NCP703SN19T1G [ONSEMI]

300 mA, Ultra-Low Quiescent Current, IQ 12 A, Ultra-Low Noise, LDO Voltage Regulator;
NCP703SN19T1G
型号: NCP703SN19T1G
厂家: ONSEMI    ONSEMI
描述:

300 mA, Ultra-Low Quiescent Current, IQ 12 A, Ultra-Low Noise, LDO Voltage Regulator

文件: 总18页 (文件大小:947K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCP703  
300 mA, Ultra-Low Quiescent  
Current, IQ 12 mA, Ultra-Low  
Noise, LDO Voltage Regulator  
Noise sensitive RF applications such as Power Amplifiers in  
satellite radios, infotainment equipment, and precision  
instrumentation require very clean power supplies. The NCP703 is  
300 mA LDO that provides the engineer with a very stable, accurate  
voltage with ultra low noise and very high Power Supply Rejection  
Ratio (PSRR) suitable for RF applications. The device doesn’t require  
any additional noise bypass capacitor to achieve ultra−low noise  
performance. In order to optimize performance for battery operated  
portable applications, the NCP703 employs dynamic Iq management  
for ultra−low quiescent current consumption at light−load conditions  
and great dynamic performance.  
www.onsemi.com  
5
1
1
TSOP−5  
XDFN6  
SN SUFFIX  
CASE 483  
MX SUFFIX  
CASE 711AE  
MARKING DIAGRAMS  
Features  
5
1
Operating Input Voltage Range: 2.0 V to 5.5 V  
1
XXXAYW  
X M  
G
Available in Fixed Voltage Options: 0.8 to 3.5 V  
G
Contact Factory for Other Voltage Options  
Ultra−Low Quiescent Current of Typ. 12 mA  
Ultra−Low Noise: 13 mV  
from 100 Hz to 100 kHz  
X, XXX = Specific Device Code  
RMS  
M
A
Y
W
G
= Date Code  
Very Low Dropout: 180 mV Typical at 300 mA  
2% Accuracy Over Load/Line/Temperature  
= Assembly Location  
= Year  
= Work Week  
= Pb−Free Package  
High PSRR: 68 dB at 1 kHz  
Internal Soft−Start to Limit the Turn−On Inrush Current  
Thermal Shutdown and Current Limit Protections  
Stable with a 1 mF Ceramic Output Capacitor  
Available in TSOP−5 and XDFN 1.5 x 1.5 mm Package  
Active Output Discharge for Fast Turn−Off  
These are Pb−Free Devices  
PIN CONNECTIONS  
1
IN  
OUT  
GND  
EN  
N/C  
Typical Applicaitons  
5−Pin TSOP−5  
(Top View)  
PDAs, Mobile Phones, GPS, Smartphones  
Wireless Handsets, Wireless LAN, Bluetooth, Zigbee  
Portable Medical Equipment  
1
OUT  
IN  
N/C  
N/C  
EN  
Other Battery Powered Applications  
GND  
V
IN  
V
OUT  
6−Pin XDFN 1.5 x 1.5 mm  
(Top View)  
IN  
OUT  
NCP703  
1 mF  
Ceramic  
C
1 mF  
IN  
EN  
C
OUT  
ON  
GND  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
OFF  
dimensions section on page 16 of this data sheet.  
Figure 1. Typical Application Schematic  
© Semiconductor Components Industries, LLC, 2016  
1
Publication Order Number:  
May, 2016 − Rev. 3  
NCP703/D  
NCP703  
IN  
ENABLE  
LOGIC  
THERMAL  
SHUTDOWN  
UVLO  
EN  
BANDGAP  
REFERENCE  
MOSFET  
DRIVER WITH  
CURRENT LIMIT  
INTEGRATED  
SOFT−START  
AUTO LOW  
POWER MODE  
OUT  
ACTIVE  
DISCHARGE  
EN  
GND  
Figure 2. Simplified Schematic Block Diagram  
Table 1. PIN FUNCTION DESCRIPTION  
Pin No.  
XDFN6  
Pin No.  
TSOP−5  
Pin  
Name  
Description  
1
5
OUT  
Regulated output voltage pin. A small 1 mF ceramic capacitor is needed from this pin to ground  
to assure stability.  
2
3
4
2
N/C  
Not connected.  
GND  
Power supply ground. Connected to the die through the lead frame. Soldered to the copper  
plane allows for effective heat dissipation.  
4
3
EN  
Enable pin. Driving EN over 0.9 V turns on the regulator. Driving EN below 0.4 V puts the regu-  
lator into shutdown mode.  
5
6
N/C  
IN  
Not connected. This pin can be tied to ground to improve thermal dissipation.  
Input pin. A small capacitor is needed from this pin to ground to assure stability.  
