NCP6922CCMTTXG [ONSEMI]

LDO Regulator, Dual, 4-Channel PMIC, Dual DC-DC Converters;
NCP6922CCMTTXG
型号: NCP6922CCMTTXG
厂家: ONSEMI    ONSEMI
描述:

LDO Regulator, Dual, 4-Channel PMIC, Dual DC-DC Converters

集成电源管理电路
文件: 总42页 (文件大小:2237K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP6922C  
4 Channels PMIC,  
2 x DC-to-DC Converters,  
2 x LDOs  
The NCP6922C integrated circuit is part of the ON Semiconductor  
mini power management IC family (PMIC). It is optimized to supply  
battery powered portable application subsystems such as camera  
function, microprocessors. This device integrates 2 high efficiency  
800 mA Stepdown DCtoDC converters with DVS (Dynamic  
Voltage Scale) and 2 low dropout (LDO) voltage regulators in a  
4x4 mm WQFN package.  
http://onsemi.com  
MARKING  
DIAGRAM  
xxxxxx  
ALYW  
G
Features  
WQFN20  
CASE 510AV  
2 DCtoDC Converters (3 MHz, 1 mH / 10 mF, 800 mA)  
Peak Efficiency 95%  
Programmable Output Voltage from 0.6 V to 3.3 V by 12.5 mV  
Steps  
2 Low Noise Low Drop Out Regulators (2.2 mF, 150 mA)  
Programmable Output Voltage from 1.0 V to 3.3 V by 50 mV Steps  
50 mVrms Typical Low Output Noise  
xxxxxx = 22CB2: NCP6922CB prototype  
= 22CC2: NCP6922CC prototype  
= 6922CB: NCP6922CB  
= 6922CC: NCP6922CC  
= 6922CD: NCP6922CD  
A
L
= Assembly Location  
= Wafer Lot  
Control  
Y
W
G
= Year  
= Work Week  
= PbFree Package  
2
400 kHz / 3.4 MHz I C Compatible  
2
Independent Enable Pins, I C Enable Control Bits  
Power Good Output Pin  
Customizable Power Up Sequence  
(PbFree indicator, “G” or microdot “ G”,  
may or may not be present.)  
Extended Input Voltage Range from 2.3 V to 5.5 V  
82 mA Low Quiescent Current at No Load  
Less than 7 mA Sleep Mode Current  
PIN OUT  
Footprint: 4.0 x 4.0 mm WQFN 0.5 mm Pitch  
These Devices are PbFree, Halogen Free/BFR Free and are RoHS  
20  
1
Compliant  
Typical Applications  
VIN3  
PGND2  
Cellular Phones, Tablets  
Digital Cameras  
VIN4  
PVIN2  
ENDCDC2  
PVIN1  
21  
AGND  
VOUT4  
ENLDO3  
ENLDO4  
(Thermal Pad)  
PGND1  
System Supply  
NCP6922C  
5.0 V  
4.7 mF  
System Supply  
5.0 V  
AVIN  
1.0 mF  
AGND  
10  
21  
PVIN1  
4
6
Core  
SW1  
DCDC1 Out  
1.2 V  
DCDC1  
800 mA  
1 mH  
FB1  
8
5
10 mF  
PGND1  
Thermal  
4.7 mF  
System Supply  
5.0 V  
Protection  
PVIN2  
2
(Top View)  
SW2  
20  
19  
DCDC2 Out  
1.2 V  
ENDCDC1  
ENDCDC2  
ENLDO3  
9
DCDC2  
800 mA  
1 mH  
FB2  
3
12  
10 mF  
Processor  
or System  
Supply  
PGND2  
1
Enabling  
PG  
ENLDO4 11  
PG  
15 VIN3  
System Supply  
5.0 V  
ORDERING INFORMATION  
LDO3  
7
150 mA  
16 VOUT3  
LDO3 Out  
2.5 V  
See detailed ordering and shipping information page 40 of this  
data sheet.  
System  
Supply  
5.0 V  
SDA 17  
14 VIN4  
2.2 mF  
LDO4  
2
Processor  
I C  
SCL  
150 mA  
18  
13  
VOUT4  
2
LDO4 Out  
2.5 V  
I C  
2.2 mF  
Figure 1. Application Schematic  
© Semiconductor Components Industries, LLC, 2014  
1
Publication Order Number:  
September, 2019 Rev. 2  
NCP6922C/D  
NCP6922C  
AVIN  
THERMAL  
SHUTDOWN  
PVIN1  
SERIAL  
SCL  
SDA  
DC to DC 1  
SW1  
INTERFACE  
800 mA  
STEPDOWN  
CONVERTER  
FB1  
PGND1  
ENDCDC1  
ENDCDC2  
ENLDO3  
PVIN2  
DC to DC 2  
SW2  
CONTROL  
800 mA  
STEPDOWN  
CONVERTER  
FB2  
ENLDO4  
PG  
PGND2  
VIN3  
LDO3  
VOUT3  
VIN4  
150 mA LDO  
UVLO  
VREF  
OSC  
LDO4  
VOUT4  
AGND  
150 mA LDO  
Figure 2. Functional Block Diagram  
http://onsemi.com  
2
NCP6922C  
20  
1
VIN3  
PGND2  
PVIN2  
VIN4  
21  
AGND  
(Thermal Pad)  
VOUT4  
ENLDO3  
ENLDO4  
ENDCDC2  
PVIN1  
PGND1  
Figure 3. Pin Out (Top View)  
Table 1. PIN FUNCTION DESCRIPTION  
Pin  
Name  
Type  
Description  
SUPPLY  
10  
AVIN  
Analog Input  
Analog Supply. This pin is the device analog and digital supply. A 1.0 mF ceramic capacitor or larger  
must bypass this input to ground. This capacitor should be placed as close as possible to this pin.  
21  
I/O  
9
AGND  
Analog Ground  
Analog Ground. Analog and digital modules ground. Must be connected to the system ground.  
ENDCDC1  
ENDCDC2  
ENLDO3  
ENLDO4  
SCL  
Digital Input  
Digital Input  
Digital Input  
Digital Input  
Digital Input  
Digital Input  
Digital Output  
DCDC1 Enable, high level will enable DCDC1; there is internal pull down resistor on this pin.  
DCDC2 Enable, high level will enable DCDC2; there is internal pull down resistor on this pin.  
LDO3 Enable, high level will enable LDO 3; there is internal pull down resistor on this pin.  
LDO4 Enable, high level will enable LDO 4; there is internal pull down resistor on this pin.  
3
12  
11  
18  
17  
7
2
I C interface Clock  
2
SDA  
I C interface Data  
PG  
Power Good open drain output.  
DCDC CONVERTERS  
4
6
8
5
PVIN1  
Power Input  
Power Output  
Analog Input  
Power Ground  
DCDC1 Power Supply. This pin must be decoupled to ground by a 4.7 mF ceramic capacitor.  
This capacitor should be placed as close a possible to this pin.  
SW1  
DCDC1 Switch Power. This pin connects the power transistors to one end of the inductor. Typic-  
al application uses 1.0 mH inductor; refer to application section for more information.  
FB1  
DCDC1 Feedback Voltage. This pin is the input to the error amplifier and must be connected to  
the output capacitor.  
PGND1  
DCDC1 Power Ground. This pin is the power ground and carries the high switching current. A  
high quality ground must be provided to prevent noise spikes. A local ground plane is recom-  
mended to avoid highdensity current flow in a limited PCB track.  
2
20  
19  
1
PVIN2  
SW2  
Power Input  
Power Output  
Analog Input  
Power Ground  
DCDC2 Power Supply. This pin must be decoupled to ground by a 4.7 mF ceramic capacitor.  
This capacitor should be placed as close a possible to this pin.  
DCDC2 Switch Power. This pin connects the power transistors to one end of the inductor. Typic-  
al application uses 1.0 mH inductor; refer to application section for more information.  
FB2  
DCDC2 Feedback Voltage. This pin is the input to the error amplifier and must be connected to  
the output capacitor.  
PGND2  
DCDC2 Power Ground. This pin is the power ground and carries the high switching current. A  
high quality ground must be provided to prevent noise spikes. A local ground plane is recom-  
mended to avoid highdensity current flow in a limited PCB track.  
LDO REGULATORS  
15 VIN3  
Power Input  
LDO3 Power Supply  
http://onsemi.com  
3
 
NCP6922C  
Table 1. PIN FUNCTION DESCRIPTION  
Pin  
Name  
Type  
Description  
LDO REGULATORS  
16  
14  
13  
VOUT3  
VIN4  
Power Output  
Power Input  
Power Output  
LDO3 Output Power. This pin requires a 2.2 mF decoupling capacitor.  
LDO4 Power Supply  
VOUT4  
LDO4 Output Power. This pin requires a 2.2 mF decoupling capacitor.  
Table 2. MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
Analog and power pins: AVIN, PVIN1, SW1, PVIN2, SW2, VIN3,  
VIN4, VOUT3, VOUT4, PG, FB1, FB2  
V
A
0.3 to + 6.0  
V
Digital pins: SCL, SDA, ENDCDC1,ENDCDC2, ENLDO3, ENLDO4:  
Input Voltage  
Input Current  
VDG  
IDG  
0.3 to VA +0.3 6.0  
V
mA  
10  
Human Body Model (HBM) ESD Rating are (Note 1)  
Charged Device Model (CDM) ESD Rating are (Note 1)  
ESD HBM  
ESD CDM  
ILU  
2000  
750  
V
V
Latch up Current: (Note 2)  
Digital pins  
10  
mA  
All other pins  
100  
Storage Temperature Range  
TSTG  
TJMAX  
MSL  
65 to + 150  
40 to +150  
Level 1  
°C  
°C  
Maximum Junction Temperature  
Moisture Sensitivity (Note 3)  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
Table 3. RECOMMENDED OPERATING CONDITIONS  
Symbol  
AV PV  
Parameter  
Analog and Power Supply  
Conditions  
Min  
2.3  
1.7  
40  
40  
Typ  
Max  
5.5  
Unit  
V
(Note 12)  
IN  
IN  
LDO  
LDO Input Voltage range  
5.5  
V
VIN  
T
A
Ambient Temperature Range  
25  
25  
40  
+85  
+125  
°C  
T
J
Junction Temperature Range (Note 5)  
Thermal Resistance Junction to Ambient (Note 6)  
°C  
R
WQFN20 on  
Demoboard  
°C/W  
q
JA  
P
P
Power Dissipation Rating (Note 7)  
T
85°C  
1000  
2125  
1
mW  
mW  
mH  
mF  
D
A
Power Dissipation Rating (Note 7)  
T = 40°C  
A
D
L
Inductor for DCtoDC converters (Note 4)  
Output Capacitor for DCtoDC Converters (Note 4)  
Output Capacitors for LDO (Note 4)  
0.47  
2.2  
Co  
10  
1.2  
2.2  
4.7  
mF  
Cin  
Input Capacitor for DCtoDC Converters (Note 4)  
mF  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
1. This device series contains ESD protection and passes the following tests:  
Human Body Model (HBM) 2.0 kV per JEDEC standard: JESD22A114,  
Charged Device Model (CDM) 750 V per JEDEC standard: JESD22C101.  
2. Latch up Current per JEDEC standard: JESD78 class II.  
3. Moisture Sensitivity Level (MSL): 1 per IPC/JEDEC standard: JSTD020A.  
4. Refer to the Application Information section of this data sheet for more details.  
5. The thermal shutdown set to 150°C (typical) avoids potential irreversible damage on the device due to power dissipation.  
6. The R  
is dependent of the PCB heat dissipation. Board used to drive this data was a 2x 2NCP6922CEVB board. It is a multilayer board  
q
JA  
with 1once internal power and ground planes and 2once copper traces on top and bottom of the board.  
7. The maximum power dissipation (P ) is dependent by input voltage, maximum output current and external components selected.  
D
125 * TA  
RqJA  
+
PD  
http://onsemi.com  
4
 
