NCP600SN150T1G [ONSEMI]

High Performance Low-Power, LDO Regulator with Enable; 高性能低功耗, LDO稳压器启用
NCP600SN150T1G
型号: NCP600SN150T1G
厂家: ONSEMI    ONSEMI
描述:

High Performance Low-Power, LDO Regulator with Enable
高性能低功耗, LDO稳压器启用

稳压器
文件: 总13页 (文件大小:107K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP600  
High Performance  
Low−Power, LDO Regulator  
with Enable  
The NCP600 provides 150 mA of output current at fixed voltage  
options, or an adjustable output voltage from 5.0 V down to 1.250 V. It  
is designed for portable battery powered applications and offers high  
performance features such as low power operation, fast enable  
response time, and low dropout.  
http://onsemi.com  
5
The device is designed to be used with low cost ceramic capacitors  
and is packaged in the TSOP−5/SOT23−5.  
1
TSOP−5  
SN SUFFIX  
CASE 483  
Features  
Output Voltage Options:  
Adjustable, 1.5 V, 1.8 V, 2.8 V, 3.0 V, 3.3 V, 5.0 V  
Ultra−Low Dropout Voltage of 150 mV at 150 mA  
Adjustable Output by External Resistors from 5.0 V down to 1.250 V  
Fast Enable Turn−on Time of 15 ms  
MARKING DIAGRAM  
5
xxx AYWG  
G
Wide Supply Voltage Range Operating Range  
Excellent Line and Load Regulation  
1
High Accuracy up to 1.5% Output Voltage Tolerance over All  
xxx  
A
Y
W
G
= Specific Device Code  
= Assembly Location  
= Year  
= Work Week  
= Pb−Free Package  
Operating Conditions  
Typical Noise Voltage of 50 mV without a Bypass Capacitor  
rms  
Pb−Free Package is Available  
Typical Applications  
(Note: Microdot may be in either location)  
SMPS Post−Regulation  
Hand−held Instrumentation  
Noise Sensitive Circuits – VCO, RF Stages, etc.  
Camcorders and Cameras  
PIN CONNECTIONS  
V
in  
1
2
V
out  
5
GND  
ENABLE  
3
4
ADJ/NC*  
V
V
OUT  
IN  
Fixed Voltage Only  
(Top View)  
Driver w/  
Current Limit  
+
* ADJ − Adjustable Version  
* NC − Fixed Voltage Version  
+
1.25 V  
GND  
Thermal  
Shutdown  
ORDERING INFORMATION  
ADJ  
See detailed ordering and shipping information in the  
package dimensions section on page 12 of this data sheet.  
Adjustable Version Only  
ENABLE  
Figure 1. Simplified Block Diagram  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
September, 2006 − Rev. 3  
NCP600/D  
NCP600  
PIN FUNCTION DESCRIPTION  
Pin No.  
Pin Name  
Description  
1
2
3
V
Positive Power Supply Input  
Power Supply Ground; Device Substrate  
in  
GND  
ENABLE  
The Enable Input places the device into low−power standby when pulled to logic low (< 0.4 V). Connect to V  
if the function is not used.  
in  
4
5
ADJ/NC  
Output Voltage Adjust Input (Adjustable Version), No Connection (Fixed Voltage Versions) (Note 1)  
Regulated Output Voltage  
V
out  
MAXIMUM RATINGS (Voltages are with respect to device substrate.)  
Rating  
Voltage at Any Pin  
Symbol  
Value  
−0.3 to 6.0  
Infinite  
Unit  
V
Output Short Circuit Duration (Note 2)  
Operating Junction Temperature  
Storage Temperature  
I
SC  
T
+150  
°C  
°C  
J(MAX)  
T
stg  
−65 to +150  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. True no connect. Printed circuit board traces are allowable.  
2. Internally protected by thermal shutdown circuitry.  
ATTRIBUTES  
Characteristic  
Value  
ESD Capability  
Human Body Model  
Machine Model  
3.5 kV  
400 V  
Moisture Sensitivity  
MSL1/260  
Package Thermal Resistance  
Junction−to−Ambient, R  
250 °C/W  
q
JA  
http://onsemi.com  
2
 
