTAGE (V)  
in  
Figure 13. Ground Current vs. Input Voltage  
Figure 14. Ground Current vs. Input Voltage  
http://onsemi.com  
6
NCP5500, NCV5500, NCP5501, NCV5501  
TYPICAL CHARACTERISTICS  
90  
80  
70  
60  
50  
40  
30  
20  
90  
1 mA  
80  
1 mA  
100 mA  
70  
60  
500 mA  
500 mA  
50  
40  
100 mA  
30  
V
= 6 V,  
V = 6 V,  
in  
in  
DV = 0.5 V  
DV = 0.5 V  
in  
pp  
in pp  
20  
10  
0
10  
0
V
= 1.5 V  
V
= 1.25 V (ADJ)  
10 100  
out(nom)  
out(nom)  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
f, FREQUENCY (kHz)  
f, FREQUENCY (kHz)  
Figure 15. Ripple Rejection vs. Frequency  
Figure 16. Ripple Rejection vs. Frequency  
12  
11  
10  
9
10  
9
8
7
8
6
Unstable Region  
Stable Region  
7
Unstable Region  
Stable Region  
6
5
5
4
4
3
3
2
2
C
= 1 mF to 10 mF  
out  
V
C
= 1 mF to 10 mF  
out  
1
0
1
= 5 V  
out(nom)  
V
= 3.3 V  
out(nom)  
0
0
50 100 150 200 250 300 350 400 450 500  
, OUTPUT CURRENT (mA)  
0
50 100 150 200 250 300 350 400 450 500  
, OUTPUT CURRENT (mA)  
I
I
out  
out  
Figure 17. Output Capacitor ESR Stability vs.  
Output Current  
Figure 18. Output Capacitor ESR Stability vs.  
Output Current  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
Unstable Region  
Unstable Region  
6
5
4
3
Stable Region  
Stable Region  
2
C
= 1 mF to 10 mF  
= 1.25 V (ADJ)  
out  
C
= 1 mF to 10 mF  
out  
V
V
out(nom)  
1
0
= 1.5 V  
out(nom)  
0
50 100 150 200 250 300 350 400 450 500  
, OUTPUT CURRENT (mA)  
0
50 100 150 200 250 300 350 400 450 500  
I
I
, OUTPUT CURRENT (mA)  
out  
out  
Figure 19. Output Capacitor ESR Stability vs.  
Output Current  
Figure 20. Output Capacitor ESR Stability vs.  
Output Current  
NOTE: Typical characteristics were measured with the same conditions as electrical characteristics, unless otherwise noted.  
http://onsemi.com  
7
NCP5500, NCV5500, NCP5501, NCV5501  
NCP5500 NCV5500  
Output  
I
in  
I
out  
Input  
V
out  
V
in  
C
10 mF  
C
in2  
100 nF  
in  
C
out  
Enable  
R
L
EN  
ADJ  
I
I
ADJ  
EN  
GND  
I
GND  
I
Q
NCP5501 NCV5501  
Output  
I
in  
I
out  
Input  
V
out  
V
in  
C
10 mF  
C
in2  
100 nF  
in  
C
out  
R
L
GND  
I
GND  
I
Q
Figure 21. Measuring Circuits  
Circuit Description  
linear regulator: startup delay, load transient response and  
loop stability. The capacitor value and type should be based  
on cost, availability, size and temperature constraints. Refer  
to Typical Operating Characteristics for stability regions.  
The NCP5500/NCP5501/NCV5500/NCV5501 are  
integrated linear regulators with a DC load current  
capability of 500 mA. The output voltage is regulated by a  
PNP pass transistor controlled by an error amplifier and  
band gap reference. The choice of a PNP pass element  
provides the lowest possible dropout voltage, particularly at  
reduced load currents. Pass transistor base drive current is  
controlled to prevent oversaturation. The regulator is  
internally protected by both current limit and thermal  
shutdown. Thermal shutdown occurs when the junction  
temperature exceeds 150C. The NCV5500 includes an  
enable/shutdown pin to turn off the regulator to a low current  
drain standby state.  
Enable Input (NCP5500, NCV5500)  
The enable pin is used to turn the regulator on or off. By  
holding the pin at a voltage less than 0.4 V, the output of the  
regulator will be turned off to a minimal current drain state.  
When the voltage at the Enable pin is greater than 2.0 V, the  
output of the regulator will be enabled and rise to the  
regulated output voltage. The Enable pin may be connected  
directly to the input pin to provide a constant enable to the  
regulator.  
Active Load Protection in Shutdown (NCP5500,  
NCV5500)  
Regulator  
The error amplifier compares the reference voltage to a  
When a linear regulator is disabled (shutdown), the output  
(load) voltage should be zero. However, stray PC board  
leakage paths, output capacitor dielectric absorption, and  
inductively coupled power sources can cause an undesirable  
regulator output voltage if load current is low or zero. The  
NCV5500 features a load protection network that is active  
only during Shutdown mode. This network switches in a  
sample of the output voltage (V ) and drives the base of a  
out  
PNP series pass transistor via a buffer. The reference is a  
bandgap design for enhanced temperature stability.  
Saturation control of the PNP pass transistor is a function of  
the load current and input voltage. Oversaturation of the  
output power device is prevented, and quiescent current in  
the ground pin is minimized.  
shunt current path (~500 mA) from V to Ground. This  
out  
Regulator Stability Considerations  
feature also provides a controlled (“soft”) discharge path for  
the output capacitor after a transition from Enable to  
Shutdown.  
The input capacitor is necessary to stabilize the input  
impedance to reduce transient line influences. The output  
capacitor helps determine three main characteristics of a  
http://onsemi.com  
8
 