NCP6922C  
Table 4. ELECTRICAL CHARACTERISTICS (Min and Max limits apply for T = 40°C to +85°C, AV = PV  
= PV  
= V  
IN3  
=
A
IN  
IN1  
IN  
IN2  
IN1  
V
V
= 5.0 V and default configuration, unless otherwise specified. Typical values are referenced to T = + 25°C, AV = PV  
= PV  
=
IN4  
A
IN2  
= V  
= 5.0 V and default configuration) (Note 9).  
IN3  
IN4  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
SUPPLY CURRENT: PINS AVIN – PVIN1 – PVIN2  
Operating Quiescent Current  
I
Q
mA  
DCDCs & LDO4 Off  
17  
36  
82  
7
30  
70  
LDO3 on – no load  
DCDC1 on – no load – PFM  
DCDC2 & LDOs off  
DCDCs on – no load – PFM  
LDOs on – no load  
150  
15  
I
Sleep Mode Current  
All DCDC and LDOs off  
mA  
SLEEP  
DCDC1&2 STEP DOWN CONVERTERS  
PV  
Input Voltage Range  
V
V
V
2.1 V (Note 11)  
2.3  
5.0  
5.0  
5.5  
5.5  
IN1,2  
OUT  
> 2.1 V  
V
+0.2V  
OUT  
OUT  
I
Maximum Output Current  
Output Voltage DC Error  
0.8  
A
OUTMAX  
D
Forced PWM mode, V range,  
1  
1
%
VOUT  
IN  
I
from 0 mA and 100 mA  
OUT  
Forced PWM mode, VIN range,  
IOUT up to I (Note 10)  
1  
1  
1
2
OUTMAX  
Auto mode, V range,  
IN  
(Note 10)  
OUTMAX  
I
up to I  
OUT  
F
SW  
Switching Frequency  
Forced PWM  
2.7  
3
3.3  
MHz  
R
PChannel MOSFET  
On Resistance  
From PVIN1 / PVIN2 pins to SW1 /  
SW2 pins  
270  
400  
mW  
ONHS  
R
NChannel MOSFET  
On Resistance  
From SW1 / SW2 pins to PGND1 /  
PGND2 pins  
190  
300  
mW  
ONLS  
I
Peak Inductor Current  
Load Regulation  
Open loop  
1.0  
1.3  
5
1.6  
A
PK  
DC  
I
from 100 mA to I  
OUTMAX  
mV/A  
%
LOAD  
OUT  
DC  
Line Regulation  
PV = PV  
to 5.0 V, I = 100 mA  
OUT  
0.5  
100  
LINE  
IN  
INMIN  
D
Maximum Duty Cycle  
SoftStart Time  
%
2
t
Time from I C command ACK to 90% of  
Output Voltage  
0.6  
ms  
START  
R
DCDC Active Output  
Discharge  
7
W
DISDCDC  
LDO3 and LDO4  
V
V
LDO3 and LDO4 Input Voltage  
V
V
<= 1.5 V, I  
= 150 mA  
1.7  
5.5  
5.5  
V
IN3, IN4  
OUT  
OUT  
> 1.5 V, I  
= 150 mA  
Vout+V  
V
OUT  
OUT  
DROP  
I
Maximum Output Current  
150  
mA  
mA  
OUT  
I
Short Circuit Protection  
(foldback)  
V
IN  
= 3.6 V  
70  
SC  
I
Current Limit  
V
I
= 3.6 V  
= 75 mA  
200  
1  
500  
+1  
LIMIT  
IN  
ΔV  
Output Voltage Accuracy  
%
V
OUT  
OUT  
NOM  
NOM  
V
IN  
range, I  
= 0 mA and 150 mA  
2  
V
+2  
OUT  
(Note 10)  
DC  
Load Regulation  
Line Regulation  
I
= 0 mA to 150 mA  
0.5  
0.5  
%
%
LOAD  
OUT  
DC  
V
= V  
to 5.5 V, I  
= 150 mA  
LINE  
IN  
INMIN  
OUT  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
2
8. Devices that use nonstandard supply voltages which do not conform to the intent I C bus system levels must relate their input levels to  
the V voltage to which the pullup resistors R are connected.  
DD  
P
9. Refer to the Application Information section of this data sheet for more details.  
10.Guaranteed by design and characterized.  
11. Operation above 5.5 V input voltage for extended periods may affect device reliability.  
http://onsemi.com  
5
 
NCP6922C  
Table 4. ELECTRICAL CHARACTERISTICS (Min and Max limits apply for T = 40°C to +85°C, AV = PV  
= PV  
= V  
IN3  
=
A
IN  
IN1  
IN  
IN2  
IN1  
V
V
= 5.0 V and default configuration, unless otherwise specified. Typical values are referenced to T = + 25°C, AV = PV  
= PV  
=
IN4  
A
IN2  
= V  
= 5.0 V and default configuration) (Note 9).  
IN3  
IN4  
Symbol  
LDO3 and LDO4  
Dropout Voltage  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
V
V
= V  
2%, I  
= 150 mA  
95  
180  
mV  
mV  
DROP  
OUT  
NOM  
OUT  
= 1.15 V, I  
= 150 mA  
550  
OUT  
OUT  
(Driven by V  
)
INMIN  
PSRR  
Ripple Rejection  
dB  
F = 1 kHz,  
OUT  
65  
55  
I
75% max load, V  
=1.8 V  
=1.8 V  
OUT  
F = 10 kHz  
75% max load, V  
I
OUT  
OUT  
Noise  
10 Hz ³ 100 kHz, V  
= 1.8 V  
55  
20  
mV  
OUT3,4  
R
LDO Active Output Discharge  
W
DISLDO3,4  
ENx  
V
High input voltage  
Low input voltage  
Enable Filter  
1.1  
V
V
IH  
V
0.4  
18  
1.0  
IL  
EN  
PD  
t
I
Enable pins rising / falling (Note 10)  
4
ms  
uA  
Enable Pins PullDown (input  
bias current)  
0.1  
POWER GOOD  
V
Power Good Low Threshold  
Falling edge as a percentage of nominal  
output voltage  
86  
90 of  
NOM  
95  
5
%
PGL  
V
V
Power Good detection level  
Power Good Reaction Time  
0.2  
3
%
PGHYS  
t
Falling (Note 10)  
Rising (Note 10)  
3
3
14  
ms  
RT  
V
Power Good low output voltage  
Power Good leakage current  
I
= 5 mA  
0.2  
100  
5.5  
V
nA  
V
PGL  
PG  
PG  
3.6V at PG pin when power good valid  
Open drain  
LK  
V
PGH  
Power Good high output volt-  
age  
2
I C  
V
High level at SCL/SDA line  
SCL, SDA low input voltage  
SCL, SDA high input voltage  
SCL, SDA low output voltage  
5.5  
0.5  
V
V
I2CINT  
V
SCL, SDA pin (Note 9 and 10)  
SCL, SDA pin (Note 9 and 10)  
I2CIL  
I2CIH  
I2COL  
V
0.8xV  
V
I2CINT  
V
I
= 3 mA (Note10)  
0.4  
3.4  
V
SINK  
2
F
I C clock frequency  
(Note 10)  
MHz  
SCL  
TOTAL DEVICE  
V
Under Voltage Lockout  
V
V
falling  
rising  
2.3  
V
UVLO  
IN  
V
Under Voltage Lockout  
Hysteresis  
60  
200  
mV  
UVLOH  
IN  
T
Thermal Shut Down Protection  
Warning Rising Edge  
150  
135  
35  
°C  
°C  
°C  
SD  
T
WARNING  
T
Thermal Shut Down Hysteresis  
SDHYS  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
2
8. Devices that use nonstandard supply voltages which do not conform to the intent I C bus system levels must relate their input levels to  
the V voltage to which the pullup resistors R are connected.  
DD  
P
9. Refer to the Application Information section of this data sheet for more details.  
10.Guaranteed by design and characterized.  
11. Operation above 5.5 V input voltage for extended periods may affect device reliability.  
http://onsemi.com  
6
 