NCP600  
ELECTRICAL CHARACTERISTICS  
(V = 1.750 V, V = 1.250 V, C = C =1.0 mF, 40°C T 125°C, Figure 2, unless otherwise specified.) (Note 3)  
in  
out  
in  
out  
J
Characteristic  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Regulator Output (Adjustable Voltage Version)  
Output Voltage  
1.231  
1.250  
1.269  
V
V
I
= 1.0 mA to 150 mA  
out  
out  
(−1.5%)  
(+1.5%)  
V
= 1.75 V to 6.0 V,  
in  
V
out  
= ADJ  
Ripple Rejection  
RR  
dB  
I
= 1.0 mA to 150 mA  
out  
62  
55  
38  
(V = V  
in out  
+ 1.0 V + 0.5 V  
)
f = 120 Hz  
f = 1.0 kHz  
f = 10 kHz  
p−p  
Line Regulation  
1.0  
10  
mV  
mV  
Reg  
V
= 1.750 V to 6.0 V,  
= 1.0 mA  
line  
in  
I
out  
Load Regulation  
2.0  
50  
15  
Reg  
V
I
= 1.0 mA to 150 mA  
load  
out  
Output Noise Voltage  
f = 10 Hz to 100 kHz  
mV  
rms  
n
Output Short Circuit Current  
Dropout Voltage  
300  
550  
800  
mA  
mV  
I
sc  
V
Measured at: V  
– 2.0%,  
= 150 mA, Figure 3  
DO  
out  
V
out  
= 1.25 V  
= 1.5 V  
= 1.8 V  
= 2.5 V  
2.8 V  
175  
150  
125  
100  
75  
250  
225  
175  
150  
125  
I
out  
V
out  
V
out  
V
out  
V
out  
Regulator Output (Fixed Voltage Version)  
(V = V + 0.5 V, C = C =1.0 mF, 40°C T 125°C, Figure 4, unless otherwise specified.) (Note 3)  
in  
out  
in  
out  
J
Output Voltage  
V
V
I
= 1.0 mA to 150 mA  
out  
out  
1.5 V Option  
1.8 V Option  
2.8 V Option  
3.0 V Option  
3.3 V Option  
5.0 V Option  
1.470  
1.764  
2.744  
2.940  
3.234  
1.500  
1.530  
1.836  
2.856  
3.060  
3.366  
V
= (V + 0.5 V) to 6.0 V  
in  
out  
4.900 (−2%)  
5.100 (+2%)  
Ripple Rejection  
(V = V + 1.0 V + 0.5 V  
RR  
dB  
I
= 1.0 mA to 150 mA  
out  
62  
55  
38  
)
f = 120 Hz  
f = 1.0 kHz  
f = 10 kHz  
p−p  
in out  
Line Regulation  
Load Regulation  
1.0  
10  
mV  
mV  
Reg  
V
= 1.750 V to 6.0 V,  
= 1.0 mA  
line  
in  
I
out  
Reg  
I
= 1.0 mA to 150 mA  
load  
out  
1.5 V Option  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
20  
25  
30  
30  
30  
30  
1.8 V Option  
2.8 V Option  
3.0 V Option  
3.3 V Option  
5.0 V Option  
Output Noise Voltage  
f = 10 Hz to 100 kHz  
50  
mV  
rms  
V
n
Output Short Circuit Current  
300  
550  
800  
mA  
V
I
sc  
Dropout Voltage  
1.5 V Option  
1.8 V Option  
2.8 V Option  
3.0 V Option  
3.3 V Option  
5.0 V Option  
V
DO  
Measured at: V  
out  
– 2.0%  
150  
125  
75  
75  
75  
225  
175  
125  
125  
125  
125  
75  
3. Designed to meet these characteristics over the stated voltage and temperature recommended operating ranges, though may not be 100%  
parametrically tested in production.  
4. Guaranteed by design.  
http://onsemi.com  
3
NCP600  
ELECTRICAL CHARACTERISTICS (V = 1.750 V, V = 1.250 V (adjustable version)), (V = V + 0.5 V (fixed version)),  
in  
out  
in  
out  
C
in  
= C =1.0 mF, 40°C T 125°C, Figure 2, unless otherwise specified.) (Note 5)  
out J  
Characteristic  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
General  
Ground Current  
ENABLE = 0 V, Vin = 6 V  
0.01  
1.0  
mA  
mA  
I
STBY  
−40°C T 85°C  
J
Ground Current  
ENABLE = 0.9 V,  
I
GND  
Adjustable Option  
100  
135  
140  
140  
140  
145  
145  
135  
170  
175  
175  
175  
180  
180  
I
= 1.0 mA to 150 mA  
out  
1.5 V Option  
1.8 V Option  
2.8 V Option  
3.0 V Option  
3.3 V Option  
5.0 V Option  
Thermal Shutdown Temperature (Note 6)  
Thermal Shutdown Hysteresis  
ADJ Input Bias Current  
150  
175  
10  
200  
°C  
°C  
mA  
T
T
SD  
SH  
−0.75  
0.75  
I
ADJ  
Chip Enable  
ENABLE Input Threshold Voltage  
V
V
th(EN)  
Voltage Increasing, Logic High  
Voltage Decreasing, Logic Low  
0.9  
0.4  
100  
Enable Input Bias Current (Note 6)  
3.0  
nA  
I
t
EN  
EN  
Timing  
Output Turn On Time  
Adjustable Option  
1.5 V Option  
ms  
ENABLE = 0 V to V  
in  
15  
15  
15  
15  
15  
15  
30  
25  
25  
25  
25  
25  
25  
50  
1.8 V Option  
2.8 V Option  
3.0 V Option  
3.3 V Option  
5.0 V Option  
5. Designed to meet these characteristics over the stated voltage and temperature recommended operating ranges, though may not be 100%  
parametrically tested in production.  
6. Guaranteed by design.  
http://onsemi.com  
4
 