1
Table 2. ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
V
Input Voltage (Note 1)  
V
IN  
−0.3 V to 6 V  
Output Voltage  
V
OUT  
−0.3 V to V + 0.3 V  
V
IN  
Enable Input  
V
EN  
−0.3 V to V + 0.3 V  
V
IN  
Output Short Circuit Duration  
Maximum Junction Temperature  
Storage Temperature  
t
Indefinite  
150  
s
SC  
T
°C  
°C  
V
J(MAX)  
T
STG  
−55 to 150  
2000  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Machine Model (Note 2)  
ESD  
HBM  
ESD  
200  
V
MM  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AEC−Q100−002 (EIA/JESD22−A114)  
ESD Machine Model tested per AEC−Q100−003 (EIA/JESD22−A115)  
Latchup Current Maximum Rating tested per JEDEC standard: JESD78.  
www.onsemi.com  
2
 
NCP703  
Table 3. THERMAL CHARACTERISTICS (Note 3)  
Rating  
Symbol  
Value  
Unit  
Thermal Characteristics, TSOP−5,  
Thermal Resistance, Junction−to−Air  
Thermal Characterization Parameter, Junction−to−Lead (Pin 2)  
°C/W  
q
y
241  
129  
JA  
JL  
Thermal Characteristics, XDFN6 1.5 x 1.5 mm  
Thermal Resistance, Junction−to−Air  
Thermal Characterization Parameter, Junction−to−Board  
°C/W  
q
y
146  
77  
JA  
JB  
2
3. Single component mounted on 1 oz, FR4 PCB with 645 mm Cu area.  
Table 4. ELECTRICAL CHARACTERISTICS  
−40°C T 125°C; V = V  
+ 0.5 V or 2.0 V, whichever is greater; V = 0.9 V, I  
= 10 mA, C = C  
= 1 mF unless  
J
IN  
OUT(NOM)  
EN  
OUT  
IN  
OUT  
otherwise noted. Typical values are at T = +25°C. (Note 4)  
J
Parameter  
Operating Input Voltage  
Undervoltage Lock−out  
Output Voltage Accuracy  
Line Regulation  
Test Conditions  
Symbol  
Min  
Typ  
Max  
5.5  
1.9  
+2  
Unit  
V
V
IN  
2.0  
1.2  
−2  
V
V
V
V
rising  
UVLO  
1.6  
V
IN  
+ 0.5 V V 5.5 V, I  
= 0 − 300 mA  
= 10 mA  
V
OUT  
%
OUT  
OUT  
OUT  
IN  
OUT  
OUT  
OUT  
+ 0.5 V V 4.5 V, I  
Reg  
450  
600  
20  
mV/V  
mV/V  
mV/mA  
mV  
IN  
LINE  
LINE  
+ 0.5 V V 5.5 V, I  
= 10 mA  
Reg  
IN  
Load Regulation  
Load Transient  
I
I
= 0 mA to 300 mA  
Reg  
OUT  
LOAD  
LOAD  
= 1 mA to 300 mA or 300 mA to 1 mA in  
= 1 mF  
Tran  
−100/  
+150  
OUT  
1 ms, C  
OUT  
Dropout Voltage (Note 5)  
Output Current Limit  
Quiescent Current  
Ground Current  
I
= 300 mA, V  
= 2.5 V  
V
180  
450  
12  
300  
750  
20  
mV  
mA  
mA  
mA  
mA  
mA  
V
OUT  
OUT(nom)  
OUT(nom)  
DO  
V
= 90% V  
I
CL  
310  
OUT  
I
I
= 0 mA  
I
Q
OUT  
OUT  
= 300 mA  
I
200  
0.12  
0.55  
GND  
Shutdown Current  
V
0.4 V, T = +25°C  
I
EN  
EN  
J
DIS  
DIS  
V
0 V, V = 2.0 to 4.5 V, T = −40 to +85°C  
I
2
IN  
J
EN Pin Threshold Voltage  
High Threshold  
V
V
Voltage increasing  
Voltage decreasing  
V
EN_HI  
0.9  
EN  
Low Threshold  
V
0.4  
EN  
EN_LO  
EN Pin Input Current  
Turn−On Time  
V
= 5.5 V  
I
100  
200  
500  
nA  
EN  
EN  
C
= 1.0 mF, from assertion EN pin to 98%  
t
ms  
OUT  
ON  
V
OUT(nom)  
Power Supply Rejection Ratio  
Output Noise Voltage  
V
= 3 V, V  
= 2.5 V  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
PSRR  
70  
68  
53  
dB  
IN  
OUT  
I
= 300 mA  
OUT  
V
OUT  
= 2.5 V, V = 3 V, I  
= 300 mA  
V
N
13  
mV  
rms  
IN  
OUT  
f = 100 Hz to 100 kHz  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
Temperature increasing from T = +25°C  
T
160  
20  
°C  
°C  
J
SD  
Temperature falling from T  
T
SDH  
SD  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
4. Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at T = T  
J
A
= 25_C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
5. Characterized when V  
falls 100 mV below the regulated voltage at V = V  
+ 0.5 V.  