NCP6922C  
TYPICAL CHARACTERISTICS  
(AV = PV  
= PV  
= V  
= V  
= 5.0 V (Unless otherwise noted). T = +25_C, DCDC1 = 1.20 V, DCDC2 = 3.30 V, LDO3 = 1.15 V  
IN  
IN1  
IN2  
IN3  
IN4  
A
LDO4 = 2.5 V, C  
= 2.2 mF 0603, L  
= 1.0 mF (SPM30121R0M) * C  
= 10 mF 0603)  
LDO  
DCDC  
DCDC  
Figure 4. Efficiency vs ILOAD and VIN VOUT  
3.30 V, SPM6530 Inductor  
=
=
=
Figure 5. Efficiency vs ILOAD and Temperature  
OUT = 3.30 V, SPM6530 Inductor  
V
Figure 6. Efficiency vs ILOAD and VIN VOUT  
1.20 V, SPM6530 Inductor  
Figure 7. Efficiency vs ILOAD and Temperature  
OUT = 1.20 V, SPM6530 Inductor  
V
Figure 8. Efficiency vs ILOAD and VIN VOUT  
0.60 V, SPM6530 Inductor  
Figure 9. Efficiency vs ILOAD and Temperature  
OUT = 0.60 V, SPM6530 Inductor  
V
http://onsemi.com  
7
NCP6922C  
TYPICAL CHARACTERISTICS  
(AV = PV  
= PV  
= V  
= V  
= 5.0 V (Unless otherwise noted). T = +25_C, DCDC1 = 1.20 V, DCDC2 = 3.30 V, LDO3 = 1.15 V  
IN  
IN1  
IN2  
IN3  
IN4  
A
LDO4 = 2.5 V, C  
= 2.2 mF 0603, L  
= 1.0 mF (SPM30121R0M) * C  
= 10 mF 0603)  
LDO  
DCDC  
DCDC  
Figure 10. Efficiency vs ILOAD and VIN DCDC1,  
OUT = 1.20 V, SPM3012 Inductor  
Figure 11. Efficiency vs ILOAD and Temperature  
DCDC1, VOUT = 1.20 V, SPM3012 Inductor  
V
Figure 12. Efficiency vs ILOAD and VIN DCDC2  
Figure 13. Efficiency vs ILOAD and Temperature  
DCDC2, VOUT = 1.20 V, SPM3012 Inductor  
VOUT = 1.20 V, SPM3012 Inductor  
Figure 14. Efficiency vs ILOAD and VIN DCDC2  
Figure 15. Efficiency vs ILOAD and Temperature  
DCDC2, VOUT = 3.30 V, SPM3012 Inductor  
VOUT = 3.30 V, SPM3012 Inductor  
http://onsemi.com  
8
NCP6922C  
TYPICAL CHARACTERISTICS  
(AV = PV  
= PV  
= V  
= V  
= 5.0 V (Unless otherwise noted). T = +25_C, DCDC1 = 1.20 V, DCDC2 = 3.30 V, LDO3 = 1.15 V  
IN  
IN1  
IN2  
IN3  
IN4  
A
LDO4 = 2.5 V, C  
= 2.2 mF 0603, L  
= 1.0 mF (SPM30121R0M) * C  
= 10 mF 0603)  
LDO  
DCDC  
DCDC  
Figure 16. VOUT accuracy (mV) vs ILOAD and  
IN DCDC1, VOUT = 1.20 V  
Figure 17. VOUT accuracy (%) vs ILOAD and  
Temperature DCDC1, VOUT = 1.20 V  
V
Figure 18. VOUT accuracy (mV) vs ILOAD and  
IN DCDC2, VOUT = 1.20 V  
Figure 19. VOUT accuracy (%) vs ILOAD and  
Temperature DCDC1, VOUT = 1.20 V  
V
Figure 20. VOUT accuracy (mV) vs ILOAD and  
IN DCDC2, VOUT = 3.30 V  
Figure 21. VOUT accuracy (%) vs ILOAD and  
Temperature DCDC2, VOUT = 3.30 V  
V
http://onsemi.com  
9
NCP6922C  
TYPICAL CHARACTERISTICS  
(AV = PV  
= PV  
= V  
= V  
= 5.0 V (Unless otherwise noted). T = +25_C, DCDC1 = 1.20 V, DCDC2 = 3.30 V, LDO3 = 1.15 V  
IN  
IN1  
IN2  
IN3  
IN4  
A
LDO4 = 2.5 V, C  
= 2.2 mF 0603, L  
= 1.0 mF (SPM30121R0M) * C  
= 10 mF 0603)  
LDO  
DCDC  
DCDC  
Figure 22. DCDC1 HSS RON vs VIN and  
Temperature  
Figure 23. DCDC1 LSS RON vs VIN and  
Temperature  
Figure 24. DCDC2 HSS RON vs VIN and  
Temperature  
Figure 25. DCDC2 LSS RON vs VIN and  
Temperature  
Figure 26. DCDC1 Switchover Point VOUT  
1.20V  
=
Figure 27. DCDC2 Switchover Point VOUT  
3.30V  
=
http://onsemi.com  
10  
NCP6922C  
TYPICAL CHARACTERISTICS  
(AV = PV  
= PV  
= V  
= V  
= 5.0 V (Unless otherwise noted). T = +25_C, DCDC1 = 1.20 V, DCDC2 = 3.30 V, LDO3 = 1.15 V  
IN  
IN1  
IN2  
IN3  
IN4  
A
LDO4 = 2.5 V, C  
= 2.2 mF 0603, L  
= 1.0 mF (SPM30121R0M) * C  
= 10 mF 0603)  
LDO  
DCDC  
DCDC  
Figure 28. ISLEEP vs VIN and Temperature  
Figure 29. IQ LDO3 vs VIN and Temperature  
Figure 30. IQ PFM vs VIN and Temperature  
Figure 31. IQ PWM vs VIN and Temperature  
Figure 32. IQ vs VIN and Temperature  
http://onsemi.com  
11  
NCP6922C  
TYPICAL CHARACTERISTICS  
(AV = PV  
= PV  
= V  
= V  
= 5.0 V (Unless otherwise noted). T = +25_C, DCDC1 = 1.20 V, DCDC2 = 3.30 V, LDO3 = 1.15 V  
IN  
IN1  
IN2  
IN3  
IN4  
A
LDO4 = 2.5 V, C  
= 2.2 mF 0603, L  
= 1.0 mF (SPM30121R0M) * C  
= 10 mF 0603)  
LDO  
DCDC  
DCDC  
Figure 33. VOUT accuracy (mV) vs ILOAD and  
IN LDO3, VOUT = 1.15 V  
Figure 34. VOUT accuracy (%) vs ILOAD and VIN  
LDO3, VOUT = 1.15 V  
V
Figure 35. VOUT accuracy (mV) vs ILOAD and  
IN LDO3, VOUT = 2.50 V  
Figure 36. VOUT accuracy (%) vs ILOAD and VIN  
LDO3, VOUT = 2.50 V  
V
Figure 37. VOUT accuracy (mV) vs ILOAD and  
IN LDO4, VOUT = 2.50 V  
Figure 38. VOUT accuracy (%) vs ILOAD and VIN  
LDO4, VOUT = 2.50 V  
V
http://onsemi.com  
12  
NCP6922C  
TYPICAL CHARACTERISTICS  
(AV = PV  
= PV  
= V  
= V  
= 5.0 V (Unless otherwise noted). T = +25_C, DCDC1 = 1.20 V, DCDC2 = 3.30 V, LDO3 = 1.15 V  
IN  
IN1  
IN2  
IN3  
IN4  
A
LDO4 = 2.5 V, C  
= 2.2 mF 0603, L  
= 1.0 mF (SPM30121R0M) * C  
= 10 mF 0603)  
LDO  
DCDC  
DCDC  
Figure 39. Load transient response DCDC1  
FPWM, VOUT = 1.20 V  
Figure 40. Load transient response DCDC2  
FPWM, VOUT = 1.20 V  
Figure 41. Load transient response DCDC2  
FPWM, VOUT = 3.30 V  
Figure 42. Load transient response LDO3,  
VOUT = 1.35 V  
Figure 43. Load transient response LDO3,  
Figure 44. Load transient response LDO4,  
VOUT = 2.50 V  
V
OUT = 2.50 V  
http://onsemi.com  
13  
NCP6922C  
TYPICAL CHARACTERISTICS  
(AV = PV  
= PV  
= V  
= V  
= 5.0 V (Unless otherwise noted). T = +25_C, DCDC1 = 1.20 V, DCDC2 = 3.30 V, LDO3 = 1.15 V  
IN  
IN1  
IN2  
IN3  
IN4  
A
LDO4 = 2.5 V, C  
= 2.2 mF 0603, L  
= 1.0 mF (SPM30121R0M) * C  
= 10 mF 0603)  
LDO  
DCDC  
DCDC  
Figure 45. Ripple voltage in PWM mode  
DCDC1, VOUT = 1.35 V, IOUT=200mA  
Figure 46. Ripple voltage in PWM mode  
DCDC2, VOUT = 1.20 V, IOUT=200mA  
Figure 47. Ripple voltage in PWM mode  
DCDC2, VOUT = 3.30 V, IOUT=200mA  
Figure 48. NCP6922CB Powerup Sequence  
All Enable pins high  
Figure 49. NCP6922CB powerup sequence  
Figure 50. NCP6922CB powerup sequence  
ENLDO4 high first then others enable  
All ENx after the power up sequence  
http://onsemi.com  
14  
NCP6922C  
TYPICAL CHARACTERISTICS  
(AV = PV  
= PV  
= V  
= V  
= 5.0 V (Unless otherwise noted). T = +25_C, DCDC1 = 1.20 V, DCDC2 = 3.30 V, LDO3 = 1.15 V  
IN  
IN1  
IN2  
IN3  
IN4  
A
LDO4 = 2.5 V, C  
= 2.2 mF 0603, L  
= 1.0 mF (SPM30121R0M) * C  
= 10 mF 0603)  
LDO  
DCDC  
DCDC  
Figure 51. LDO3 PSRR IOUT = 100 mA  
Figure 52. LDO3 Noise VIN = 3.8 V, IOUT = 10 mA  
Figure 53. LDO4 PSRR IOUT = 100 mA  
Figure 54. LDO3 vs LDO4 Noise VIN = 3.8 V,  
OUT = 1.8 V, IOUT = 10 mA  
V
Figure 55. DCDC PSRR VIN = 3.8V, VOUT  
1.2 V, IOUT = 200 mA  
=
Figure 56. LDO4 noise with or without DCDC2  
LDO4 VOUT = 2.50 V, DCDC2 VOUT = 1.80 V  
http://onsemi.com  
15  
NCP6922C  
GENERAL DESCRIPTION  
circuit is therefore implemented to prevent the part from  
being damaged. This protection circuit is only activated  
when the core is in active mode (at least one output channel  
is enabled). During thermal shutdown, all outputs of the  
NCP6922C are off. When the NCP6922C returns from  
thermal shutdown mode, it cans restart in three different  
configurations depending on REARM[1:0] bits:  
1. If REARM[1:0] = 00 then NCP6922C restarts  
with default register values,  
The NCP6922C mini power management integrated  
circuit is optimized to supply different sub systems of  
battery powered portable applications. The IC can be  
supplied directly from the latest technology single cell  
batteries such as LithiumPolymer as well as from triple  
alkaline cells. Alternatively, the IC can be supplied from a  
preregulated supply rail in case of multicell or mains  
powered applications.  
It integrates two switched mode DCtoDC converters  
and two low dropout linear regulators. The IC is widely  
programmable through an I C interface and includes low  
level IO signaling. An analog core provides the necessary  
references for the IC while a digital core ensures proper  
control.  
The output voltage range, current capabilities and  
performance of the switched mode DCtoDC converters  
are well suited to supply the different peripherals in the  
system as well as to supply processor cores. To reduce  
overall power consumption of the application, Dynamic  
Voltage Scaling (DVS) is supported on the DCtoDC  
converters. For PWM operation, the converters run on a  
local 3 MHz clock. A low power PFM mode ensures that,  
even at low loads, high efficiency can be achieved. All the  
switching components are integrated including the  
compensation networks and synchronous rectifier. Only a  
small size 1 mH inductor and 10 mF bypass capacitor are  
required for typical applications.  
2. If REARM[1:0] = 01 it restarts with register  
values set prior to thermal shutdown,  
3. Finally if REARM[1:0] = 10, NCP6922C does not  
restart automatically, a toggle of HWEN or ENx  
pins is needed.  
2
In addition, a thermal warning is implemented which can  
inform the processor through an interrupt (if not masked)  
that NCP6922C is close to its thermal shutdown so that  
preventive measurement can be taken by software.  
ACTIVE OUTPUT DISCHARGE  
Active output discharge can be independently enabled /  
disabled by the appropriate settings in the DIS register (refer  
to the register definition section). However to prevent any  
disturbances on the powerup sequence, a quick active  
output discharge is done during the startup sequence for all  
output channels. When the IC is turned off through HWEN  
pin (or ENx pins) or AVIN drops down below UVLO  
threshold, no shut down sequence is expected, all supplies  
are disabled and outputs discharged simultaneously if  
discharge enabled.  
The general purpose low dropout regulators can be used  
to supply the lower power rails in the application. To  
improve the overall application standby current, regulators  
bias current is very low. The regulators have their own input  
supply pin to be able to connect them independently to either  
the system supply rail or to the DCtoDC converter output,  
in the application. The regulators are bypassed with a small  
size 2.2 mF capacitor.  
ENABLING  
By default when applying a valid AVIN with all Enable  
pins (ENx) low, all supply rails will remain off. Each power  
rail can be independently enabled by making the ENx pins  
high or by setting the related enable bit in the ENABLE  
register, see Table 2. The voltage of the supply rails can be  
2
All IC feature can be controlled by I C interface. In  
2
programmed through I C before enabling. A builtin  
addition to this bus, digital control pins including individual  
enable (ENx) and power good (PG) are provided.  
pulldown resistor disables supply rail if the corresponding  
EN pin is left unconnected.  
UNDER VOLTAGE LOCKOUT  
Power Up Sequence and ENx  
The core does not operate for voltages below the Under  
Voltage lock Out (UVLO) level. Below UVLO threshold, all  
internal circuitry (both analog and digital) is held in reset.  
NCP6922C operation is guaranteed down to VUVLO  
when battery voltage is dropping down. To avoid erratic on  
/ off behaviour, a maximum 200 mV hysteresis is  
implemented. Restart is guaranteed at 2.5 V when VBAT  
voltage is recovering or rising up.  
When applying a valid AVIN with all ENx pins high, the  
part will start up in the default configuration that is factory  
programmed. This default configuration determines the  
order of enabling and the output voltage.  
During the powerup sequence, the state of  
a
LDO/DCtoDC is defined by its corresponding EN pin, its  
2
I C EN bit and its TAP position in the sequence. The  
LDO/DCtoDC will be enabled as soon as the sequencer  
2
passes its TAP, AND the corresponding EN pin OR I C EN  
THERMAL SHUTDOWN  
bit is high.  
The thermal capabilities of the device can be exceeded  
due to the output power capabilities of the on chip step down  
converters and low drop out regulators. A thermal protection  
Any order and output voltage setting can be factory  
programmed upon request.  
http://onsemi.com  
16  
NCP6922C  
Two different powerup sequences are predefined:  
Table 5. NCP6922CB POWER UP SEQUENCE  
Table 6. NCP6922CC POWER UP SEQUENCE  
Default  
Vprog  
Default Mode −  
Default  
Vprog  
Default Mode −  
ON/OFF  
ON/OFF  
Rail  
Sequencer  
Rail  
Sequencer  
DCDC1  
DCDC2  
LDO3  
T2  
T1  
T2  
T1  
1.20 V  
1.20 V  
2.50 V  
2.50 V  
Forced PWM OFF  
Forced PWM OFF  
OFF  
DCDC1  
DCDC2  
LDO3  
T3  
T0  
T0  
T0  
1.35 V  
3.30 V  
1.15 V  
2.50 V  
Forced PWM OFF  
Auto mode OFF  
OFF  
LDO4  
OFF  
LDO4  
OFF  
Table 7. NCP6922CD POWER UP SEQUENCE  
Default  
Vprog  
Default Mode −  
ON/OFF  
Rail  
Sequencer  
DCDC1  
DCDC2  
LDO3  
T2  
T4  
T1  
T3  
1.50 V  
1.10 V  
1.80 V  
3.30 V  
Auto Mode ON  
Auto Mode ON  
ON  
ON  
LDO4  
NCP6922CB powerup diagrams are depicted in Figures 57, 58, 59:  
AVIN  
ENx  
Sequencer  
T0 T1 T2 T3 T4 T5 T6 T7  
DVS ramp  
time  
600 ms  
T17  
Tstart  
(2 ms)  
Bias  
time  
DCDC1  
1.20 V  
Init time  
160 ms  
DVS ramp time  
DCDC2  
1.20 V  
Init time  
160 ms  
t
VOUT3  
2.5 V  
Init time  
50 ms  
VOUT4  
2.5 V  
Init time  
50 ms  
Reset  
36 ms (18 x Tsequencer)  
Figure 57. NCP6922CB Power Up Sequence with All ENx Pins High  
http://onsemi.com  
17  
 