NCP600  
5
4
1
2
V
V
OUT  
IN  
C
IN  
C
OUT  
3
ENABLE  
Figure 2. Typical Application Circuit for Vout = 1.250 V  
(Adjustable Version)  
5
1
2
V
V
OUT  
IN  
C
IN  
C
OUT  
R1  
3
4
ENABLE  
R2  
Figure 3. Typical Application Circuit for Adjustable Vout  
5
4
1
2
V
V
OUT  
IN  
C
IN  
C
OUT  
3
Figure 4. Typical Application Circuit  
(Fixed Voltage Version)  
http://onsemi.com  
5
 
NCP600  
TYPICAL CHARACTERISTICS  
1.260  
1.256  
1.252  
1.248  
1.260  
1.256  
I
= 1.0 mA  
I
= 1.0 mA  
out  
out  
1.252  
1.248  
I
= 150 mA  
out  
I
= 150 mA  
out  
V
= V + 0.5 V  
out  
= ADJ  
in  
1.244  
1.240  
1.244  
1.240  
V = 6.0 V  
in  
V
out  
V
out  
= ADJ  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40  
−15  
10  
35  
60  
85  
110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 5. Output Voltage vs. Temperature  
(Vin = Vout + 0.5 V)  
Figure 6. Output Voltage vs. Temperature  
(Vin = 6.0 V)  
1.500  
1.495  
1.490  
1.485  
1.500  
1.495  
1.490  
1.485  
I
= 1.0 mA  
out  
I
= 1.0 mA  
out  
I
= 150 mA  
out  
I
= 150 mA  
out  
1.480  
1.475  
1.480  
1.475  
−40  
−15  
10  
35  
60  
85  
110 125  
−40  
−15  
10  
35  
60  
85  
110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 7. Output Voltage vs. Temperature  
(1.5 V Fixed Output, Vin = 2 V)  
Figure 8. Output Voltage vs. Temperature  
(1.5 V Fixed Output, Vin = 6 V)  
3.005  
3.000  
2.995  
2.990  
2.985  
3.005  
3.000  
I
= 1.0 mA  
out  
I
= 1.0 mA  
= 150 mA  
out  
2.995  
2.990  
2.985  
2.980  
I
out  
I
= 150 mA  
out  
2.980  
2.975  
2.975  
2.970  
−40  
−15  
10  
35  
60  
85  
110 125  
−40  
−15  
10  
35  
60  
85  
110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. Output Voltage vs. Temperature  
(3.0 V Fixed Output, Vin = 3.5 V)  
Figure 10. Output Voltage vs. Temperature  
(3.0 V Fixed Output, Vin = 6 V)  
http://onsemi.com  
6
NCP600  
TYPICAL CHARACTERISTICS  
5.000  
4.995  
4.990  
4.985  
4.980  
4.975  
5.000  
I
= 1.0 mA  
out  
I
= 1.0 mA  
out  
4.995  
4.990  
4.985  
4.980  
4.975  
I
= 150 mA  
out  
I
= 150 mA  
out  
4.970  
4.965  
4.970  
4.965  
−40  
−15  
10  
35  
60  
85  
110 125  
−40  
−15  
10  
35  
60  
85  
110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Output Voltage vs. Temperature  
(5.0 V Fixed Output, Vin = 5.5 V)  
Figure 12. Output Voltage vs. Temperature  
(5.0 V Fixed Output, Vin = 6 V)  
250  
200  
150  
100  
250  
200  
150  
100  
V
out  
= ADJ  
I
= 150 mA  
out  
I
= 150 mA  
out  
V
out  
= 1.25 V  
1.50 V  
1.80 V  
2.80 V  
I
= 50 mA  
= 1.0 mA  
out  
3.00 V  
5.00 V  
50  
0
50  
0
I
out  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. Dropout Voltage vs. Temperature  
(Over Current Range)  
Figure 14. Dropout Voltage vs. Temperature  
(Over Output Voltage)  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
800  
750  
700  
I
C
= 0 mA  
out  
5.0 V  
= 1.0 mF  
out  
T = 25°C  
ENABLE = V  
A
in  
Enable Increasing  
Enable Decreasing  
3.3 V  
3.0 V  
2.80 V  
1.80 V  
1.5 V  
650  
600  
1.25 V  
V
in  
= 5.5 V  
0.5  
0
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
−40  
−15  
10  
35  
60  
85  
110 125  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 15. Output Voltage vs. Input Voltage  
Figure 16. Enable Threshold vs. Temperature  
http://onsemi.com  
7
NCP600  
TYPICAL CHARACTERISTICS  
6.0  
5.0  
4.0  
3.0  
2.0  
154  
146  
I
I
= 1.0 mA  
= 150 mA  
out  
out  
V
= 1.25 V  
out  
138  
130  
122  
114  
106  
V
= 5.0 V  
I
= 1.0 mA  
= 150 mA  
out  
out  
ENABLE = 0 V  
I
out  
1.0  
0
98  
90  
ENABLE = 0.9 V  
−40  
−15  
10  
35  
60  
85  
110 125  
−40 −20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. Ground Current (Sleep Mode) vs.  
Temperature  
Figure 18. Ground Current (Run Mode) vs.  
Temperature  
160  
140  
120  
100  
80  
106  
105  
104  
103  
102  
101  
100  
3.0 V  
2.8 V  
1.5 V  
5.0 V  
3.3 V  
1.8 V  
1.25 V  
60  
40  
V
= ADJ  
= 1.75 V  
out  
20  
0
99  
98  
V
in  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
0
25  
50  
75  
100  
125  
150  
V , INPUT VOLTAGE (V)  
in  
OUTPUT CURRENT (mA)  
Figure 19. Ground Current vs. Input Voltage  
Figure 20. Ground Current vs. Output Current  
400  
300  
200  
100  
0
−40 −20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
Figure 21. ADJ Input Bias Current vs.  
Temperature  
http://onsemi.com  
8
NCP600  
TYPICAL CHARACTERISTICS  
650  
600  
700  
600  
500  
400  
300  
200  
550  
500  
450  
100  
0
−40 −20  
0
20  
40  
60  
80  
100 120  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
TEMPERATURE (°C)  
V , INPUT VOLTAGE (V)  
in  
Figure 22. Output Short Circuit Current vs.  
Temperature  
Figure 23. Current Limit vs. Input Voltage  
4.0  
3.0  
2.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
1.0  
0
V
I
= (V + 0.5 V) to 6.0 V  
= 1.0 mA  
in  
out  
I