NCP5500, NCV5500, NCP5501, NCV5501  
Calculating Resistors for the ADJ Versions  
The adjustable version uses feedback resistors to adjust  
Ripple Rejection: The ratio of the peaktopeak input ripple  
voltage to the peaktopeak output ripple voltage.  
the output to the desired output voltage. With V connected  
out  
Current Limit: Peak current that can be delivered to the  
output.  
to ADJ, the adjustable version will regulate at 1.25 V  
4.9% (1250 61.25 mV).  
Output voltage formula with an external resistor divider:  
Calculating Power Dissipation  
The maximum power dissipation for a single output  
regulator (Figure 21) is:  
(R @ R  
(R ) R )  
1
1
2
2)  
(eq. 1)  
@ ǒ Ǔ  
V
+
1.25 V *  
ƪ
60E9 @  
ƫ
ǒ
Ǔ
out  
(R ) R )  
R
2
ƪ
ƫI  
P
D(max) + Vin(max) * Vout(min) out(max) ) Vin(max)IGND  
1
2
Where  
Where  
R = value of the divider resistor connected between V  
1
out  
V
is the maximum input voltage,  
is the minimum output voltage,  
in(max)  
and ADJ,  
V
out(min)  
R = value of the divider resistor connected between ADJ  
2
I
I
is the maximum output current for the application,  
out(max)  
and GND,  
is the ground current at I  
.
GND  
out(max)  
The term “1.25 V” has a tolerance of 4.9%; the term  
“60E9” can vary in the range 15E9 to 60E9.  
Once the value of P  
is known, the maximum  
D(max)  
permissible value of R  
can be calculated:  
qJA  
For values of R less than 15 KW, the term within brackets  
2
ǒ
Ǔ
150 C * TA  
( [ ] ) will evaluate to less than 1 mV and can be ignored. This  
simplifies the output voltage formula to:  
(eq. 2)  
RqJA  
+
PD  
V
= 1.25 V * ((R1 + R2) / R2)) with a tolerance of 4.9%,  
out  
The value of R  
can then be compared with those in the  
qJA  
which is the tolerance of the 1.25 V output when delivering  
up to 500 mA of output current.  
Thermal Characteristics table. Those packages with R  
less than the calculated value in Equation 2 will keep the die  
temperature below 150C.  
qJA  
DEFINITION OF TERMS  
In some cases, none of the packages will be sufficient to  
dissipate the heat generated by the IC, and an external heat  
sink will be required.  
Dropout Voltage: The inputtooutput voltage differential  
at which the circuit ceases to regulate against further  
reduction input voltage. Measured when the output voltage  
has dropped 2% relative to the value measured at nominal  
input voltage. Dropout voltage is dependent upon load  
current and junction temperature.  
Heat Sinks  
A heat sink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
Input Voltage: The DC voltage applied to the input  
terminals with respect to ground.  
Each material in the heat flow path between the IC and the  
outside environment will have a thermal resistance. Like  
series electrical resistances, these resistances are summed to  
Line Regulation: The change in output voltage for a change  
in the input voltage. The measurement is made under  
conditions of low dissipation or by using pulse techniques  
such that the average chip temperature is not significantly  
affected.  
determine the value of R  
:
qJA  
R
qJA + RqJC ) RqCS ) RqSA  
(eq. 3)  
where  
Load Regulation: The change in output voltage for a change  
in load current at constant chip temperature. Pulse loading  
techniques are employed such that the average chip  
temperature is not significantly affected.  
R
qJC  
R
qCS  
R
qSA  
is the junctiontocase thermal resistance,  
is the casetoheatsink thermal resistance,  
is the heatsinktoambient thermal resistance.  
R
qJC  
appears in the Thermal Characteristics table. Like  
Quiescent and Ground Current: The quiescent current is  
the current which flows through the ground when the LDO  
operates without a load on its output: internal IC operation,  
bias, etc. When the LDO becomes loaded, this term is called  
the Ground current. It is actually the difference between the  
input current (measured through the LDO input pin) and the  
output current.  
R
, it too is a function of package type. R  
and R  
are  
qJA  
qCS  
qSA  
functions of the package type, heat sink and the interface  
between them. These values appear in data sheets of heat  
sink manufacturers.  
Thermal, mounting, and heat sink considerations are  
further discussed in ON Semiconductor Application Note  
AN1040/D.  
http://onsemi.com  
9
 