NCP6922C  
AVIN  
ENLDO4  
Other  
ENx  
Sequencer  
(2 ms)  
T0 T1 T2 T3 T4 T5 T6 T7  
T17  
Tstart  
Bias  
time  
DCDC1  
1.20 V  
600 ms  
Init time  
160 ms  
DCDC2  
1.20 V  
Init time  
160 ms  
VOUT3  
2.5 V  
Init time  
50 ms  
VOUT4  
2.5 V  
Init time  
50 ms  
Reset  
36 ms (18 x Tsequencer)  
Figure 58. NCP6922CB Powerup Sequence with Only ENLDO4 High First then Others Enable  
AVIN  
ENx  
Sequencer  
T0 T1  
T17  
Tstart  
(2 ms)  
Bias time  
DCDC1  
1.20 V  
600 ms  
Init time  
160 ms  
DCDC2  
1.20 V  
Init time  
160 ms  
VOUT3  
2.5 V  
Init time  
50 ms  
VOUT4  
2.5 V  
Init time  
50 ms  
Reset  
36 ms (18 x Tsequencer)  
Figure 59. NCP6922CB Powerup Sequence with All ENx After the Power Up Sequence  
2
I C registers can be read and written while ENx pins are  
low. By programming the appropriate registers (see registers  
description section), the power up sequence can be  
modified.  
Note that each enable pin has a corresponding sense bit  
reflecting the state of the pin: sense bit is 1 when pin is high  
(filtered) and 0 when the pin is low (filtered).  
Shutdown  
Reset to the factory default configuration can be achieved  
either by hardware reset (all power supplies removed) or by  
writing through the I C in the RESET register.  
When shutting down the device (AVIN falls below the  
Under Voltage threshold VUVLO), no shut down sequence  
is applied. All supplies are disabled and outputs are  
discharged simultaneously, and PG open drain output is low.  
2
Enable Control  
DYNAMIC VOLTAGE SCALING (DVS)  
Table 8. TRUTH TABLE OF ENABLE/DISABLE CONTROL  
The step down converters support dynamic voltage  
scaling (DVS). This means output voltage can be  
individually reprogrammed by I C commands to provide  
the different voltages required by the processor. Change  
between two different voltages is managed in a smooth  
manner without disturbing the operation of the processor.  
Enable Pin  
Enable bit  
Output  
Disabled  
Enabled  
Enabled  
Enabled  
L
L
0
1
0
1
2
H
H
http://onsemi.com  
18  
NCP6922C  
When programming a higher voltage, the reference of the  
to change DCDCx Output Voltage from 1.2 V to 0.9 V, and  
be programmed to 0 to move back from 0.9 V to 1.2 V.  
switcher and therefore the output is raised in equidistant  
steps per defined time period such that the dV/dt is  
controlled (by default 12.5 mV / 1.33 ms). When  
programming a lower voltage the output voltage will  
decrease accordingly. The DVS step is fixed and the speed  
is programmable.  
Table 11. VPROGDCDCX / VDVSDCDCX SETTINGS  
FOR VDCDCX SWITCHING BETWEEN 1.2 V AND 0.9 V  
Register Name  
VPROGDCDCx  
VDVSDCDCx  
Values  
0$30  
Target VDCDC (V)  
1.2  
0.9  
V2  
0$18  
Output  
Voltage  
Internal  
Reference  
DV  
DCtoDC CONVERTERS AND LDOS POWER GOOD  
To indicate the output of a converter is established, a  
power good signal is available for each output channel  
(routed in the INT_SEN1 register). The power good signal  
is high when the channel is off and goes low when enabling  
the channel. Once the output voltage reaches the expected  
output level, the power good signal becomes high again.  
When during operation the output gets below 90% of the  
expected level, the power good signal goes low which  
indicates a power failure. When the voltage rises again  
above 95% the power good signal goes high again.  
Dt  
V1  
Figure 60. Default Dynamic Voltage Scaling Effect  
Timing Diagram  
Programmability  
DCtoDC converter output voltage can be controlled by  
GOx bit (TIME register) with VPROGDCDCx[7:0] and  
VDVSDCDCx[7:0] registers. Available output levels are  
listed in table VPROGDCDCx[7:0] and VDVSDCDCx[7:0]  
in register description.  
GOx bit determines whether DCtoDC output voltage  
value is set in VPROGDCDCx[7:0] register or in  
VDVSDCDCx[7:0] register.  
Note that these PG Sense bits are independent of  
PGASSIGN_x and PGGATE_x bits.  
ENDCDCx  
95%  
90%  
160 ms  
Table 9. GO BIT DESCRIPTION  
DCDCx  
GOx  
Bit Description  
314 ms 3 ms  
314 ms  
0
1
Output voltage is set to VPROGDCDCx  
Output voltage is set to VDVSDCDCx  
SEN_PG_DCDCx  
The two DVS bits in the TIME register determine the  
ramp up time per each voltage step.  
Figure 61. DCDCx Channel Internal Power Good  
Signal  
Table 10. DVS BITS DESCRIPTION  
ENLDOx  
DVS [1:0]  
Bit Description  
1.33 ms per step (default)  
95%  
90%  
50 ms  
00  
01  
10  
11  
LDOx  
2.67 ms per step  
5.33 ms per step  
10.67 ms per step  
250 ms 3 ms  
250 ms  
SEN_PG_LDOx  
2
There are two ways of I C registers programming to  
switch the DCtoDC converters output voltages between  
different levels:  
Figure 62. DCDCx Channel Internal Power Good  
Signal  
Power Good Assignment and Gating  
1. Preset VPROGDCDCx[7:0] and  
Each power good sense signal can be individually  
assigned to the PG pin through PGASSIGN_x bits of  
PGOOD1 register. In addition, 3 other signals can be  
assigned to the PG pin: the internal reset signal and the  
DCDC DVS signals through the PGOOD1 register. By  
assigning the internal reset signal, the PG pin is held low  
throughout the power up sequence and the reset period (by  
default). By assigning the DVS signal of a converter, the PG  
pin is made low during the period the output voltage is being  
VDVSDCDCx[7:0] registers, and start DVS  
sequence by changing GOx bit state.  
2. GOx bit remains unchanged, change output  
voltage value in either VPROGDCDCx[7:0] or  
VDVSDCDCx[7:0] register.  
For example, the device needs to supply either 1.2 V or  
0.9 V depending on working conditions. If using method 1,  
VPROGDCDCx[7:0] and VDVSDCDCx[7:0] should be set  
as shown in Table 11. GOx bit should be programmed to 1  
http://onsemi.com  
19  
 
NCP6922C  
raised to the new setting as shown in Figure 63. The PG pin  
state is an AND combination of assigned signals.  
Moreover PGGATE_x bits of the PGOOD2 register force  
the PG pin low when the channel is off.  
2
POWER GOOD PIN  
I C  
The PG pin is an open drain output. By default, the power  
good signal of DCDC2 converter and reset signal are  
assigned to the PG pin and DCDC2 gates PG pin.  
DVS START  
DCDCx  
95%  
FINAL VALUE  
of FINAL  
VALUE  
INITIAL  
VALUE  
PG  
Figure 63. PG Operation in DVS Sequence  
ENDCDC1  
PGGATE_DCDC1  
OR  
OR  
OR  
OR  
SEN_PG_DCDC1  
PGASSIGN_DCDC1  
AND  
AND  
OR  
OR  
OR  
ENDCDC2  
PGGATE_DCDC2  
SEN_PG_DCDC2  
PGASSIGN_DCDC2  
ENLDO3  
PGGATE_LDO3  
SEN_PG_LDO3  
PGASSIGN_LDO3  
AND  
ENLDO4  
PGGATE_LDO4  
PG pin  
SEN_PG_LDO4  
PGASSIGN_LDO4  
AND  
AND  
OR  
OR  
OR  
DCDC1_DVS  
PGASSIGN_DVS1  
DCDC2_DVS  
PGASSIGN_DVS2  
RESET  
PGASSIGN_RST  
OR  
Figure 64. PG Pin Description Behavior  
in the TIME register. The default delay is 0 ms could be  
change upon request  
ENDCDC1  
DCDC1  
ENDCDC2  
DCDC2  
PG  
INTERNAL SIGNAL (RESULT  
OF THE ASSIGNED INTERNAL PG)  
PG  
No Delay  
Figure 65. Power Good Behavior in Case of  
DCDC2 Monitoring and DCDC2 Gating  
Delay Programmed in TOR[2:0]  
Power Good Delay  
Figure 66. PG Delay  
A delay can be programmed between the moment the  
AND result of the assigned internal power good signals  
becomes high and the moment the PG pin is released. The  
delay is set from 0 ms to 512 ms through the TOR[2:0] bits  
http://onsemi.com  
20  
 
NCP6922C  
Interrupt  
Individual bits generating interrupts will be set to 1 in the  
INT_ACK1/INT_ACK2 registers (I C read only registers),  
2
The interrupt controller continuously monitors internal  
interrupt sources, generating an interrupt signal when a  
system status change is detected (dual/rising edge  
monitoring). The interrupt sources include:  
indicating the interrupt source. INT_ACK1/INT_ACK2  
2
registers are reset by an I C read. INT_SEN1/INT_SEN2  
registers (read only registers) are real time indicators of  
interrupt sources.  
When the host reads the INT_ACK1/INT_ACK2  
registers the interrupt registers INT_ACK1/INT_ACK2 are  
cleared.  
Table 12. INTERRUPT SOURCES  
Interrupt  
PG_DCDC1  
PG_DCDC2  
PG_LDO3  
PG_LDO4  
UVLO  
Description  
DCDC1 Converter Power Good (dual edge)  
DCDC2 Converter Power Good (dual edge)  
LDO3 Power Good (dual edge)  
LDO4 Power Good (dual edge)  
UVLO state (dual edge)  
Figure 67 shows how DCDC1 converter power good  
2
produces interrupt with INT_SEN1/INT_ACK1 and I C  
read access (assuming no other interrupt happens during this  
read period).  
IDCDC1  
DCDC1 Converter Output Over Current (ris-  
ing edge)  
IDCDC2  
DCDC2 Converter Output Over Current (ris-  
ing edge)  
ILDO3  
ILDO4  
WNRG  
TSD  
LDO3 Output Over Current (dual edge)  
LDO4 Output Over Current (dual edge)  
Thermal Warning (dual edge)  
Thermal Shutdown (dual edge)  
PG_DCDC1  
INT_SEN1[0]  
INT_ACK1[0]  
2
read read  
read  
I C access on INT_ACK1  
read  
Figure 67. Interrupt Timing Chart Example of PG_DCDC1  
Note that each enable pin has a corresponding sense bit  
reflecting the state of the pin, without interrupt associated.  
Foldback also reduces power dissipation in the load in  
fault conditions, which can reduce the risks of fire and heat  
damage.  
LOW DROP OUT REGULATOR  
The LDOs (low drop out regulator) are based on an  
embedded PMOS and requires no external stability  
components or feedback networks.  
The low drop out regulators can be supplied from the  
systems supply rail such as a battery or from a step down  
convertor as available on the IC itself. The latter case  
provides a power efficient line up when the voltage drop  
allows such. When the output of the LDO gets out of  
regulation, due to for instance a short at the output, an  
interrupt is generated and optionally the LDO is  
automatically disabled.  
Current Limitation  
Figure 68. 1.0 V LDO Foldback Current Limit Principe  
Both LDOs have foldback current limiter: the goal of the  
foldback current limit is to reduce the output voltage and the  
current in order to limit the power dissipation (see  
Figure 68). Under a short circuit, where the output voltage  
has reduced below ~30% nominal value, the current (I ) is  
typically limited to a small fraction of the maximum current  
DCtoDC STEP DOWN CONVERTERS  
The DCtoDC converters are synchronous rectifier type  
with both high side and low side integrated switches. Neither  
external transistor nor diodes are required for proper  
operation. Feedback and compensation network are also  
fully integrated.  
SC  
(I  
).  
LIMIT  
http://onsemi.com  
21  
 