= 1.0 mA to 150 mA  
out  
out  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40  
−15  
10  
35  
60  
85  
110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 24. Line Regulation vs. Temperature  
Figure 25. Load Regulation vs. Temperature  
45  
40  
35  
30  
25  
20  
80  
70  
60  
50  
40  
30  
20  
1.25 V  
3.3 V  
5.0 V  
5.0 V  
3.0 V  
1.5 V  
V
V
= V + 1.0 V  
out  
in  
= 0.5 V  
ripple  
p−p  
1.25 V (ADJ)  
15  
10  
C
out  
= 1.0 mF  
10  
0
I
= 1.0 mA to 150 mA  
out  
−40 −20  
0
20  
40  
60  
80  
100  
120  
0.1  
1.0  
10  
100  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
Figure 26. Output Turn On Time vs.  
Temperature  
Figure 27. Power Supply Ripple Rejection vs.  
Frequency  
http://onsemi.com  
9
NCP600  
TYPICAL CHARACTERISTICS  
10  
V
out  
= 5.0 V  
Unstable Region  
V
out  
= 1.25 V  
1.0  
Stable Region  
0.1  
C
out  
= 1.0 mF to 10 mF  
T = −40°C to 125°C  
A
V
in  
= up to 6.0 V  
0.01  
0
25  
50  
75  
100  
125  
150  
OUTPUT CURRENT (mA)  
Figure 28. Output Stability with Output  
Capacitor ESR over Output Current  
V
out  
= 1.25 V  
Figure 29. Load Transient Response (1.0 mF)  
V
out  
= 1.25 V  
Figure 30. Load Transient Response (10 mF)  
http://onsemi.com  
10  
NCP600  
DEFINITIONS  
Load Regulation  
Line Regulation  
The change in output voltage for a change in output load  
current at a constant temperature.  
The change in output voltage for a change in input voltage.  
The measurement is made under conditions of low  
dissipation or by using pulse techniques such that the  
average junction temperature is not significantly affected.  
Dropout Voltage  
The input/output differential at which the regulator output  
no longer maintains regulation against further reductions in  
input voltage. Measured when the output drops 2% below its  
nominal. The junction temperature, load current, and  
minimum input supply requirements affect the dropout level.  
Line Transient Response  
Typical output voltage overshoot and undershoot  
response when the input voltage is excited with a given  
slope.  
Output Noise Voltage  
Load Transient Response  
This is the integrated value of the output noise over a  
specified frequency range. Input voltage and output load  
current are kept constant during the measurement. Results  
Typical output voltage overshoot and undershoot  
response when the output current is excited with a given  
slope between no−load and full−load conditions.  
are expressed in mV or nV Hz.  
rms  
Thermal Protection  
Internal thermal shutdown circuitry is provided to protect  
the integrated circuit in the event that the maximum junction  
temperature is exceeded. When activated at typically 175°C,  
the regulator turns off. This feature is provided to prevent  
failures from accidental overheating.  
Ground Current  
Ground Current is the current that flows through the  
ground pin when the regulator operates without a load on its  
output (I ). This consists of internal IC operation, bias,  
GND  
etc. It is actually the difference between the input current  
(measured through the LDO input pin) and the output load  
current. If the regulator has an input pin that reduces its  
internal bias and shuts off the output (enable/disable  
Maximum Package Power Dissipation  
The power dissipation level at which the junction  
temperature reaches its maximum operating value.  
function), this term is called the standby current (I  
.)  
STBY  
APPLICATIONS INFORMATION  
The NCP600 series regulator is self−protected with  
output, there is no resistor divider. If the part is enabled  
under no−load conditions, leakage current through the pass  
transistor at junction temperatures above 85°C can approach  
several microamperes, especially as junction temperature  
approaches 150°C. If this leakage current is not directed into  
a load, the output voltage will rise up to a level  
approximately 20 mV above nominal.  
The NCP600 contains an overshoot clamp circuit to  
improve transient response during a load current step  
release. When output voltage exceeds the nominal by  
approximately 20 mV, this circuit becomes active and  
clamps the output from further voltage increase. Tying the  
internal thermal shutdown and internal current limit. Typical  
application circuits are shown in Figures 2 and 3.  
Input Decoupling (Cin)  
A ceramic or tantalum 1.0 mF capacitor is recommended  
and should be connected close to the NCP600 package.  
Higher capacitance and lower ESR will improve the overall  
line transient response.  
Output Decoupling (Cout  
)
The NCP600 is a stable component and does not require  
a minimum Equivalent Series Resistance (ESR) for the  
output capacitor. The minimum output decoupling value is  
1.0 mF and can be augmented to fulfill stringent load  
transient requirements. The regulator works with ceramic  