NCP5500, NCV5500, NCP5501, NCV5501  
ORDERING INFORMATION  
Package  
Marking  
Device  
Nominal Output Voltage*  
Package  
Shipping  
NCP5500DT15RKG  
P5500LG  
DPAK 5  
2500 / Tape & Reel  
2500 / Tape & Reel  
2500 / Tape & Reel  
2500 / Tape & Reel  
75 Units / Rail  
(PbFree)  
NCV5500DT15RKG**  
NCP5501DT15RKG  
NCV5501DT15RKG**  
NCP5501DT15G  
V5500LG  
P5501LG  
V5501LG  
P5501LG  
V5501LG  
P5500TG  
V5500TG  
P5501TG  
V5501TG  
P5501TG  
V5501TG  
P5500UG  
V5500UG  
P5501UG  
V5501UG  
P5501UG  
V5501UG  
P5500WG  
V5500WG  
5500B  
DPAK 5  
(PbFree)  
DPAK 3  
(PbFree)  
1.5  
DPAK 3  
(PbFree)  
DPAK 3  
(PbFree)  
NCV5501DT15G**  
NCP5500DT33RKG  
NCV5500DT33RKG**  
NCP5501DT33RKG  
NCV5501DT33RKG**  
NCP5501DT33G  
DPAK 3  
(PbFree)  
75 Units / Rail  
DPAK 5  
(PbFree)  
2500 / Tape & Reel  
2500 / Tape & Reel  
2500 / Tape & Reel  
2500 / Tape & Reel  
75 Units / Rail  
DPAK 5  
(PbFree)  
DPAK 3  
(PbFree)  
3.3  
DPAK 3  
(PbFree)  
DPAK 3  
(PbFree)  
NCV5501DT33G**  
NCP5500DT50RKG  
NCV5500DT50RKG**  
NCP5501DT50RKG  
NCV5501DT50RKG**  
NCP5501DT50G  
DPAK 3  
(PbFree)  
75 Units / Rail  
DPAK 5  
(PbFree)  
2500 / Tape & Reel  
2500 / Tape & Reel  
2500 / Tape & Reel  
2500 / Tape & Reel  
75 Units / Rail  
DPAK 5  
(PbFree)  
DPAK 3  
(PbFree)  
5.0  
DPAK 3  
(PbFree)  
DPAK 3  
(PbFree)  
NCV5501DT50G**  
NCP5500DTADJRKG  
NCV5500DTADJRKG**  
NCP5500DADJR2G  
NCV5500DADJR2G**  
DPAK 3  
(PbFree)  
75 Units / Rail  
DPAK 5  
(PbFree)  
2500 / Tape & Reel  
2500 / Tape & Reel  
2500 / Tape & Reel  
2500 / Tape & Reel  
Adjustable  
DPAK 5  
(PbFree)  
SO8  
(PbFree)  
Adjustable  
Adjustable  
5500A  
SO8  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*Contact ON Semiconductor for other fixed voltages.  
**NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AECQ100 Qualified and PPAP  
Capable  
http://onsemi.com  
10  
NCP5500, NCV5500, NCP5501, NCV5501  
PACKAGE DIMENSIONS  
DPAK 3 (SINGLE GAUGE)  
CASE 369C  
ISSUE D  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
C
A
D
2. CONTROLLING DIMENSION: INCHES.  
3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-  
MENSIONS b3, L3 and Z.  
A
E
c2  
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD  
FLASH, PROTRUSIONS, OR BURRS. MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS SHALL  
NOT EXCEED 0.006 INCHES PER SIDE.  
5. DIMENSIONS D AND E ARE DETERMINED AT THE  
OUTERMOST EXTREMES OF THE PLASTIC BODY.  
6. DATUMS A AND B ARE DETERMINED AT DATUM  
PLANE H.  
b3  
B
4
2
L3  
L4  
Z
H
DETAIL A  
1
3
INCHES  
DIM MIN MAX  
0.086 0.094  
A1 0.000 0.005  
0.025 0.035  
MILLIMETERS  
MIN  
2.18  
0.00  
0.63  
0.76  
4.57  
0.46  
0.46  
5.97  
6.35  
MAX  
2.38  
0.13  
0.89  
1.14  
5.46  
0.61  
0.61  
6.22  
6.73  
A
b2  
c
b
b
b2 0.030 0.045  
b3 0.180 0.215  
M
0.005 (0.13)  
C
H
e
c
0.018 0.024  
c2 0.018 0.024  
GAUGE  
PLANE  
SEATING  
PLANE  
L2  
C
D
E
e