NCP6922C  
The DCtoDC converters can operate in two different  
PMOSFET onpulse with very small negative current  
limit. When load increases and current in inductor becomes  
continuous again, the controller automatically turns back to  
PWM fixed frequency mode.  
modes: PWM and PFM. The transition between PWM/PFM  
modes can occur automatically or the switcher can be placed  
2
in forced PWM mode by I C programming. (MODEDCDC1  
& MODEDCDC2 bits of ENABLE register)  
Forced PWM  
The DCtoDC converters can be programmed to only  
use PWM and disable the transition to PFM.  
PWM (Pulse Width Modulation) Operating Mode  
In medium and high load conditions, DCtoDCs operate  
in PWM mode from a fixed clock and adapts its duty cycle  
to regulate the desired output voltage. In this mode, the  
inductor current is in CCM and the voltage is regulated by  
PWM. The internal NMOSFET switch operates as  
synchronous rectifier and is driven complementary to the  
PMOSFET switch. In CCM, the lower switch  
(NMOSFET) in a synchronous converter provides a lower  
voltage drop than the diode in an asynchronous converter,  
which provides less loss and higher efficiency.  
Table 13. MODEDCDC1&2 BIT DESCRIPTION  
MODEDCDC1&2  
Bit Description  
Auto switching PFM / PWM  
Forced PWM  
0
1
Inductor Peak Current Limitation  
During normal operation, peak current limitation will  
monitor and limit the current through the inductor. This  
current limitation is particularly useful when size and/or  
height constrains inductor power  
PFM (Pulse Frequency Modulation) Operating Mode  
In order to save power and improve efficiency at low loads  
the DCtoDC converters operate in PFM mode as the  
inductor drops into DCM (Discontinuous Current Mode).  
The upper FET on time is kept constant and the switching  
frequency is variable. Output voltage is regulated by varying  
the switching frequency which becomes proportional to  
loading current. As it does in PWM mode, the internal  
NMOSFET operates as synchronous rectifier after each  
Soft Start  
A soft start is provided to limit inrush currents when  
enabling the converter. After enabling and internal delays  
elapsed, the DC to DC converter output will gradually ramp  
up to the programmed voltage.  
http://onsemi.com  
22  
NCP6922C  
2
I C COMPATIBLE INTERFACE  
NCP6922C can support a subset of I C protocol, below are detailed introduction for I C programming.  
2
2
I2C Communication Description  
ON Semiconductor communication protocol is a subset of I C protocol.  
2
FROM MCU to NCPxxxx  
FROM NCPxxxx to MCU  
READ OUT  
1
0
ACK  
ACK  
/ACK  
START  
IC ADRESS  
ACK  
ACK  
DATA n  
DATA n  
STOP  
STOP  
DATA 1  
DATA 1  
FROM PART  
1à READ  
IC ADRESS  
/ACK  
ACK  
WRITE  
INSIDE PART  
START  
If PART does not Acknolege, the /NACK will be followed by a STOP or Sr.  
If PART Acknoleges, the ACK can be followed by another data or Stop or Sr  
0à WRITE  
Figure 69. General Protocol Description  
The first byte transmitted is the Chip address (with LSB  
bit sets to 1 for a read operation, or sets to 0 for a Write  
operation). Then the following data will be:  
In case of a Write operation, the register address  
(@REG) we want to write in followed by the data we  
will write in the chip. The writing process is incremental.  
So the first data will be written in @REG, the second  
one in @REG + 1... The data are optional.  
In case of read operation, the NCP6922C will output  
the data out from the last register that has been accessed  
by the last write operation. Like writing process,  
reading process is an incremental process.  
Read Out from Part  
The Master will first make a “Pseudo Write” transaction  
with no data to set the internal address register. Then, a stop  
then start or a Repeated Start will initiate the read transaction  
from the register address the initial write transaction has set:  
FROM MCU to NCPxxxx  
FROM NCPxxxx to MCU  
STETS INTERNAL  
REGISTER POINTER  
0
REGISTER ADRESS  
ACK  
ACK STOP  
IC ADRESS  
0àWRITE  
START  
START  
ACK  
/ACK STOP  
IC ADRESS  
DATA1  
ACK  
DATA n  
1
REGISTER ADRESS  
REGISTER ADRESS + (n 1)  
n REGISTERS READ  
VALUE  
VALUE  
1
à
READ  
Figure 70. Read Out from Part  
The first WRITE sequence will set the internal pointer on the register we want access to. Then the read transaction will start  
at the address the write transaction has initiated.  
http://onsemi.com  
23  
NCP6922C  
Transaction with Real Write then Read:  
With Stop Then Start  
FROM MCU to NCPxxxx  
FROM NCPxxxx to MCU  
WRITE VALUE IN  
REGISTER REG0  
WRITE VALUE IN  
SETS INTERNAL  
REGISTER REG0 + (n 1)  
REGISTER POINTER  
REGISTER REG0 ADDRESS  
REG + (n 1) VALUE  
ACK STOP  
IC ADRESS 0 ACK  
REG VALUE  
ACK  
START  
ACK  
n REGISTERS WRITE  
0àWRITE  
1
IC ADRESS  
ACK  
DATA1  
ACK  
DATA k  
/ACK STOP  
START  
REGISTER REG + (n 1)  
REGISTER ADRESS + (n 1) +  
VALUE  
(k 1) VALUE  
1à READ  
k REGISTERS READ  
Figure 71. Write Followed by Read Transaction  
Write In Part  
Write operation will be achieved by only one transaction. After chip address, the MCU first data will be the internal register  
we want access to, then following data will be the data we want to write in Reg, Reg + 1, Reg + 2, ...., Reg +n.  
Write n Registers:  
FROM MCU to NCPxxxx  
FROM NCPxxxx to MCU  
WRITE VALUE IN  
REGISTER REG0 + (n 1)  
SETS INTERNAL  
WRITE VALUE IN  
REGISTER REG0  
REGISTER POINTER  
REGISTER REG0 ADDRESS  
0
ACK  
STOP  
START  
IC ADRESS  
ACK  
ACK  
REG VALUE  
ACK  
REG + (n 1) VALUE  
n REGISTERS WRITE  
0
WRITE  
à
Figure 72. Write In n Registers  
2
I C Address  
2
NCP6922C has fixed I C (7 bit address, see below table A7~A1):  
Table 14. NCP6922C I2C ADDRESS  
2
I C Address  
Hex  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
NCP6922CBMTTXG  
W 0x28  
R 0x29  
0
0
1
0
1
0
0
R/W  
Add  
0x14  
1
NCP6922CCMTTXG  
NCP6922CDMTTXG  
W 0x30  
R 0x31  
0
0
0
0
1
1
0
0
0
0
0
0
R/W  
Add  
0x18  
1
W 0x30  
R 0x31  
R/W  
Add  
0x18  
http://onsemi.com  
24  
NCP6922C  
Register Map  
2
Following register map describes I C registers.  
Registers can be:  
R
RC  
Read only register  
Read then Clear  
RW  
Read and Write register  
RWM  
Reserved  
Spare  
Read, Write and can be modified by the IC  
Address is reserved and register is not physically designed  
Address is reserved and register is physically designed  
Table 15. I2C REGISTER MAP NCP6922CB CONFIGURATION  
Address  
0x00  
Register Name  
INT_ACK1  
INT_ACK2  
INT_SEN1  
INT_SEN2  
Type  
RC  
RC  
R
Default  
0x00  
Function  
Interrupt 1 Register, dual edge  
0x01  
0x00  
Interrupt 2 Register, rising edge and dual edge  
Sense 1 Register, real time status  
Sense 2 Register, real time status  
Reserved, do not access these registers  
Reset Register  
0x02  
0x03  
0x03  
R
0x00  
0x04 to 0x0F  
0x10  
0x00  
RESET  
RW  
R
0x10  
0x11  
PID  
0x0C  
Product Identification  
0x12  
RID / FID  
R
0x3B  
Revision Identification / Features Identification  
Reserved, do not access these registers  
Enable Register  
0x13  
0x00  
0x14  
ENABLE  
DIS  
RWM  
RW  
RW  
RW  
RW  
RW  
fuse 0x05  
fuse 0x33  
fuse 0x42  
fuse 0x02  
0x00  
0x15  
Active Output Discharge Register  
Power Good Pin Assignment  
0x16  
PGOOD1  
PGOOD2  
TIME  
0x17  
Power Good Pin Gating  
0x18  
Timing Definition  
0x19  
SEQUENCER1  
fuse 0x0A  
0x00  
Sequencer register for DCDC1 and DCDC2  
Reserved, do not access these registers  
Sequencer register for LDO3 and LDO4  
Reserved, do not access these registers  
DCDC1 Output Voltage Setting  
DCDC1 DVS Output Voltage Setting  
DCDC2 Output Voltage Setting  
DCDC2 DVS Output Voltage Setting  
Reserved, do not access these registers  
LDO3 Output Voltage Setting  
0x1A  
0x1B  
SEQUENCER2  
fuse 0x0A  
0x00  
0x1C to 0x1F  
0x20  
VPROGDCDC1  
VPROGDVS1  
VPROGDCDC2  
VPROGDVS2  
RW  
RW  
RW  
RW  
fuse 0x30  
fuse 0x30  
fuse 0x30  
fuse 0x30  
0x00  
0x21  
0x22  
0x23  
0x24 to 0x25  
0x26  
VPROGLDO3  
VPROGLDO4  
RW  
RW  
fuse 0x1E  
fuse 0x1E  
0x00  
0x27  
LDO4 Output Voltage Setting  
0x28 to 0x3F  
Reserved, do not access these registers  
http://onsemi.com  
25  
NCP6922C  
Table 16. I2C REGISTER MAP NCP6922CC CONFIGURATION  
Address  
0x00  
Register Name  
INT_ACK1  
INT_ACK2  
INT_SEN1  
INT_SEN2  
Type  
RC  
RC  
R
Default  
Function  
Interrupt 1 Register, dual edge  
0x00  
0x00  
0x01  
Interrupt 2 Register, rising edge and dual edge  
Sense 1 Register, real time status  
Sense 2 Register, real time status  
Reserved, do not access these registers  
Reset Register  
0x02  
0x03  
0x03  
R
0x00  
0x04 to 0x0F  
0x10  
0x00  
RESET  
RW  
R
0x10  
0x11  
PID  
0x0C  
Product Identification  
0x12  
RID / FID  
R
0x3C  
Revision Identification / Features Identification  
Reserved, do not access these registers  
Enable Register  
0x13  
0x00  
0x14  
ENABLE  
DIS  
RWM  
RW  
RW  
RW  
RW  
RW  
fuse 0x01  
fuse 0x33  
fuse 0x42  
fuse 0x02  
0x00  
0x15  
Active Output Discharge Register  
Power Good Pin Assignment  
0x16  
PGOOD1  
PGOOD2  
TIME  
0x17  
Power Good Pin Gating  
0x18  
Timing Definition  
0x19  
SEQUENCER1  
fuse 0x03  
0x00  
Sequencer register for DCDC1 and DCDC2  
Reserved, do not access these registers  
Sequencer register for LDO3 and LDO4  
Reserved, do not access these registers  
DCDC1 Output Voltage Setting  
DCDC1 DVS Output Voltage Setting  
DCDC2 Output Voltage Setting  
DCDC2 DVS Output Voltage Setting  
Reserved, do not access these registers  
LDO3 Output Voltage Setting  
0x1A  
0x1B  
SEQUENCER2  
fuse 0x00  
0x00  
0x1C to 0x1F  
0x20  
VPROGDCDC1  
VPROGDVS1  
VPROGDCDC2  
VPROGDVS2  
RW  
RW  
RW  
RW  
fuse 0x3C  
fuse 0x3C  
fuse 0xD8  
fuse 0xD8  
0x00  
0x21  
0x22  
0x23  
0x24 to 0x25  
0x26  
VPROGLDO3  
VPROGLDO4  
RW  
RW  
fuse 0x03  
fuse 0x1E  
0x00  
0x27  
LDO4 Output Voltage Setting  
0x28 to 0x3F  
Reserved, do not access these registers  
http://onsemi.com  
26  
NCP6922C  
Table 17. I2C REGISTER MAP NCP6922CD CONFIGURATION  
Address  
0x00  
Register Name  
INT_ACK1  
INT_ACK2  
INT_SEN1  
INT_SEN2  
Type  
RC  
RC  
R
Default  
0x00  
Function  
Interrupt 1 Register, dual edge  
0x01  
0x00  
Interrupt 2 Register, rising edge and dual edge  
Sense 1 Register, real time status  
Sense 2 Register, real time status  
Reserved, do not access these registers  
Reset Register  
0x02  
0x03  
0x03  
R
0x00  
0x04 to 0x0F  
0x10  
0x00  
RESET  
RW  
R
0x10  
0x11  
PID  
0x0C  
Product Identification  
0x12  
RID / FID  
R
0x2C  
Revision Identification / Features Identification  
Reserved, do not access these registers  
Enable Register  
0x13  
0x00  
0x14  
ENABLE  
DIS  
RWM  
RW  
RW  
RW  
RW  
RW  
fuse 0xCA  
fuse 0x33  
fuse 0x73  
fuse 0x00  
0x00  
0x15  
Active Output Discharge Register  
Power Good Pin Assignment  
0x16  
PGOOD1  
PGOOD2  
TIME  
0x17  
Power Good Pin Gating  
0x18  
Timing Definition  
0x19  
SEQUENCER1  
fuse 0x22  
0x00  
Sequencer register for DCDC1 and DCDC2  
Reserved, do not access these registers  
Sequencer register for LDO3 and LDO4  
Reserved, do not access these registers  
DCDC1 Output Voltage Setting  
DCDC1 DVS Output Voltage Setting  
DCDC2 Output Voltage Setting  
DCDC2 DVS Output Voltage Setting  
Reserved, do not access these registers  
LDO3 Output Voltage Setting  
0x1A  
0x1B  
SEQUENCER2  
fuse 0x19  
0x00  
0x1C to 0x1F  
0x20  
VPROGDCDC1  
VPROGDVS1  
VPROGDCDC2  
VPROGDVS2  
RW  
RW  
RW  
RW  
fuse 0x48  
fuse 0x48  
fuse 0x28  
fuse 0x28  
0x00  
0x21  
0x22  
0x23  
0x24 to 0x25  
0x26  
VPROGLDO3  
VPROGLDO4  
RW  
RW  
fuse 0x10  
fuse 0x2E  
0x00  
0x27  
LDO4 Output Voltage Setting  
0x28 to 0x3F  
Reserved, do not access these registers  
http://onsemi.com  
27  
NCP6922C  
Registers Description  
Table 18. INT_ACK1 REGISTER  
Name: INT_ACK1  
Address: 0x00  
Type: RC  
Default: 0x00  
D3  
D7  
D6  
D5  
D4  
D2  
D1  
D0  
spare=0  
spare=0  
ACK_PG_LDO4  
ACK_PG_LDO3  
spare=0  
spare=0  
ACK_PG_DCDC2  
ACK_PG_DCDC1  
Table 19. BIT DESCRIPTION OF INT_ACK1 REGISTER  
Bit  
Bit Description  
ACK_PG_DCDC1  
ACK_PG_DCDC2  
ACK_PG_LDO3  
ACK_PG_LDO4  
ACK_UVLO  
DCDC1 Power Good Sense Acknowledgement  
0: Cleared  
1: DCDC1 Power Good Event detected  
DCDC2 Power Good Sense Acknowledgement  
0: Cleared  
1: DCDC2 Power Good Event detected  
LDO3 Power Good Sense Acknowledgement  
0: Cleared  
1: LDO3 Power Good Event detected  
LDO4 Power Good Sense Acknowledgement  