chip capacitors as well as tantalum devices. Larger values  
improve noise rejection and load regulation transient  
response. Figure [TBD] shows the stability region for a  
range of operating conditions and ESR values.  
ENABLE pin to V will ensure that the part is active  
in  
whenever the supply voltage is present, thus guaranteeing  
that the clamp circuit is active whenever leakage current is  
present.  
When the NCP600 adjustable regulator is disabled, the  
overshoot clamp circuit becomes inactive and the pass  
transistor leakage will charge any capacitance on V . If no  
out  
load is present, the output can charge up to within a few  
millivolts of V . In most applications, the load will present  
No−Load Regulation Considerations  
in  
some impedance to V such that the output voltage will be  
inherently clamped at a safe level. A minimum load of  
10 mA is recommended.  
The NCP600 adjustable regulator will operate properly  
under conditions where the only load current is through the  
resistor divider that sets the output voltage. However, in the  
case where the NCP600 is configured to provide a 1.250 V  
out  
http://onsemi.com  
11  
NCP600  
Noise Decoupling  
power dissipation supported by the device is dependent  
upon board design and layout. Mounting pad configuration  
on the PCB, the board material, and the ambient temperature  
affect the rate of junction temperature rise for the part. When  
the NCP600 has good thermal conductivity through the  
PCB, the junction temperature will be relatively low with  
high power applications. The maximum dissipation the  
NCP600 can handle is given by:  
The NCP600 is a low noise regulator and needs no  
external noise reduction capacitor. Unlike other low noise  
regulators which require an external capacitor and have slow  
startup times, the NCP600 operates without a noise  
reduction capacitor, has a typical 15 ms start up delay and  
achieves a 50 mV overall noise level between 10 Hz and  
rms  
100 kHz.  
T
* T  
A
J(MAX)  
Enable Operation  
P
+
D(MAX)  
R
(eq. 3)  
qJA  
The enable pin will turn the regulator on or off. The  
threshold limits are covered in the electrical characteristics  
table in this data sheet. The turn−on/turn−off transient  
voltage being supplied to the enable pin should exceed a  
slew rate of 10 mV/ms to ensure correct operation. If the  
enable function is not to be used then the pin should be  
Since T is not recommended to exceed 125_C (T  
),  
J
J(MAX)  
then the NCP600 can dissipate up to 400 mW when the  
ambient temperature (T ) is 25_C.  
A
The power dissipated by the NCP600 can be calculated  
from the following equations:  
connected to V .  
P
D
[ V (I  
IN GND@IOUT  
) ) I  
(V * V  
OUT IN  
)
in  
OUT  
(eq. 4)  
Output Voltage Adjust  
or  
The output voltage can be adjusted from 1 times  
(Figure 2) to 4 times (Figure 3) the typical 1.250 V  
regulation voltage via the use of resistors between the output  
and the ADJ input. The output voltage and resistors are  
chosen using Equation 1 and Equation 2.  
P
) (V  
  I  
)
D(MAX)  
OUT  
) I  
OUT  
V
[
IN(MAX)  
I
OUT  
GND  
(eq. 5)  
If a 150 mA output current is needed, the quiescent current  
is taken from the data sheet electrical characteristics  
I
GND  
R1  
R2  
+ 1.250 ǒ1 ) Ǔ) (I  
V
OUT  
  R2)  
ADJ  
(eq. 1)  
table or extracted from Figure TBD and Figure TBD. I  
GND  
is approximately 108 mA when I = 150 mA. For an output  
voltage of 1.250 V, the maximum input voltage will then be  
3.9 V, good for a 1 Cell Li−ion battery.  
out  
[V  
(I  
* R2)]  
out * ADJ  
V
out  
^ R2 ƪ * 1ƫ  
* 1ƫ  
R1 + R2 * ƪ  
1.25  
1.25  
(eq. 2)  
Hints  
Input bias current I  
is typically less than 150 nA.  
ADJ  
V and GND printed circuit board traces should be as  
in  
Choose R2 arbitrarily t minimize errors due to the bias  
current and to minimize noise contribution to the output  
voltage. Use Equation 2 to find the required value for R1.  
wide as possible. When the impedance of these traces is  
high, there is a chance to pick up noise or cause the regulator  
to malfunction. Place external components, especially the  
output capacitor, as close as possible to the NCP600, and  
make traces as short as possible.  
Thermal  
As power in the NCP600 increases, it might become  
necessary to provide some thermal relief. The maximum  
DEVICE ORDERING INFORMATION  
Device  
NCP600SNADJT1G  
Marking Code  
Version  
ADJ  
Package  
Shipping*  
LIO  
LID  
LIE  
LIH  
LIJ  
NCP600SN150T1G  
NCP600SN180T1G  
NCP600SN280T1G  
NCP600SN300T1G  
NCP600SN330T1G  
NCP600SN500T1G  
1.5 V  
1.8 V  
2.8 V  
3.0 V  
3.3 V  
5.0 V  
TSOP−5  
(Pb−Free)  
3000/Tape & Reel  
LIK  
LIN  
*For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting  
Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
12  
 