OUT  
IN  
OUT(NOM)  
www.onsemi.com  
3
 
NCP703  
TYPICAL CHARACTERISTICS  
10  
1
RMS Output Noise (mV)  
10 Hz − 100 kHz 100 Hz − 100 kHz  
18.45 17.77  
I
= 10 mA  
OUT  
I
OUT  
0.1  
1 mA  
10 mA  
300 mA  
17.18  
14.14  
16.43  
13.11  
V
V
C
= 2.0 V  
IN  
I
= 1 mA  
OUT  
= 0.8 V  
= C = 1 mF  
OUT  
0.01  
IN  
OUT  
MLCC, X7R,  
1206 size  
I
= 300 mA  
100 1000  
OUT  
0.001  
0.01  
0.1  
1
10  
FREQUENCY (kHz)  
Figure 3. Output Voltage Noise Spectral Density for VOUT = 0.8 V, COUT = 1 mF  
10  
1
RMS Output Noise (mV)  
10 Hz − 100 kHz 100 Hz − 100 kHz  
14.07 13.14  
I
OUT  
I
= 300 mA  
0.1  
OUT  
1 mA  
10 mA  
300 mA  
V
V
C
C
= 2.0 V  
16.59  
15.46  
15.83  
14.53  
IN  
= 0.8 V  
I
= 10 mA  
OUT  
OUT  
= 1 mF  
IN  
0.01  
= 4.7 mF  
OUT  
MLCC, X7R,  
1206 size  
I
= 1 mA  
100  
OUT  
0.001  
0.01  
0.1  
1
10  
1000  
FREQUENCY (kHz)  
Figure 4. Output Voltage Noise Spectral Density for VOUT = 0.8 V, COUT = 4.7 mF  
10  
1
RMS Output Noise (mV)  
10 Hz − 100 kHz 100 Hz − 100 kHz  
20.29 17.06  
I
OUT  
I
= 10 mA  
OUT  
0.1  
1 mA  
10 mA  
300 mA  
19.76  
18.74  
16.11  
15.46  
V
V
C
= 3.8 V  
IN  
= 3.3 V  
OUT  
0.01  
I
= 1 mA  
OUT  
= C  
= 1 mF  
IN  
OUT  
MLCC, X7R,  
1206 size  
I
= 300 mA  
OUT  
0.001  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
Figure 5. Output Voltage Noise Spectral Density for VOUT = 3.3 V, COUT = 1 mF  
www.onsemi.com  
4
 
NCP703  
TYPICAL CHARACTERISTICS  
10  
1
RMS Output Noise (mV)  
10 Hz − 100 kHz 100 Hz − 100 kHz  
17.64 13.52  
I
= 300 mA  
OUT  
I
OUT  
0.1  
1 mA  
10 mA  
300 mA  
V
V
C
C
= 3.8 V  
IN  
19.54  
21.50  
15.96  
18.71  
= 3.3 V  
= 1 mF  
OUT  
IN  
I
= 10 mA  
OUT  
0.01  
= 4.7 mF  
OUT  
MLCC, X7R,  
1206 size  
I
= 1 mA  
OUT  
0.001  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
Figure 6. Output Voltage Noise Spectral Density for VOUT = 3.3 V, COUT = 4.7 mF  
160  
350  
315  
280  
245  
210  
175  
140  
105  
70  
V
= 0.8 V  
OUT  
140  
120  
100  
80  
V
OUT  
= 3.3 V  
V
= 2.5 V  
= 0.8 V  
+ 0.5 V  
OUT  
V
= 3.3 V  
OUT  
V
= 2.5 V  
OUT  
V
OUT  
V
IN  
= V  
OUT  
V
C
C
= V  
OUT  
= 1 mF  
+ 0.5 V  
60  
IN  
C
C
= 1 mF  
IN  
IN  
40  
= 1 mF  
= 1 mF  
OUT  
OUT  
MLCC, X7R,  
1206 size  
MLCC, X7R,  
1206 size  
20  
0
35  
0
0
50  
100  
150  
200  
250  
300  
0
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00  
, OUTPUT CURRENT (mA)  
I
, OUTPUT CURRENT (mA)  
I
OUT  
OUT  
Figure 7. Ground Current vs. Output Current  
Figure 8. Ground Current vs. Output Current  
from 0 mA to 2 mA  
270  
240  
160  
140  
T = 125°C  
J
T = 25°C  
J
210  
180  
150  
120  
90  
T = 25°C  
120  
100  
80  
J
T = −40°C  
J
T = −40°C  
J
T = 125°C  
J
60  
V
IN  
= V  
+ 0.5 V  
V
IN  
= V  
= 1 mF  
= 1 mF  
+ 0.5 V  
OUT  
OUT  
C
C
= 1 mF  
C
C
IN  
IN  
40  
= 1 mF  
60  
OUT  
OUT  
MLCC, X7R,  
1206 size  
MLCC, X7R,  
1206 size  
20  
0
30  
0
0
30 60  
90 120 150 180 210 240 270 300  
, OUTPUT CURRENT (mA)  
0
0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00  
I