0: Cleared  
1: LDO4 Power Good Event detected  
Under Voltage Sense Acknowledgement  
0: Cleared  
1: Under Voltage Event detected  
Table 20. INT_ACK2 REGISTER  
Name: INT_ACK2  
Address: 0x01  
Default: 0x00  
Type: RC  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ACK_TSD  
ACK_WNRG  
ACK_ILDO4  
ACK_ILDO3  
spare=0  
ACK_UVLO  
ACK_IDCDC2  
ACK_IDCDC 1  
Table 21. BIT DESCRIPTION OF INT_ACK2 REGISTER  
Bit  
Bit Description  
ACK_IDCDC1  
ACK_IDCDC2  
ACK_UVLO  
ACK_ILDO3  
ACK_ILDO4  
ACK_WNRG  
ACK_TSD  
DCDC1 Over Current Sense Acknowledgement  
0: Cleared  
1: DCDC1 Over Current Event detected  
DCDC2 Over Current Sense Acknowledgement  
0: Cleared  
1: DCDC2 Over Current Event detected  
Under Voltage Sense Acknowledgement  
0: Cleared  
1: Under Voltage Event detected  
LDO3 Over Current Sense Acknowledgement  
0: Cleared  
1: LDO3 Over Current Event detected  
LDO4 Over Current Sense Acknowledgement  
0: Cleared  
1: LDO4 Over Current Event detected  
Thermal Warning Sense Acknowledgement  
0: Cleared  
1: Thermal Warning Event detected  
Thermal Shutdown Sense Acknowledgement  
0: Cleared  
1: Thermal Shutdown Event detected  
http://onsemi.com  
28  
NCP6922C  
Table 22. INT_SEN1 REGISTER  
Name: INT_SEN1  
Address: 0x02  
Type: R  
Default: 0x00  
D3  
D7  
D6  
D5  
D4  
D2  
D1  
D0  
SEN_ENLDO4  
SEN_ENLDO3  
SEN_PG_LDO4  
SEN_PG_LDO3  
SEN_ENDCDC2  
SEN_ENDCDC1 SEN_PG_DCDC2 SEN_PG_DCDC1  
Table 23. BIT DESCRIPTION OF INT_SEN1 REGISTER  
Bit  
Bit Description  
SEN_PG_DCDC1  
SEN_PG_DCDC2  
SEN_ENDCDC1  
SEN_ENDCDC2  
SEN _PG_LDO3  
SEN _PG_LDO4  
SEN_ENLDO3  
DCDC1 Power Good Sense  
0: DCDC1 Output Voltage below target  
1: DCDC1 Output Voltage within nominal range  
DCDC2 Power Good Sense  
0: DCDC2 Output Voltage below target  
1: DCDC2 Output Voltage within nominal range  
ENDCDC1 pin Sense  
0: ENDCDC1 pin is low  
1: ENDCDC1 pin is high  
ENDCDC2 pin Sense  
0: ENDCDC2 pin is low  
1: ENDCDC2 pin is high  
LDO3 Power Good Sense  
0: LDO3 Output Voltage below target  
1: LDO3 Output Voltage within nominal range  
LDO4 Power Good Sense  
0: LDO4 Output Voltage below target  
1: LDO4 Output Voltage within nominal range  
ENLDO3 pin Sense  
0: ENLDO3 pin is low  
1: ENLDO3 pin is high  
SEN_ENLDO4  
ENLDO4 pin Sense  
0: ENLDO4 pin is low  
1: ENLDO4 pin is high  
Table 24. INT_SEN2 REGISTER  
Name: INT_SEN2  
Address: 0x03  
Default: 0x00  
Type: R  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SEN_TSD  
SEN_WNRG  
SEN_ILDO4  
SEN_ILDO3  
spare=0  
SEN_UVLO  
SEN_IDCDC2  
SEN_IDCDC1  
http://onsemi.com  
29  
NCP6922C  
Table 25. BIT DESCRIPTION OF INT_SEN2 REGISTER  
Bit  
SEN _IDCDC1  
Bit Description  
DCDC1 Over Current Sense  
0: DCDC1 Output Current below limit  
1: DCDC1 Output Current over limit  
SEN _IDCDC2  
SEN _UVLO  
SEN _ILDO3  
SEN _ILDO4  
SEN _WNRG  
SEN _TSD  
DCDC2 Over Current Sense  
0: DCDC2 Output Current below limit  
1: DCDC2 Output Current over limit  
Under Voltage Sense  
0: Input Voltage higher than UVLO threshold  
1: Input Voltage lower than UVLO threshold  
LDO3 Over Current Sense  
0: LDO3 Output Current below limit  
1: LDO3 Output Current over limit  
LDO4 Over Current Sense  
0: LDO4 Output Current below limit  
1: LDO4 Output Current over limit  
Thermal Warning Sense  
0: Junction temperature below thermal warning limit  
1: Junction temperature over thermal warning limit  
Thermal Shutdown Sense  
0: Junction temperature below thermal shutdown limit  
1: Junction temperature over thermal shutdown limit  
Table 26. RESET REGISTER  
Name: RESET  
Address: 0x10  
Default: 0x10  
Type: RW  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FORCERST  
spare=0  
spare=0  
RSTSTATUS  
spare=0  
spare=0  
REARM  
Table 27. BIT DESCRIPTION OF RESET REGISTER  
Bit  
Bit Description  
REARM[1:0]  
Rearming of device after TSD  
2
00: Rearming active after TSD with reset of I C registers: new powerup sequence is initiated with de-  
2
fault I C registers values (default)  
2
01: Rearming active after TSD with no reset of I C registers: new powerup sequence is initiated with  
2
I C registers values  
10: No rearming after TSD  
11: N / A  
RSTSTATUS  
FORCERST  
Reset Indicator Bit  
0: Must be written to 0 after register reset  
1: Default (loaded after Registers reset)  
Force Reset Bit  
0: Default  
1: Force reset of internal registers to default  
Table 28. PID (Product Identification) REGISTER  
Name: PID  
Type: R  
Address: 0x11  
Default: 0x0C  
D3  
D7  
D6  
D5  
D4  
D2  
D1  
D0  
PID7  
PID6  
PID5  
PID4  
PID3  
PID2  
PID1  
PID0  
http://onsemi.com  
30  
NCP6922C  
Table 29. RID/FID: (Revision Identification / Features Identification) REGISTER  
Name: RID/FID  
Type: R  
D7  
Address: 0x12  
Default: see register map  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
RID3  
RID2  
RID1  
RID0  
FID3  
FID2  
FID1  
FID0  
Table 30. BIT DESCRIPTION OF RID/FID REGISTER  
Bit  
Bit Description  
RID[3:0]  
Revision Identification  
0001: Pass 1.0  
0010: Pass 1.1  
0011: Production  
FID[3:0]  
Feature identification  
Pass 0.0 (first prototype : NCP6924C)  
0000  
Pass 1.x  
1011: NCP6922CB  
1100: NCP6922CC  
1101: NCP6922CD  
Table 31. ENABLE REGISTER  
Name: ENABLE  
Address: 0x14  
Default: see register map  
Type: RWM  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
ENLDO4  
ENLDO3  
spare = 0  
spare=0  
ENDCDC2  
MODEDCDC2  
ENDCDC1  
MODEDCDC1  
Table 32. BIT DESCRIPTION OF ENABLE REGISTER  
Bit  
Bit Description  
MODEDCDC1  
ENDCDC1  
MODEDCDC2  
ENDCDC2  
ENLDO3  
DCDC1 Operating Mode  
0: Auto switching PFM / PWM  
1: Forced PWM (default)  
DCDC1 Enabling  
0: Disabled  
1: Enabled  
DCDC2 Operating Mode  
0: Auto switching PFM / PWM  
1: Forced PWM (default)  
DCDC2 Enabling  
0: Disabled  
1: Enabled  
LDO3 Enabling  
0: Disabled  
1: Enabled  
ENLDO4  
LDO4 Enabling  
0: Disabled  
1: Enabled  
Table 33. DIS REGISTER  
Name: DIS  
Address: 0x15  
Default: 0x33  
D3  
Type: RW  
D7  
D6  
D5  
D4  
D2  
D1  
D0  
spare=0  
spare=0  
DISLDO4  
DISLDO3  
spare=0  
spare=0  
DISDCDC2  
DISDCDC1  
http://onsemi.com  
31  
NCP6922C  
Table 34. BIT DESCRIPTION OF DIS REGISTER  
Bit  
Bit Description  
DISDCDC1  
DISDCDC2  
DISLDO3  
DISLDO4  
DCDC1 Active Output Discharge  
0: Disabled  
1: Enabled  
DCDC2 Active Output Discharge  
0: Disabled  
1: Enabled  
LDO3 Active Output Discharge  
0: Disabled  
1: Enabled  
LDO4 Active Output Discharge  
0: Disabled  
1: Enabled  
Table 35. PGOOD1 REGISTER  
Name: PGOOD1  
Address: 0x16  
Type: RW  
Default: 0x42  
D3  
D7  
D6  
D5  
D4  
D2  
D1  
D0  
Spare=0  
PGASSIGN_  
RST  
PGASSIGN_  
LDO4  
PGASSIGN_  
LDO3  
PGASSIGN_  
DVS2  
PGASSIGN_  
DVS1  
PGASSIGN_  
DCDC2  
PGASSIGN_  
DCDC1  
Table 36. BIT DESCRIPTION OF PGOOD1 REGISTER  
Bit  
Bit Description  
PGASSIGN_DCDC1  
PGASSIGN_DCDC2  
PGASSIGN_DVS1  
PGASSIGN_DVS2  
PGASSIGN_LDO3  
PGASSIGN_LDO4  
PGASSIGN_RST  
DCDC1 Power Good Assignment  
0: Not assigned  
1: Assigned to PG pin  
DCDC2 Power Good Assignment  
0: Not assigned  
1: Assigned to PG pin  
DCDC1 DVS Assignment  
0: Not assigned  
1: Assigned to PG pin  
DCDC2 DVS Assignment  
0: Not assigned  
1: Assigned to PG pin  
LDO3 Power Good Assignment  
0: Not assigned  
1: Assigned to PG pin  
LDO4 Power Good Assignment  
0: Not assigned  
1: Assigned to PG pin  
Internal Reset Signal Assignment  
0: Not assigned  
1: Assigned to PG pin  
Table 37. PGOOD2 REGISTER  
Name: PGOOD2  
Address: 0x17  
Type: RW  
Default: 0x02  
D3  
D7  
D6  
D5  
D4  
D2  
Spare=0  
D1  
PGGATE_DCDC2  
D0  
Spare=0  
Spare=0  
PGGATE_LDO4  
PGGATE_LDO3  
Spare=0  
PGGATE_DCDC1  
http://onsemi.com  
32  
NCP6922C  
Table 38. BIT DESCRIPTION OF PGOOD2 REGISTER  
Bit  
Bit Description  
PGGATE_DCDC1  
DCDC1 Power Good Gating  
0: DCDC1 state does not gate PG pin  
1: DCDC1 state gates PG pin  
PGGATE_DCDC2  
PGGATE_LDO3  
PGGATE_LDO4  
DCDC2 Power Good Gating  
0: DCDC2 state does not gate PG pin  
1: DCDC2 state gates PG pin  
LDO3 Power Good Gating  
0: LDO3 state does not gate PG pin  
1: LDO3 state gates PG pin  
LDO4 Power Good Gating  
0: LDO4 state does not gate PG pin  
1: LDO4 state gates PG pin  
Table 39. TIME REGISTER  
Name: TIME  
Address: 0x18  
Type: RW  
Default: 0x00  
D3  
D7  
D6  
D5  
D4  
D2  
D1  
D0  
GO2  
GO1  
spare=0  
DVS[1:0]  
TOR[2:0]  
Table 40. BIT DESCRIPTION OF TIME REGISTER  
Bit  
Bit Description  
TOR[2:0]  
Power Good Out of Reset Delay Time (ms)  
000: 0(default)  
001: 8  
010: 16  
011: 32  
100: 64  
101: 128  
110: 256  
111: 512  
DVS[1:0]  
DVS Timing (ms)  
00: 1.33 ms (default)  
01: 2.67 ms  
10: 5.33us  
11: 10.67us  
GO1  
GO2  
0: DCDC1 Output Voltage set to VPROGDCDC1[7:0]  
1: DCDC1 Output Voltage set to VDVSDCDC1[7:0]  
0: DCDC2 Output Voltage set to VPROGDCDC2[7:0]  
1: DCDC2 Output Voltage set to VDVSDCDC2[7:0]  
Table 41. SEQUENCER1 REGISTER  
Name: SEQUENCER1  
Type: RW  
Address: 0x19  
Default: see register map  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D0  
spare=0  
spare=0  
DCDC2_T[2:0]  
DCDC1_T[2:0]  
Table 42. SEQUENCER2 REGISTER  
Name: SEQUENCER2  
Type: RW  
Address: 0x1B  
Default: see register map  
D3 D2  
D7  
D6  
D5  
D4  
D1  
spare=0  
spare=0  
LDO4_T[2:0]  
LDO3_T[2:0]  
http://onsemi.com  
33  
NCP6922C  
Table 43. STARTUP DELAY  
LDOx_T[2:0] / DCDCx_T[2:0]  
Startup Delay  
000  
001  
010  
011  
100  
101  
110  
111  
T0  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
Table 44. VPROGDCDC1[7:0] REGISTER  
Name: VPROGDCDC1  
Address: 0x20  
Default: see register map  
Type: RW  
D7  
D6  
D5  
D4  
D4  
D4  
D4  
D3  
D2  
D1  
D1  
D1  
D1  
D0  
D0  
D0  
D0  
VPROGDCDC1[7:0]  
Table 45. VDVSDCDC1[7:0] REGISTER  
Name: VDVSDCDC1  
Address: 0x21  
Type: RW  
Default: see register map  
D7  
D6  
D5  
D3  
D2  
VDVSDCDC1[7:0]  
Table 46. VPROGDCDC2[7:0] REGISTER  
Name: VPROGDCDC2  
Address: 0x22  
Type: RW  
Default: see register map  
D7  
D6  
D5  
D3  
D2  
VPROGDCDC2[7:0]  
Table 47. VDVSDCDC2[7:0] REGISTER  
Name: VDVSDCDC2  
Address: 0x23  
Type: RW  
Default: see register map  
D3 D2  
D7  
D6  
D5  
VDVSDCDC2[7:0]  
http://onsemi.com  
34  
NCP6922C  
Table 48. VPROGDCDCx[7:0] and VDVSDCDCx[7:0] BIT DESCRIPTION  
Bit[7:0]  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
V
(V)  
Bit [7:0]  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
V
(V)  
Bit [7:0]  
0x80  
0x81  
0x82  
0x83  
0x84  
0x85  
0x86  
0x87  
0x88  
0x89  
0x8A  
0x8B  
0x8C  
0x8D  
0x8E  
0x8F  
0x90  
0x91  
0x92  
0x93  
0x94  
0x95  
0x96  
0x97  
0x98  
0x99  
0x9A  
0x9B  
0x9C  
0x9D  
0x9E  
0x9F  
0xA0  
0xA1  
0xA2  
0xA3  
0xA4  
0xA5  
0xA6  
0xA7  
0xA8  
0xA9  
V
(V)  
Bit [7:0]  
0xC0  
0xC1  
0xC2  
0xC3  
0xC4  
0xC5  
0xC6  
0xC7  
0xC8  
0xC9  
0xCA  
0xCB  
0xCC  
0xCD  
0xCE  
0xCF  
0xD0  
0xD1  
0xD2  
0xD3  
0xD4  
0xD5  
0xD6  
0xD7  
0xD8  
0xD9  
0xDA  
0xDB  
0xDC  
0xDD  
0xDE  
0xDF  
0xE0  
0xE1  
0xE2  
0xE3  
0xE4  
0xE5  
0xE6  
0xE7  
0xE8  
0xE9  
V
(V)  
OUT  
OUT  
OUT  
OUT  
0.6000  
0.6125  
0.6250  
0.6375  
0.6500  
0.6625  
0.6750  
0.6875  
0.7000  
0.7125  
0.7250  
0.7375  
0.7500  
0.7625  
0.7750  
0.7875  
0.8000  
0.8125  
0.8250  
0.8375  
0.8500  
0.8625  
0.8750  
0.8875  
0.9000  
0.9125  
0.9250  
0.9375  
0.9500  
0.9625  
0.9750  
0.9875  
1.0000  
1.0125  
1.0250  
1.0375  
1.0500  
1.0625  
1.0750  
1.0875  
1.1000  
1.1125  
1.4000  
1.4125  
1.4250  
1.4375  
1.4500  
1.4625  
1.4750  
1.4875  
1.5000  
1.5125  
1.5250  
1.5375  
1.5500  
1.5625  
1.5750  
1.5875  
1.6000  
1.6125  
1.6250  
1.6375  
1.6500  
1.6625  
1.6750  
1.6875  
1.7000  
1.7125  
1.7250  
1.7375  
1.7500  
1.7625  
1.7750  
1.7875  
1.8000  
1.8125  
1.8250  
1.8375  
1.8500  
1.8625  
1.8750  
1.8875  
1.9000  
1.9125  
2.2000  
2.2125  
2.2250  
2.2375  
2.2500  
2.2625  
2.2750  
2.2875  
2.3000  
2.3125  
2.3250  
2.3375  
2.3500  
2.3625  
2.3750  
2.3875  
2.4000  
2.4125  
2.4250  
2.4375  
2.4500  
2.4625  
2.4750  
2.4875  
2.5000  
2.5125  
2.5250  
2.5375  
2.5500  
2.5625  
2.5750  
2.5875  
2.6000  
2.6125  
2.6250  
2.6375  
2.6500  
2.6625  
2.6750  
2.6875  
2.7000  
2.7125  
3.0000  
3.0125  
3.0250  
3.0375  
3.0500  
3.0625  
3.0750  
3.0875  
3.1000  
3.1125  
3.1250  
3.1375  
3.1500  
3.1625  
3.1750  
3.1875  
3.2000  
3.2125  
3.2250  
3.2375  
3.2500  
3.2625  
3.2750  
3.2875  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
http://onsemi.com  
35  
 