0.235 0.245  
0.250 0.265  
0.090 BSC  
2.29 BSC  
9.40 10.41  
1.40 1.78  
2.74 REF  
0.51 BSC  
0.89 1.27  
H
L
L1  
0.370 0.410  
0.055 0.070  
0.108 REF  
L
A1  
L1  
L2  
0.020 BSC  
DETAIL A  
L3 0.035 0.050  
ROTATED 905 CW  
L4  
Z
−−− 0.040  
0.155 −−−  
−−−  
3.93  
1.01  
−−−  
SOLDERING FOOTPRINT*  
6.20  
3.00  
0.244  
0.118  
2.58  
0.102  
5.80  
1.60  
0.063  
6.17  
0.228  
0.243  
mm  
inches  
ǒ
Ǔ
SCALE 3:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
11  
NCP5500, NCV5500, NCP5501, NCV5501  
PACKAGE DIMENSIONS  
DPAK 5, CENTER LEAD CROP  
CASE 175AA  
ISSUE A  
NOTES:  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
SEATING  
PLANE  
T−  
C
B
R
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
5.97  
6.35  
2.19  
0.51  
0.46  
0.61  
MAX  
6.22  
6.73  
2.38  
0.71  
0.58  
0.81  
E
V
A
B
C
D
E
F
G
H
J
0.235 0.245  
0.250 0.265  
0.086 0.094  
0.020 0.028  
0.018 0.023  
0.024 0.032  
0.180 BSC  
0.034 0.040  
0.018 0.023  
0.102 0.114  
0.045 BSC  
R1  
Z
A
K
S
4.56 BSC  
1 2 3 4  
5
0.87  
0.46  
2.60  
1.01  
0.58  
2.89  
U
K
L
1.14 BSC  
R
0.170 0.190  
4.32  
4.70  
0.63  
0.51  
0.89  
3.93  
4.83  
5.33  
1.01  
−−−  
1.27  
4.32  
F
R1 0.185 0.210  
J
S
U
V
Z
0.025 0.040  
0.020 −−−  
0.035 0.050  
0.155 0.170  
L
H
D 5 PL  
M
G
0.13 (0.005)  
T
SOLDERING FOOTPRINT*  
6.4  
0.252  
2.2  
0.086  
0.34  
0.013  
5.8  
0.228  
5.36  
0.217  
10.6  
0.417  
0.8  
0.031  
mm  
inches  
ǒ
Ǔ
SCALE 4:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
12  
NCP5500, NCV5500, NCP5501, NCV5501  
PACKAGE DIMENSIONS  
SOIC8 NB  
CASE 75107  
ISSUE AK  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
X−  
ANSI Y14.5M, 1982.  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
B
0.25 (0.010)  
Y
1
K
Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
0.050 BSC  
Z−  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
0.10 (0.004)  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,  
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. SCILLC  
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications  
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC  
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,  
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture  
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP5500/D  

相关型号:

NCP5500DT15RKG

500 mA Linear Regulator
ONSEMI

NCP5500DT33RKG

500 mA LDO Voltage Regulator
ONSEMI

NCP5500DT50RKG

500 mA Linear Regulator
ONSEMI

NCP5500DTADJRKG

500 mA Linear Regulator
ONSEMI

NCP5501

500 mA Linear Regulator
ONSEMI

NCP5501DT15G

500 mA Linear Regulator
ONSEMI

NCP5501DT15RKG

500 mA Linear Regulator
ONSEMI

NCP5501DT33G

500 mA LDO Voltage Regulator
ONSEMI

NCP5501DT33RKG

500 mA LDO Voltage Regulator
ONSEMI

NCP5501DT50G

500 mA Linear Regulator
ONSEMI

NCP5501DT50RKG

500 mA Linear Regulator
ONSEMI

NCP5504

250 mA Dual Output Low Dropout Linear Regulator
ONSEMI