NCP566 [ONSEMI]

1.5 A Low Dropout Linear Regulator; 1.5低压差线性稳压器
NCP566
型号: NCP566
厂家: ONSEMI    ONSEMI
描述:

1.5 A Low Dropout Linear Regulator
1.5低压差线性稳压器

稳压器
文件: 总10页 (文件大小:110K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP566  
1.5 A Low Dropout  
Linear Regulator  
The NCP566 low dropout linear regulator will provide 1.5 A at a  
fixed output voltage. The fast loop response and low dropout voltage  
make this regulator ideal for applications where low voltage and good  
load transient response are important. Device protection includes  
current limit, short circuit protection, and thermal shutdown.  
http://onsemi.com  
MARKING  
DIAGRAMS  
Features  
Ultra Fast Transient Response (t1.0 ms)  
AYM  
566xx G  
G
SOT−223  
CASE 318E  
Low Ground Current (1.5 mA @ Iout = 1.5 A)  
Low Dropout Voltage (0.9 V @ Iout = 1.5 A)  
Low Noise (37 mVrms)  
1
1.2 V, 1.8 V, 2.5 V Fixed Output Versions.  
Other Fixed Voltages Available on Request  
Current Limit Protection  
Thermal Shutdown Protection  
These are Pb−Free Devices  
xx = Voltage Rating  
12 = 1.2 V  
18 = 1.8 V  
25 = 2.5 V  
A
Y
=
=
Assembly Location  
Year  
M = Date Code  
G
= Pb−Free Package  
Typical Applications  
(Note: Microdot may be in either location)  
Servers  
ASIC Power Supplies  
Post Regulation for Power Supplies  
Constant Current Source  
PIN CONNECTIONS  
V
in  
1
2
3
GND  
GND  
V
out  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 9 of this data sheet.  
©
Semiconductor Components Industries, LLC, 2007  
1
Publication Order Number:  
March, 2007 − Rev. 0  
NCP566/D  
NCP566  
PIN DESCRIPTION  
Pin No.  
Symbol  
Description  
Positive Power Supply Input Voltage  
1
2, Tab  
3
V
in  
Ground  
Power Supply Ground  
V
out  
Regulated Output Voltage  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
V
Input Voltage (Note 1)  
V
in  
9.0  
Output Pin Voltage  
V
out  
−0.3 to V + 0.3  
V
in  
Thermal Characteristics (Notes 2, 3)  
°C/W  
Thermal Resistance, Junction−to−Ambient  
Thermal Resistance, Junction−to−Pin  
RqJA  
RqJP  
107  
12  
Operating Junction Temperature Range  
Operating Ambient Temperature Range  
Storage Temperature Range  
TJ  
−40 to 150  
−40 to 125  
−55 to 150  
°C  
°C  
°C  
T
A
Tstg  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. This device series contains ESD protection and exceeds the following tests:  
Human Body Model JESD 22−A114−B  
Machine Model JESD 22−A115−A  
2. The maximum package power dissipation is:  
T
* T  
J(max)  
A
P
D
+
R
qJA  
3. As measured using a copper heat spreading area of 50 mm , 1 oz copper thickness.  
2
V
in  
Voltage  
Reference  
Block  
C
150mF  
in  
V
ref  
= 0.9 V  
V
out  
Output  
Stage  
R1  
R2  
C
150mF  
out  
GND  
GND  
Figure 1. Typical Schematic  
http://onsemi.com  
2
 