NCP6922C  
Table 48. VPROGDCDCx[7:0] and VDVSDCDCx[7:0] BIT DESCRIPTION  
Bit[7:0]  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
V
(V)  
Bit [7:0]  
0x6A  
0x6B  
0x6C  
0x6D  
0x6E  
0x6F  
0x70  
0x71  
0x72  
0x73  
0x74  
0x75  
0x76  
0x77  
0x78  
0x79  
0x7A  
0x7B  
0x7C  
0x7D  
0x7E  
0x7F  
V
(V)  
Bit [7:0]  
0xAA  
0xAB  
0xAC  
0xAD  
0xAE  
0xAF  
0xB0  
0xB1  
0xB2  
0xB3  
0xB4  
0xB5  
0xB6  
0xB7  
0xB8  
0xB9  
0xBA  
0xBB  
0xBC  
0xBD  
0xBE  
0xBF  
V
(V)  
Bit [7:0]  
0xEA  
0xEB  
0xEC  
0xED  
0xEE  
0xEF  
0xF0  
0xF1  
0xF2  
0xF3  
0xF4  
0xF5  
0xF6  
0xF7  
0xF8  
0xF9  
0xFA  
0xFB  
0xFC  
0xFD  
0xFE  
0xFF  
V
(V)  
OUT  
OUT  
OUT  
OUT  
1.1250  
1.1375  
1.1500  
1.1625  
1.1750  
1.1875  
1.2000  
1.2125  
1.2250  
1.2375  
1.2500  
1.2625  
1.2750  
1.2875  
1.3000  
1.3125  
1.3250  
1.3375  
1.3500  
1.3625  
1.3750  
1.3875  
1.9250  
1.9375  
1.9500  
1.9625  
1.9750  
1.9875  
2.0000  
2.0125  
2.0250  
2.0375  
2.0500  
2.0625  
2.0750  
2.0875  
2.1000  
2.1125  
2.1250  
2.1375  
2.1500  
2.1625  
2.1750  
2.1875  
2.7250  
2.7375  
2.7500  
2.7625  
2.7750  
2.7875  
2.8000  
2.8125  
2.8250  
2.8375  
2.8500  
2.8625  
2.8750  
2.8875  
2.9000  
2.9125  
2.9250  
2.9375  
2.9500  
2.9625  
2.9750  
2.9875  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
3.3000  
Table 49. VPROGLDO3[5:0] REGISTER  
Name: VPROGLDO3  
Address: 0x26  
Type: RW  
Default: see register map  
D3 D2  
VPROGLDO3[5:0]  
D7  
D6  
D5  
D4  
D4  
D1  
D1  
D0  
D0  
spare=0  
spare=0  
Table 50. VPROGLDO4[5:0] REGISTER  
Name: VPROGLDO4  
Address: 0x27  
Default: see register map  
D3 D2  
VPROGLDO4[5:0]  
Type: RW  
D7  
D6  
D5  
spare=0  
spare=0  
http://onsemi.com  
36  
NCP6922C  
Table 51. VPROGLDOx[5:0] BIT DESCRIPTION  
VPROGLDOx  
[5:0]  
VPROGLDOx  
[5:0]  
VPROGLDOx  
VPROGLDOx  
[5:0]  
[5:0]  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
V
OUT  
(V)  
V
OUT  
(V)  
V
OUT  
(V)  
V
OUT  
(V)  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
1.00  
1.05  
1.10  
1.15  
1.20  
1.25  
1.30  
1.35  
1.40  
1.45  
1.50  
1.55  
1.60  
1.65  
1.70  
1.75  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
1.80  
1.85  
1.90  
1.95  
2.00  
2.05  
2.10  
2.15  
2.20  
2.25  
2.30  
2.35  
2.40  
2.45  
2.50  
2.55  
2.60  
2.65  
2.70  
2.75  
2.80  
2.85  
2.90  
2.95  
3.00  
3.05  
3.10  
3.15  
3.20  
3.25  
3.30  
3.30  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
3.30  
http://onsemi.com  
37  
NCP6922C  
APPLICATION INFORMATION  
System Supply  
5.0 V  
NCP6922C  
4.7 mF  
AVIN  
PVIN1  
10  
21  
4
6
System Supply  
5.0 V  
Core  
1.0uF  
AGND  
SW1  
DCDC 1 Out  
1.2 V  
DCDC 1  
800 mA  
1 mH  
FB1  
8
5
10 mF  
PGND1  
Thermal  
Protection  
4.7 mF  
System Supply  
5.0 V  
PVIN2  
2
SW2  
DCDC 2 Out  
1.2 V  
20  
DCDC 2  
800 mA  
ENDCDC1  
ENDCDC2  
ENLDO3  
ENLDO4  
PG  
9
1 mH  
FB2  
3
19  
1
10 mF  
Processor  
or  
System  
Supply  
PGND2  
Enabling  
PG  
12  
11  
7
15  
16  
14  
13  
VIN3  
System Supply  
5.0 V  
LDO 3  
150 mA  
VOUT3  
LDO 3 Out  
2.5 V  
System  
Supply  
5.0 V  
SDA  
17  
VIN4  
2.2 mF  
LDO 4  
150 mA  
2
I C  
Processor  
SCL 18  
VOUT4  
LDO 4 Out  
2.5 V  
2
I C  
2.2 mF  
Figure 73. Typical Application Schematic  
Inductor Selection  
NCP6922C DCtoDC converters typically use 1 mH  
inductor. Use of different values can be considered to  
optimize operation in specific conditions. The inductor  
parameters directly related to device performances are  
saturation current, DC resistance and inductance value. The  
inductor ripple current (DIL) decreases with higher  
inductance.  
With:  
Fsw = Switching Frequency (Typical 3 MHz)  
L = Inductor value  
DI = PeakToPeak inductor ripple current  
L
I  
= Maximum Inductor Current  
LMAX  
To achieve better efficiency, ultra low DC resistance  
inductor should be selected.  
VO  
VIN  
The saturation current of the inductor should be higher  
than the ILMAX calculated with the Equations 1 and 2.  
1 *  
DIL + VO  
 