I , OUTPUT CURRENT (mA)  
OUT  
OUT  
Figure 9. Ground Current vs. Output Current  
at Temperatures  
Figure 10. Ground Current vs. Output Current  
0 mA to 2 mA at Temperatures  
www.onsemi.com  
5
 
NCP703  
TYPICAL CHARACTERISTICS  
40  
14.0  
13.5  
C
C
V
= 1 mF  
= 1 mF  
V
OUT  
= 0.8 V  
IN  
OUT  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
= 3.3 V  
30  
20  
OUT  
V
= 3.3 V  
MLCC, X7R  
1206 size  
OUT  
V
= 2.5 V  
OUT  
V
C
C
= V  
= 1 mF  
+ 0.5 V  
IN  
OUT  
IN  
10  
0
= 1 mF  
OUT  
MLCC, X7R  
1206 size  
9.5  
9.0  
−40 −20  
0
20  
40  
60  
80  
100 120 140  
2
3
4
5
6
T , JUNCTION TEMPERATURE (°C)  
J
V , INPUT VOLTAGE (V)  
IN  
Figure 11. Quiescent Current vs. Temperature  
Figure 12. Quiescent Current vs. Input Voltage  
3.5  
3.0  
0.805  
0.804  
0.803  
C
C
= 1 mF  
V
V
C
C
= 2 V  
IN  
IN  
V
= 3.3 V  
= 2.5 V  
OUT  
= 1 mF  
= 0.8 V  
= 1 mF  
OUT  
OUT  
MLCC, X7R  
1206 size  
IN  
2.5  
2.0  
1.5  
1.0  
0.802  
0.801  
0.800  
0.799  
0.798  
0.797  
= 1 mF  
OUT  
V
OUT  
V
= 0.8 V  
OUT  
0.5  
0
0.796  
0.795  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
, INPUT VOLTAGE (V)  
−40 −20  
0
20  
40  
60  
80 100 120 140  
V
IN  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 13. Output Voltage vs. Input Voltage  
Figure 14. Output Voltage vs. Temperature –  
0.8 V  
2.5035  
2.5025  
2.5015  
2.5005  
2.4995  
3.3050  
3.3025  
3.3000  
3.2975  
3.2950  
3.2925  
3.2900  
V
V
C
C
= V  
+ 0.5 V  
IN  
OUT  
= 2.5 V  
OUT  
= 1 mF  
IN  
= 1 mF  
OUT  
V
V
= V  
+ 0.5 V  
IN  
OUT  
= 3.3 V  
OUT  
2.4985  
C
C
= 1 mF  
IN  
= 1 mF  
OUT  
2.4975  
2.4965  
3.2875  
3.2850  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 15. Output Voltage vs. Temperature –  
2.5 V  
Figure 16. Output Voltage vs. Temperature –  
3.3 V  
www.onsemi.com  
6
NCP703  
TYPICAL CHARACTERISTICS  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
V
V
= 2.8 V  
= 3.3 to 5.5 V  
= 1 mF  
= 1 mF  
= 10 mA  
V
V
= 1.8 V  
= 2.3 to 5.5 V  
= 1 mF  
= 1 mF  
= 10 mA  
OUT  
OUT  
IN  
IN  
C
C
I
C
C
I
IN  
OUT  
IN  
OUT  
OUT  
100  
0
100  
0
OUT  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80  
100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 17. Line Regulation vs. Temperature −  
1.8 V  
Figure 18. Line Regulation vs. Temperature –  
2.8 V  
1200  
1000  
800  
20  
18  
16  
V
V
C
C
= 1.8 V  
= 2.3 V  
= 1 mF  
= 1 mF  
OUT  
IN  
IN  
14  
12  
10  
8
OUT  
I
= 0 mA to 300 mA  
OUT  
600  
V
V
C
C
= 3.3 V  
= 3.8 to 5.5 V  
= 1 mF  
= 1 mF  
OUT  
400  
IN  
6
IN  
4
OUT  
200  
0
I
= 10 mA  
OUT  
2
0
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 19. Line Regulation vs. Temperature –  
3.3 V  
Figure 20. Load Regulation vs. Temperature –  
1.8 V  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
V
V
= 2.8 V  
= 3.3 V  
= 1 mF  
= 1 mF  
V
V
= 3.3 V  
= 3.8 V  
= 1 mF  
= 1 mF  
OUT  
OUT  
IN  
IN  
C
C
I
C
C
I
IN  
IN  
OUT  
OUT  
= 0 mA to 300 mA  
= 0 mA to 300 mA  
OUT  
OUT  
6
6
4
4
2
0
2
0