NCP566  
ELECTRICAL CHARACTERISTICS (V  
V
+ 1.6 V, for typical values T = 25°C, for min/max values T = −40°C to +125°C,  
in = out  
J
J
C
in  
= C = 150 mF unless otherwise noted.)  
out  
Characteristic  
Output Voltage (10 mA < I < 1.5 A; 2.8 V < V < 9.0 V; T = −10 to 105°C)  
Symbol  
Min  
Typ  
Max  
Unit  
V
out  
1.176  
(−2%)  
1.2  
1.224  
(+2%)  
V
out  
in  
J
1.2 V version  
Output Voltage (10 mA < I < 1.5 A; 2.8 V < V < 9.0 V; T = −40 to 125°C)  
V
1.164  
(−3%)  
1.2  
1.8  
1.8  
2.5  
2.5  
1.236  
(+3%)  
V
V
V
V
V
out  
in  
J
out  
1.2 V version  
Output Voltage (10 mA < I < 1.5 A; 3.4 V < V < 9.0 V; T = −10 to 105°C)  
V
out  
1.764  
(−2%)  
1.836  
(+2%)  
out  
in  
J
1.8 V version  
Output Voltage (10 mA < I < 1.5 A; 3.4 V < V < 9.0 V; T = −40 to 125°C)  
V
out  
1.746  
(−3%)  
1.854  
(+3%)  
out  
in  
J
1.8 V version  
Output Voltage (10 mA < I < 1.5 A; 4.1 V < V < 9.0 V; T = −10 to 105°C)  
V
out  
2.450  
(−2%)  
2.550  
(+2%)  
out  
in  
J
2.5 V version  
Output Voltage (10 mA < I < 1.5 A; 4.1 V < V < 9.0 V; T = −40 to 125°C)  
V
out  
2.425  
(−3%)  
2.575  
(+3%)  
out  
in  
J
2.5 V version  
Line Regulation (I = 10 mA)  
Reg  
0.02  
0.04  
0.9  
3.5  
85  
%
%
out  
line  
Load Regulation (10 mA < I < 1.5 A)  
Reg  
load  
out  
Dropout Voltage (I = 1.5 A) (Note 4)  
Vdo  
1.3  
V
out  
Current Limit  
I
1.6  
A
lim  
Ripple Rejection (120 Hz; I = 1.5 A)  
RR  
RR  
dB  
dB  
°C  
out  
Ripple Rejection (1 kHz; I = 1.5 A)  
75  
out  
Thermal Shutdown  
160  
1.5  
37  
Ground Current (I = 1.5 A)  
Iq  
3.0  
mA  
mVrms  
out  
Output Noise Voltage (f = 100 Hz to 100 kHz, I = 1.5 A)  
V
out  
n
4. Dropout voltage is a measurement of the minimum input/output differential at full load.  
http://onsemi.com  
3
 
NCP566  
TYPICAL CHARACTERISTICS  
2.53  
2.52  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
2.51  
2.50  
2.49  
V
= 2.5 V  
= 10 mA  
out  
2.48  
2.47  
V
out  
= 1.8 V  
I
1.785  
1.780  
out  
I
= 10 mA  
out  
−50 −25  
0
25  
50  
75  
100 125 150  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 2. Output Voltage vs. Temperature  
Figure 3. Output Voltage vs. Temperature  
3.80  
3.75  
3.70  
3.65  
3.60  
1.220  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
3.55  
3.50  
V
= 1.2 V  
= 10 mA  
out  
1.185  
1.180  
I
out  
−50 −25  
0
25  
50  
75  
100  
125  
150  
−50 −25  
0
25  
50  
75  
100 125  
150  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 4. Output Voltage vs. Temperature  
Figure 5. Short Circuit Current Limit  
vs. Temperature  
1.2  
1.0  
0.8  
0.6  
0.4  
I
= 1.5 A  
out  
I
= 50 mA  
out  
0.2  
0
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 6. Dropout Voltage vs. Temperature  
http://onsemi.com  
4
NCP566  
TYPICAL CHARACTERISTICS  
1.70  
1.65  
1.60  
1.55  
1.50  
1.80  
1.75  
1.70  
1.65  
1.60  
1.45  
1.40  
I
= 1.5 A  
out  
1.55  
0
300  
600  
900  
1200  
1500  
−50 −25  
0
25  
50  
75  
100  
125 150  
T , JUNCTION TEMPERATURE (°C)  
J
I
, OUTPUT CURRENT (mA)  
out  
Figure 7. Ground Current vs. Temperature  
Figure 8. Ground Current vs. Output Current  
1000  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Unstable  
10  
1
I
= 1.5 A  
out  
V
C
= 2.5 V  
Stable  
out  
= 10 mF  
out  
0
250  
500  
750  
1000  
1250  
1500  
10  
100  
1000  
10000  
100000 1000000  
OUTPUT CURRENT (mA)  
F, FREQUENCY (Hz)  
Figure 9. Ripple Rejection vs. Frequency  
Figure 10. Output Capacitor ESR Stability vs.  
Output Current  
V
out  
= 1.2 V  
V
out  
= 1.2 V  
Figure 11. Load Transient from 10 mA to 1.5 A  
Figure 12. Load Transient from 10 mA to 1.5 A  
http://onsemi.com  
5
 