(eq. 1)  
(eq. 2)  
L   FSW  
DIL  
I
LMAX + IOMAX  
)
2
Table 52. INDUCTOR L = 1.0 mH  
Supplier  
TDK  
Part #  
Size (mm) (L x l x T)  
3.2 x 3.0 x 1.2  
2.5 x 2.0 x 1.0  
2.0 x 1.6 x 1.0  
4.0 x 3.5 x 1.8  
2.5 x 2.0 x 1.0  
2.5 x 2.0 x 1.2  
DC Rated Current (A)  
DCR Max at 255C (mW)  
SPM3012T1R0M  
TFM252010A1R0M  
TFM201610A1R0M  
LQH44PN1R0NP0  
LQM2HPN1R0MG0  
DFE252012C1R0N  
3.4  
3.5  
2.5  
2.5  
1.6  
3.0  
65  
65  
75  
36  
69  
59  
TDK  
TDK  
MURATA  
MURATA  
TOKO  
http://onsemi.com  
38  
 
NCP6922C  
Table 53. INDUCTOR L = 2.2 mH  
Supplier  
TDK  
Part #  
Size (mm) (L x l x T)  
3.2 x 3.0 x 1.2  
2.5 x 2.0 x 1.0  
2.0 x 1.6 x 1.0  
4.0 x 3.5 x 1.8  
2.5 x 2.0 x 1.0  
2.5 x 2.0 x 1.2  
DC Rated Current (A)  
DCR Max at 255C (mW)  
SPM3012T2R2M  
TFM252010A2R2M  
TFM201610A2R2M  
LQH44PN1R0NP0  
LQM2HPN2R2MG0  
DFE252012C2R2N  
2.5  
2.3  
1.7  
1.7  
1.3  
2.0  
115  
115  
200  
96  
TDK  
TDK  
MURATA  
MURATA  
TOKO  
100  
108  
Output Capacitor Selection for DCtoDC Converters  
Selecting the proper output capacitor is based on the  
desired output ripple voltage. Ceramic capacitors with low  
ESR values will have the lowest output ripple voltage and  
are strongly recommended. The output capacitor requires  
either an X7R or X5R dielectric.  
The output ripple voltage in PWM mode can be estimated by:  
V
O
1 * V  
IN  
1
ǒ
) ESRǓ  
DV + V  
 
O
 
O
L   F  
2   p   C   F  
SW  
O
SW  
(eq. 3)  
Table 54. RECOMMENDED OUTPUT CAPACITOR FOR DCtoDC CONVERTERS  
Manufacturer  
MURATA  
MURATA  
MURATA  
TDK  
Part Number  
Case Size  
0603  
HeightTyp. [mm]  
C [mF]  
10  
GRM188R60J106ME47  
GRM219R60J106KE19  
GRM21BR60J226ME39  
C1608X5R0C106K/M  
C2012X5R0C106K/M  
C2012X5R0C226K/M  
0.8  
1.25  
1.25  
0.8  
0805  
10  
0805  
22  
0603  
10  
TDK  
0805  
1.25  
1.25  
10  
TDK  
0805  
22  
Input Capacitor Selection for DCDC Converters  
In PWM operating mode, the input current is pulsating  
with large switching noise. Using an input bypass capacitor  
can reduce the peak current transients drawn from the input  
supply source, thereby reducing switching noise  
significantly.  
The maximum RMS current occurs at 50% duty cycle  
with maximum output current, which is 1/2 of maximum  
output current. A low profile ceramic capacitor of 4.7 mF  
should be used for most of the cases. For effective bypass  
results, the input capacitor should be placed as close as  
possible to PVIN1 and PVIN2 pins.  
Table 55. RECOMMENDED INPUT CAPACITOR FOR DCtoDC CONVERTERS  
Supplier  
MURATA  
MURATA  
TDK  
Part Number  
CaseSize  
0603  
Height Typ. [mm]  
C [mF]  
4.7  
GRM188R60J475KE  
GRM188R60J106ME  
C1608X5R0C475K/M  
C1608X5R0C106K/M  
0.8  
0.8  
0.8  
0.8  
0603  
10  
0603  
4.7  
TDK  
0603  
10  
Output Capacitor for LDOs  
the system is preferred. Input voltage of LDO, should  
always be higher than VOUT + VLDODROP (VDROP,  
LDO dropout voltage at maximum current).  
For stability reason, a typical 2.2 mF ceramic output  
capacitor is suitable for LDOs. The LDO output capacitor  
should be placed as close as possible to the NCP6922C  
output pin.  
Capacitor DC Bias Characteristics  
Real capacitance of ceramic capacitor changes versus DC  
voltage. Special care should be taken to DC bias effect in  
order to make sure that the real capacitor value is always  
higher than the minimum allowable capacitor value  
specified.  
Input Capacitor for LDOs  
NCP6922C LDOs do not require specific input capacitor.  
However, a typical 1 mF ceramic capacitor placed close to  
LDOs’ input is helpful for load transient.  
Power input of LDO can be connected to main power  
supply. However, for optimum efficiency and lower  
NCP6922C thermal dissipation, lowest voltage available in  
http://onsemi.com  
39  
NCP6922C  
PCB layout Recommendation  
The high speed operation of the NCP6922C demands  
careful attention to board layout and component placement.  
To prevent electromagnetic interference (EMI) problems  
and reduce voltage ripple of the device, any high current  
copper trace which see high frequency switching should be  
optimized. Therefore, use short and wide traces for power  
current paths and for power ground tracks, power plane and  
ground plane are recommended if possible.  
Both the inductor and input/output capacitor of  
DCtoDC converters are in the high frequency switching  
path where current flow may be discontinuous. These  
components should be placed as close to NCP6922C as  
possible to reduce parasitic inductance connection. Also it  
is important to minimize the area of the switching nodes and  
use the ground plane under them to minimize crosstalk to  
sensitive signals and ICs. It’s suggested to keep as complete  
ground plane under NCP6922C as possible.  
PGND and AGND pin connection must be connected to  
the ground plane. Care should be taken to avoid noise  
interference between PGND and AGND.  
It is always good practice to keep the sensitive tracks such  
as feedback connection (FB1 / FB2) away from switching  
signal connections (SW1 / SW2) by laying the tracks on the  
other side or inner layers of PCB.  
Figure 74. Recommended PCB Layout  
Thermal Considerations  
Careful attention must be paid to the power dissipation of  
the NCP6922C. The power dissipation is a function of  
efficiency and output power. Hence, increasing the output  
power requires better components selection. Care should be  
taken of LDO VDROP, the larger it is, the higher dissipation  
it will bring to NCP6922C. Keep large copper plane under  
and close to NCP6922C is helpful for thermal dissipation.  
ORDERING INFORMATION  
Device  
Marking  
Comment  
Package  
Shipping  
NCP6922CBMTTXG  
6922CB  
2 x 800 mA DCDC  
2 x 150 mA LDO  
I C address 0010 100x  
(See detailed description)  
WQFN – 4 x 4mm  
(Pb – Free)  
3000 / Tape & Reel  
2
NCP6922CCMTTXG  
NCP6922CDMTTXG  
6922CC  
6922CD  
2 x 800 mA DCDC  
2 x 150 mA LDO  
I C address 0011 000x  
(See detailed description)  
WQFN – 4 x 4mm  
(Pb – Free)  
3000 / Tape & Reel  
3000 / Tape & Reel  
2
2 x 800 mA DCDC  
2 x 150 mA LDO  
I C address 0011 000x  
(See detailed description)  
WQFN – 4 x 4mm  
(Pb – Free)  
2
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
Demo board available:  
The NCP6922CGEVB/D evaluation board configures the device in typical application to supply constant voltage.  
http://onsemi.com  
40  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
WQFN20, 4x4, 0.5P  
CASE 510AV01  
ISSUE O  
DATE 22 JUN 2011  
SCALE 2:1  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.15 AND 0.30 MM  
FROM THE TERMINAL TIP.  
A
B
A3  
D
EXPOSED Cu  
MOLD CMPD  
PIN ONE  
REFERENCE  
4. COPLANARITY APPLIES TO THE EXPOSED PAD  
AS WELL AS THE TERMINALS.  
A1  
E
DETAIL B  
2X  
MILLIMETERS  
ALTERNATE  
DIM MIN  
MAX  
0.80  
0.05  
CONSTRUCTIONS  
0.15  
C
A
A1  
A3  
b
0.70  
0.00  
2X  
0.20 REF  
0.15  
C
0.20  
0.30  
L
L
TOP VIEW  
D
4.00 BSC  
D2  
E
2.60  
2.80  
4.00 BSC  
(A3)  
DETAIL B  
L1  
A
E2  
e
2.60  
2.80  
0.50 BSC  
0.20 REF  
0.10  
0.08  
C
K
DETAIL A  
L
0.30  
0.00  
0.50  
0.15  
ALTERNATE  
L1  
C
CONSTRUCTIONS  
SEATING  
PLANE  
NOTE 4  
A1  
GENERIC  
C
SIDE VIEW  
MARKING DIAGRAM*  
0.10 C A B  
20  
D2  
1
DETAIL A  
20X L  
XXXXXX  
6
XXXXXX  
ALYWG  
G
0.10 C A B  
11  
E2  
1
XXXXXX= Specific Device Code  
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
20  
K
20X b  
e
0.10 C A B  
0.05  
C
NOTE 3  
BOTTOM VIEW  
(Note: Microdot may be in either location)  
SOLDERING FOOTPRINT*  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “ G”,  
may or may not be present.  
4.30  
20X  
0.60  
2.80  
2.80  
1
4.30  
PKG  
OUTLINE  
20X  
0.35  
0.50  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON56888E  
WQFN20, 4X4, 0.5P  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NCP6924AFCET1G

6 沟道功率管理集成电路 (PMIC),带 2 个 DC-DC 转换器和 4 个 LDO
ONSEMI

NCP6924AFCHT1G

6 沟道功率管理集成电路 (PMIC),带 2 个 DC-DC 转换器和 4 个 LDO
ONSEMI

NCP6924BFCHT1G

6 沟道功率管理集成电路 (PMIC),带 2 个 DC-DC 转换器和 4 个 LDO
ONSEMI

NCP6924CFCHT1G

6 沟道功率管理集成电路 (PMIC),带 2 个 DC-DC 转换器和 4 个 LDO
ONSEMI

NCP6924FFCHT1G

6 沟道功率管理集成电路 (PMIC),带 2 个 DC-DC 转换器和 4 个 LDO
ONSEMI

NCP6925AFCT1G

Power Management IC (PMIC), 7 Channels, with 2 DC-DC Converters and 5 LDOs
ONSEMI

NCP6925AFCT2G

Power Management IC (PMIC), 7 Channels, with 2 DC-DC Converters and 5 LDOs
ONSEMI

NCP6925BFCCT2G

Power Management IC (PMIC), 7 Channels, with 2 DC-DC Converters and 5 LDOs
ONSEMI

NCP692MN15T2G

1 A, Low IGND, Very Low Dropout Regulator (VLDO) with/without Enable
ONSEMI

NCP692MN18T2G

1 A, Low IGND, Very Low Dropout Regulator (VLDO) with/without Enable
ONSEMI

NCP692MN25T2G

1 A, Low IGND, Very Low Dropout Regulator (VLDO) with/without Enable
ONSEMI

NCP692MN33T2G

1 A, Low IGND, Very Low Dropout Regulator (VLDO) with/without Enable
ONSEMI