NCP600  
PACKAGE DIMENSIONS  
TSOP−5  
CASE 483−02  
ISSUE F  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. MAXIMUM LEAD THICKNESS INCLUDES  
LEAD FINISH THICKNESS. MINIMUM LEAD  
THICKNESS IS THE MINIMUM THICKNESS  
OF BASE MATERIAL.  
4. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5. OPTIONAL CONSTRUCTION: AN  
ADDITIONAL TRIMMED LEAD IS ALLOWED  
IN THIS LOCATION. TRIMMED LEAD NOT TO  
EXTEND MORE THAN 0.2 FROM BODY.  
NOTE 5  
5X  
D
0.20 C A B  
2X  
2X  
0.10  
T
T
M
5
4
3
0.20  
B
S
1
2
K
L
DETAIL Z  
G
A
MILLIMETERS  
DIM  
A
B
MIN  
3.00 BSC  
1.50 BSC  
MAX  
DETAIL Z  
J
C
D
G
H
J
K
L
M
S
0.90  
0.25  
0.95 BSC  
1.10  
0.50  
C
SEATING  
PLANE  
0.05  
H
0.01  
0.10  
0.20  
1.25  
0
0.10  
0.26  
0.60  
1.55  
T
10  
3.00  
_
_
2.50  
SOLDERING FOOTPRINT*  
1.9  
0.074  
0.95  
0.037  
2.4  
0.094  
1.0  
0.039  
0.7  
0.028  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5773−3850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP600/D  