NCP566  
TYPICAL CHARACTERISTICS  
V
out  
= 1.2 V  
V
out  
= 1.2 V  
Figure 13. Load Transient from 1.5 A to 10 mA  
Figure 14. Load Transient from 1.5 A to 10 mA  
140  
120  
100  
140  
120  
100  
80  
60  
40  
80  
60  
40  
V
= 1.2 V  
= 10 mA  
V
I
out  
= 1.2 V  
= 1.5 A  
out  
out  
20  
0
20  
0
I
out  
0
10 20 30 40 50 60 70 80 90 100  
f, FREQUENCY (kHz)  
0
10 20 30 40 50 60 70 80 90 100  
f, FREQUENCY (kHz)  
Figure 15. Noise Density vs. Frequency  
Figure 16. Noise Density vs. Frequency  
http://onsemi.com  
6
 
NCP566  
APPLICATION INFORMATION  
for use with a 150 mF OSCON 16SA150M type in parallel  
with a 10 mF OSCON 10SL10M type from Sanyo. The  
10 mF capacitor is used for best AC stability while 150 mF  
capacitor is used for achieving excellent output transient  
response. The output capacitors should be placed as close as  
possible to the output pin of the device. If not, the excellent  
load transient response of NCP566 will be degraded.  
The NCP566 low dropout linear regulator provides fixed  
voltages at currents up to 1.5 A. It features ultra fast transient  
response and low dropout voltage. These devices contain  
output current limiting, short circuit protection and thermal  
shutdown protection.  
Input, Output Capacitor and Stability  
Load Transient Measurement  
An input bypass capacitor is recommended to improve  
transient response or if the regulator is located more than a  
few inches from the power source. This will reduce the  
circuit’s sensitivity to the input line impedance at high  
frequencies and significantly enhance the output transient  
response. Different types and different sizes of input  
capacitors can be chosen dependent on the quality of power  
supply. A 150 mF OSCON 16SA150M type from Sanyo  
should be adequate for most applications. The bypass  
capacitor should be mounted with shortest possible lead or  
track length directly across the regulator’s input terminals.  
The output capacitor is required for stability. The NCP566  
remains stable with ceramic, tantalum, and aluminum−  
electrolytic capacitors with a minimum value of 1.0 mF with  
ESR between 50 mW and 2.5 W. The NCP566 is optimized  
Large load current changes are always presented in  
microprocessor applications. Therefore good load transient  
performance is required for the power stage. NCP566 has  
the feature of ultra fast transient response. Its load transient  
responses in Figures 11 through 14 are tested on evaluation  
board shown in Figure 17. The evaluation board consists of  
NCP566 regulator circuit with decoupling and filter  
capacitors and the pulse controlled current sink to obtain  
load current transitions. The load current transitions are  
measured by current probe. Because the signal from current  
probe has some time delay, it causes un−synchronization  
between the load current transition and output voltage  
response, which is shown in Figures 11 through 14.  
GEN  
V
out  
−V  
CC  
V
NCP566  
RL  
V
in  
Evaluation Board  
Pulse  
GND  
+
+
GND  
Scope Voltage Probe  
Figure 17. Schematic for Transient Response Measurement  
http://onsemi.com  
7
 
NCP566  
PCB Layout Considerations  
Thermal Considerations  
Good PCB layout plays an important role in achieving  
good load transient performance. Because it is very sensitive  
to its PCB layout, particular care has to be taken when  
tackling Printed Circuit Board (PCB) layout. For  
microprocessor applications it is customary to use an output  
capacitor network consisting of several capacitors in  
parallel. This reduces the overall ESR and reduces the  
instantaneous output voltage drop under transient load  
conditions. The output capacitor network should be as close  
as possible to the load for the best results.  
This series contains an internal thermal limiting circuit  
that is designed to protect the regulator in the event that the  
maximum junction temperature is exceeded. This feature  
provides protection from a catastrophic device failure due to  
accidental overheating. It is not intended to be used as a  
substitute for proper heat sinking. The maximum device  
power dissipation can be calculated by:  
T
* T  
A
J(max)  
P
D
+
R
qJA  
200  
Protection Diodes  
When large external capacitors are used with a linear  
regulator it is sometimes necessary to add protection diodes.  
If the input voltage of the regulator gets shorted, the output  
capacitor will discharge into the output of the regulator. The  
discharge current depends on the value of the capacitor, the  
180  
160  
140  
120  
100  
80  
output voltage and the rate at which V drops. In the  
in  
NCP566 linear regulator, the discharge path is through a  
large junction and protection diodes are not usually needed.  
If the regulator is used with large values of output  
capacitance and the input voltage is instantaneously shorted  
to ground, damage can occur. In this case, a diode connected  
as shown in Figure 18 is recommended.  
1 oz Cu  
2 oz Cu  
60  
40  
0
50 100 150 200 250 300 350 400 450 500  
COPPER HEAT−SPREADER AREA (mm sq)  
Figure 19. Thermal Resistance  
1N4002 (Optional)  
V
V
OUT  
IN  
V
V
OUT  
IN  
NCP566  
GND  
C
IN  
C
OUT  
Figure 18. Protection Diode for Large  
Output Capacitors  
http://onsemi.com  
8
 