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 21. Load Regulation vs. Temperature –  
2.8 V  
Figure 22. Load Regulation vs. Temperature –  
3.3 V  
www.onsemi.com  
7
NCP703  
TYPICAL CHARACTERISTICS  
250  
200  
150  
100  
250  
T = 25°C  
J
V
C
C
= 2.5 V  
= 1 mF  
= 1 mF  
OUT  
225  
200  
175  
150  
125  
100  
75  
I
I
= 300 mA  
= 200 mA  
= 100 mA  
V
C
C
= 2.5 V  
= 1 mF  
= 1 mF  
OUT  
OUT  
IN  
IN  
OUT  
T = 125°C  
J
OUT  
OUT  
T = −40°C  
J
I
OUT  
50  
0
50  
25  
0
−40 −20  
0
50  
100  
150  
200  
250  
300  
0
20  
40  
60  
80 100 120 140  
I , OUTPUT CURRENT (mA)  
OUT  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 23. Dropout vs. Output Current – 2.5 V  
Figure 24. Dropout vs. Temperature – 2.5 V  
750  
725  
700  
675  
650  
625  
600  
750  
725  
700  
675  
650  
625  
600  
V
V
C
C
= 3.3 V  
= 3.8 V  
= 1 mF  
= 1 mF  
V
= 3.3 V  
OUT  
OUT  
V = 3.8 V  
IN  
IN  
C
C
= 1 mF  
IN  
IN  
= 1 mF  
OUT  
OUT  
I
= 10 mA  
I
= 10 mA  
OUT  
OUT  
575  
550  
575  
550  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 25. Enable Threshold − High  
Figure 26. Enable Threshold − Low  
600  
600  
550  
500  
450  
400  
550  
500  
450  
400  
V
V
C
C
= 2.3 V  
V
V
C
C
= 2.3 V  
IN  
IN  
= 1.8 V  
= 1 mF  
= 1.8 V  
= 1 mF  
OUT  
OUT  
IN  
IN  
= 1 mF  
= 1 mF  
OUT  
OUT  
350  
300  
350  
300  
MLCC, X7R,  
size 1206  
MLCC, X7R,  
size 1206  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 27. Output Current Limit  
Figure 28. Short Circuit Limit  
www.onsemi.com  
8
NCP703  
TYPICAL CHARACTERISTICS  
100  
90  
100  
Iout = 1 mA  
Iout = 1 mA  
90  
80  
70  
60  
50  
40  
30  
20  
Iout = 10 mA  
Iout = 100 mA  
Iout = 200 mA  
Iout = 300 mA  
Iout = 10 mA  
Iout = 100 mA  
Iout = 200 mA  
Iout = 300 mA  
80  
70  
60  
50  
40  
30  
20  
V
V
C
C
= 2.3 V  
IN  
V
V
C
C
= 3.0 V  
IN  
= 1.8 V  
= none  
OUT  
= 2.5 V  
= none  
OUT  
IN  
IN  
= 1 mF  
OUT  
= 1 mF  
OUT  
MLCC, X7R,  
1206 size  
MLCC, X7R,  
1206 size  
10  
0
10  
0
0.01  
0.1  
1
10  
100  
1000  
10,000  
10,000  
10,000  
0.01  
0.1  
1
10  
100  
1000 10,000  
F, FREQUENCY (kHz)  
F, FREQUENCY (kHz)  
Figure 29. Power Supply Rejection Ratio,  
OUT = 1.8 V  
Figure 30. Power Supply Rejection Ratio,  
VOUT = 2.5 V  
V
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
Iout = 1 mA  
Cout = 1mF  
Cout = 4.7m  
Cout = 10m  
Iout = 10 mA  
Iout = 100 mA  
Iout = 200 mA  
Iout = 300 mA  
V
V
C
C
= 3.8 V  
IN  
V
V
C
= 3.8 V  
IN  
= 3.3 V  
OUT  
= 3.3 V  
= none  
OUT  
= none  
IN  
IN  
= 1 mF  
OUT  
MLCC, X7R,  
1206 size  
MLCC, X7R,  
1206 size  
10  
0
10  
0
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000 10,000  
F, FREQUENCY (kHz)  
F, FREQUENCY (kHz)  
Figure 31. Power Supply Rejection Ratio,  
Figure 32. Power Supply Rejection Ratio,  
VOUT = 3.3 V, IOUT = 10 mA  
V
OUT = 3.3 V  
10  
100  
90  
Cout = 1mF  
Cout = 4.7m  
Cout = 10m  
80  
70  
60  
50  
40  
30  
20  
Unstable Region  
V
= 3.3 V  
= 0.8 V  
OUT  
1
V
OUT  
V
V
C
= 3.8 V  
IN  
= 3.3 V  
= none  
OUT  
Stable Region  