相关型号:

NCP600SN180T1G

High Performance Low-Power, LDO Regulator with Enable
ONSEMI

NCP600SN280T1G

High Performance Low-Power, LDO Regulator with Enable
ONSEMI

NCP600SN300T1G

High Performance Low-Power, LDO Regulator with Enable
ONSEMI

NCP600SN330T1G

High Performance Low-Power, LDO Regulator with Enable
ONSEMI

NCP600SN500T1G

High Performance Low-Power, LDO Regulator with Enable
ONSEMI

NCP600SNADJT1G

High Performance Low-Power, LDO Regulator with Enable
ONSEMI

NCP603

300 mA High Performance CMOS LDO Regulator with Enable and Enhanced ESD Protection
ONSEMI

NCP603SN130T1G

300 mA High Performance CMOS LDO Regulator with Enable and Enhanced ESD Protection
ONSEMI

NCP603SN150T1G

300 mA High Performance CMOS LDO Regulator with Enable and Enhanced ESD Protection
ONSEMI

NCP603SN180T1G

300 mA High Performance CMOS LDO Regulator with Enable and Enhanced ESD Protection
ONSEMI

NCP603SN250T1G

300 mA High Performance CMOS LDO Regulator
ONSEMI

NCP603SN280T1G

300 mA High Performance CMOS LDO Regulator with Enable and Enhanced ESD Protection
ONSEMI