NCP566  
ORDERING INFORMATION  
Device  
Nominal Output Voltage*  
Package  
Shipping  
NCP566ST12T3G  
SOT−223  
(Pb−Free)  
1.2 V  
1.8 V  
2.5 V  
4000 / Tape & Reel  
4000 / Tape & Reel  
4000 / Tape & Reel  
NCP566ST18T3G  
NCP566ST25T3G  
SOT−223  
(Pb−Free)  
SOT−223  
(Pb−Free)  
*For other fixed output versions, please contact the factory.  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
9
NCP566  
PACKAGE DIMENSIONS  
SOT−223 (TO−261)  
CASE 318E−04  
ISSUE L  
D
b1  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
4
2
MILLIMETERS  
INCHES  
NOM  
0.064  
0.002  
0.030  
0.121  
0.012  
0.256  
0.138  
0.091  
0.037  
0.069  
0.276  
H
E
E
DIM  
A
A1  
b
b1  
c
D
E
e
e1  
L1  
MIN  
1.50  
0.02  
0.60  
2.90  
0.24  
6.30  
3.30  
2.20  
0.85  
1.50  
6.70  
0°  
NOM  
1.63  
0.06  
0.75  
3.06  
0.29  
6.50  
3.50  
2.30  
0.94  
1.75  
7.00  
MAX  
1.75  
0.10  
0.89  
3.20  
0.35  
6.70  
3.70  
2.40  
1.05  
2.00  
7.30  
10°  
MIN  
0.060  
0.001  
0.024  
0.115  
0.009  
0.249  
0.130  
0.087  
0.033  
0.060  
0.264  
0°  
MAX  
0.068  
0.004  
0.035  
0.126  
0.014  
0.263  
0.145  
0.094  
0.041  
0.078  
0.287  
10°  
1
3
b
e1  
e
C
q
H
E
A
q
0.08 (0003)  
A1  
L1  
SOLDERING FOOTPRINT*  
3.8  
0.15  
2.0  
0.079  
6.3  
0.248  
2.3  
0.091  
2.3  
0.091  
2.0  
0.079  
mm  
inches  
1.5  
0.059  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
The product described herein (NCP566), may be covered by one or more of the following U.S. patents: 5,920,184; 5,834,926.  
There may be other patents pending.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5773−3850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP566/D  

相关型号:

NCP5661

Low Output Voltage,Ultra-Fast 1.0 A Low Dropout Linear Regulator with Enable
ONSEMI

NCP5661DT12RKG

Low Output Voltage,Ultra−Fast 1.0 A Low Dropout Linear Regulator with Enable
ONSEMI

NCP5661DT18RKG

Low Output Voltage, Ultra-Fast 1.0 A Low Dropout Linear Regulator with Enable
ONSEMI

NCP5661DT25RKG

Low Output Voltage, Ultra-Fast 1.0 A Low Dropout Linear Regulator with Enable
ONSEMI

NCP5661DT33RKG

Low Output Voltage,Ultra−Fast 1.0 A Low Dropout Linear Regulator with Enable
ONSEMI

NCP5661DTADJRKG

Low Output Voltage,Ultra−Fast 1.0 A Low Dropout Linear Regulator with Enable
ONSEMI

NCP5661MN12T2G

Low Output Voltage, Ultra−Fast 1.0 A Low Dropout Linear Regulator with Enable
ONSEMI

NCP5661MN15T2G

Low Output Voltage, Ultra−Fast 1.0 A Low Dropout Linear Regulator with Enable
ONSEMI

NCP5661MN18T2G

Low Output Voltage, Ultra−Fast 1.0 A Low Dropout Linear Regulator with Enable
ONSEMI

NCP5661MN25T2G

Low Output Voltage, Ultra−Fast 1.0 A Low Dropout Linear Regulator with Enable
ONSEMI

NCP5661MN28T2G

Low Output Voltage, Ultra−Fast 1.0 A Low Dropout Linear Regulator with Enable
ONSEMI

NCP5661MN30T2G

Low Output Voltage, Ultra−Fast 1.0 A Low Dropout Linear Regulator with Enable
ONSEMI