IN  
MLCC, X7R,  
1206 size  
V
IN  
= 5.5 V  
C
= C  
= 1 mF  
IN  
OUT  
10  
0
MLCC, X7R, 1206 size  
50 100  
, OUTPUT CURRENT (mA)  
0.1  
0
150  
200  
250  
300  
0.01  
0.1  
1
10  
100  
1000  
I
F, FREQUENCY (kHz)  
OUT  
Figure 33. Power Supply Rejection Ratio,  
OUT = 3.3 V, IOUT = 300 mA  
Figure 34. Output Capacitor ESR vs. Output  
Current  
V
www.onsemi.com  
9
NCP703  
TYPICAL CHARACTERISTICS  
V
V
V
I
= 3.8 V  
V
V
V
I
= 3.8 V  
IN  
IN  
= 3.3 V  
= 3.3 V  
OUT  
OUT  
= 0.9 V  
= 0.9 V  
EN  
EN  
V
EN  
V
EN  
= 10 mA  
= 10 mA  
OUT  
OUT  
C
C
= 1 mF  
= 1 mF  
C
C
= 1 mF  
= 4.7 mF  
IN  
OUT  
IN  
OUT  
I
I
INRUSH  
INRUSH  
V
OUT  
V
OUT  
100 ms / div  
100 ms / div  
Figure 35. Enable Turn−on Response −  
OUT = 1 mF  
Figure 36. Enable Turn−on Response –  
C
COUT = 4.7 mF  
V
V
V
= 3.8 V  
IN  
V
I
V
V
V
= 3.8 V  
EN  
IN  
= 3.3 V  
V
OUT  
= 3.3 V  
EN  
OUT  
= 0.9 V  
EN  
= 0.9 V  
EN  
I
= 10 mA  
OUT  
I
= 10 mA  
= 1 mF  
OUT  
C
C
= 1 mF  
IN  
OUT  
C
IN  
= 1 mF  
OUT  
I
INRUSH  
V
OUT  
C
C
= 4.7 mF  
= 1 mF  
OUT  
OUT  
V
OUT  
100 ms / div  
1 ms / div  
Figure 37. Enable Turn−on Response –  
Figure 38. Enable Turn−off Response  
C
OUT = 10 mF  
V
IN  
t
= 1 ms  
FALL  
V
V
= 3.8 V to 4.8 V  
IN  
V
IN  
t
= 1 ms  
rise  
= 3.3 V  
OUT  
I
C
C
= 10 mA  
= 1 mF  
OUT  
V
V
= 3.8 V to 4.8 V  
IN  
IN  
= 3.3 V  
OUT  
= 1 mF  
OUT  
I
= 10 mA  
OUT  
C
C
= 1 mF  
IN  
= 1 mF  
OUT  
V
OUT  
V
OUT  
2 ms / div  
2 ms / div  
Figure 39. Line Transient Response – Rising  
Edge, VOUT = 3.3 V  
Figure 40. Line Transient Response – Falling  
Edge, VOUT = 3.3 V  
www.onsemi.com  
10  
NCP703  
TYPICAL CHARACTERISTICS  
I
V
V
= 2 V  
OUT  
IN  
= 0.8 V  
V
V
= 2 V  
OUT  
IN  
C
= 1 mF (MLCC)  
= 0.8 V  
IN  
OUT  
C
= 1 mF (MLCC)  
IN  
I
OUT  
C
= 1 mF  
OUT  
V
OUT  
C
= 4.7 mF  
OUT  
C
= 4.7 mF  
OUT  
V
OUT  
C
= 1 mF  
OUT  
20 ms / div  
50 ms / div  
Figure 41. Load Transient Response − Rising  
Edge, VOUT = 0.8 V, IOUT = 1 mA to 300 mA,  
Figure 42. Load Transient Response – Falling  
Edge, VOUT = 0.8 V, IOUT = 1 mA to 300 mA,  
C
OUT = 1 mF, 4.7 mF  
COUT = 1 mF, 4.7 mF  
V
V
= 2 V  
V
V
= 3.8 V  
IN  
IN  
= 0.8 V  
= 3.3 V  
OUT  
OUT  
C
C
= 1 mF (MLCC)  
= 1 mF (MLCC)  
IN  
C
= 1 mF (MLCC)  
I
I
OUT  
IN  
OUT  
out  
V
OUT  
V
OUT  
t
= 10 ms  
rise  
C
= 4.7 mF  
OUT  
t
= 1 ms  
rise  
C
= 1 mF  
OUT  
20 ms / div  
10 ms / div  
Figure 43. Load Transient Response − Rising  
Edge, VOUT = 0.8 V, IOUT = 1 mA to 300 mA,  
Figure 44. Load Transient Response – Rising  
Edge, VOUT = 3.3 V, IOUT = 1 mA to 300 mA,  
t
RISE = 1 ms, 10 ms  
C
OUT = 1 mF, 4.7 mF  
V
V
= 3.8 V  
IN  
I
OUT  
= 3.3 V  
V
IN  
= 3.8 V  
OUT  
V
OUT  
= 3.3 V  
C
= 1 mF (MLCC)  
IN  
C
C
= 1 mF (MLCC)  
= 1 mF (MLCC)  
IN  
I
OUT  
out  
V
OUT  
C
= 1 mF  
OUT  
t
= 1 ms  
rise  
C
= 4.7 mF  
OUT  
V
OUT  
t
= 10 ms  
rise  
50 ms / div  
10 ms / div  
Figure 45. Load Transient Response – Falling  
Edge, VOUT = 3.3 V, IOUT = 1 mA to 300 mA,  
Figure 46. Load Transient Response – Rising  
Edge, VOUT = 3.3 V, IOUT = 1 mA to 300 mA,  
C
OUT = 1 mF, 4.7 mF  
tRISE = 1 ms, 10 ms  
www.onsemi.com  
11  
NCP703  
TYPICAL CHARACTERISTICS  
= 3.3 V  
V
I
V
V
= 3.8 V  
OUT  
V
OUT  
IN  
= 1 mA  
= 3.3 V  
OUT  
OUT  
C
C
= 1 mF (MLCC)  
= 1 mF (MLCC)  
C
C
= 1 mF (MLCC)  
= 1 mF (MLCC)  
IN  
IN  
Thermal Shutdown  
out  
out  
Short Circuit  
V
IN  
V
OUT  
I
OUT  
10 ms / div  
5 ms / div  
Figure 47. Turn−on/off − Slow Rising VIN  
Figure 48. Short Circuit and Thermal  
Shutdown  
www.onsemi.com  
12  
NCP703  
APPLICATIONS INFORMATION  
General  
The NCP703 is a high performance 300 mA Low Dropout  
Linear Regulator. This device delivers excellent noise and  
dynamic performance. Thanks to its adaptive ground current  
feature the device consumes only 12 mA of quiescent current  
at no−load condition. The regulator features ultra−low noise  
of 13 mVRMS, PSRR of 68 dB at 1 kHz and very good  
load/line transient performance. Such excellent dynamic  
parameters and small package size make the device an ideal  
choice for powering the precision analog and noise sensitive  
circuitry in portable applications. The LDO achieves this  
ultra low noise level output without the need for a noise  
bypass capacitor. A logic EN input provides ON/OFF control  
of the output voltage. When the EN is low the device consumes  
as low as typ. 120 nA from the IN pin. The device is fully  
protected in case of output overload, output short circuit  
condition and overheating, assuring a very robust design.  
Figure 49. Capacitance Change vs. DC Bias  
There is no requirement for the minimum value of  
Equivalent Series Resistance (ESR) for the C  
but the  
OUT  
maximum value of ESR should be less than 900 mΩ. Larger  
output capacitors and lower ESR could improve the load  
transient response or high frequency PSRR as shown in  
typical characteristics. It is not recommended to use  
tantalum capacitors on theoutput due to their large ESR. The  
equivalent series resistance of tantalum capacitors is also  
strongly dependent on the temperature, increasing at low  
temperature. The tantalum capacitors are generally more  
costly than ceramic capacitors.  
Input Capacitor Selection (CIN)  
It is recommended to connect a minimum of 1 mF Ceramic  
X5R or X7R capacitor close to the IN pin of the device. This  
capacitor will provide a low impedance path for unwanted  
AC signals or noise modulated onto constant input voltage.  
There is no requirement for the min. /max. ESR of the input  
capacitor but it is recommended to use ceramic capacitors  
for their low ESR and ESL. A good input capacitor will limit  
the influence of input trace inductance and source resistance  
during sudden load current changes. Larger input capacitor  
may be necessary if fast and large load transients are  
encountered in the application.  
No−load Operation  
The regulator remains stable and regulates the output  
voltage properly within the 2% tolerance limits even with  
no external load applied to the output.  
Output Decoupling (COUT)  
Enable Operation  
The NCP703 requires an output capacitor connected as  
close as possible to the output pin of the regulator. The  
recommended capacitor value is 1 mF and X7R or X5R  
dielectric due to its low capacitance variations over the  
specified temperature range. The NCP703 is designed to  
remain stable with minimum effective capacitance of 0.1 mF  
to account for changes with temperature, DC bias and  
package size. Especially for small package size capacitors  
such as 0402 the effective capacitance drops rapidly with the  
applied DC bias. Refer to the Figure 49, for the capacitance  
vs. package size and DC bias voltage dependence.  
The EN pin is used to enable/disable the LDO and to  
deactivate/activate the active discharge function.  
If the EN pin voltage is <0.4 V the device is guaranteed to  
be disabled. The pass transistor is turned−off so that there is  
virtually no current flow between the IN and OUT. The  
active discharge transistor is active so that the output voltage  
V
OUT  
is pulled to GND through a 320 Ω resistor. In the  
disable state the device consumes as low as typ. 120 nA from  
the V .  
IN  
If the EN pin voltage >0.9 V the device is guaranteed to  
be enabled. The NCP703 regulates the output voltage and  
the active discharge transistor is turned−off.  
www.onsemi.com  
13  
 
NCP703  
APPLICATIONS INFORMATION  
Thermal Shutdown  
When the die temperature exceeds the Thermal Shutdown  
The EN pin has internal pull−down current source with  
typ. value of 110 nA which assures that the device is  
turned−off when the EN pin is not connected. Build in 2 mV  
hysteresis into the EN prevents from periodic on/off  
oscillations that can occur due to noise.  
threshold (T − 160°C typical), Thermal Shutdown event  
SD  
is detected and the device is disabled. The IC will remain in  
this state until the die temperature decreases below the  
Thermal Shutdown Reset threshold (T  
− 140°C typical).  
In the case where the EN function isn’t required the EN  
should be tied directly to IN.  
SDU  
Once the IC temperature falls below the 140°C the LDO is  
enabled again. The thermal shutdown feature provides the  
protection from a catastrophic device failure due to  
accidental overheating. This protection is not intended to be  
used as a substitute for proper heat sinking. For reliable  
operation junction temperature should be limited to +125°C  
maximum.  
Undervoltage Lockout  
The internal UVLO circuitry assures that the device  
becomes disabled when the V falls below typ. 1.5 V. When  
IN  
the V voltage ramps−up the NCP703 becomes enabled, if  
IN  
V
IN  
rises above typ. 1.6 V. The 100 mV hysteresis prevents  
from on/off oscillations that can occur due to noise on V  
line.  
IN  
Power Dissipation  
As power dissipated in the NCP703 increases, it might  
become necessary to provide some thermal relief. The  
maximum power dissipation supported by the device is  
dependent upon board design and layout. Mounting pad  
configuration on the PCB, the board material, and the  
ambient temperature affect the rate of junction temperature  
rise for the part.  
Output Current Limit  
Output Current is internally limited within the IC to a  
typical 490 mA. The NCP703 will source this amount of  
current if the output voltage drops down to 90% of the  
nominal V . When the Output Voltage is directly shorted  
OUT  
to ground (V  
= 0 V), the short circuit protection will  
OUT  
limit the output current to 520 mA (typ). The current limit  
and short circuit protection will work properly up to V  
The maximum power dissipation the NCP703 can handle  
is given by:  
=
IN  
5.5 V at T = 25°C. There is no limitation for the short circuit  
A
o
ƪ
ƫ
) 125 C * TA  
duration.  
(eq. 1)  
PD(MAX)  
+
qJA  
Internal Soft−Start circuit  
The power dissipated by the NCP703 for given  
application conditions can be calculated from the following  
equations:  
NCP703 contains an internal soft−start circuitry to protect  
against large inrush currents which could otherwise flow  
during the start−up of the regulator. Soft−start feature  
protects against power bus disturbances and assures a  
controlled and monotonic rise of the output voltage.  
ǒ
Ǔ
ǒ
Ǔ
(eq. 2)  
PD [ VIN IGND@IOUT ) IOUT VIN * VOUT  
450  
0.50  
P , T = 25°C, 2 OZ Cu  
D(MAX) A  
400  
350  
300  
250  
200  
150  
0.45  
0.40  
0.35  
0.30  
P
, T = 25°C, 1 OZ Cu  
A
D(MAX)  
q
q
, 1 OZ Cu  
JA  
JA  
, 2 OZ Cu  
500  
0.25  
0.20  
0
100  
200  
300  
400  
600  
700  
2
PCB Copper Area (mm )  
Figure 50. qJA and PD(MAX) vs. Copper Area (TSOP−5)  
www.onsemi.com  
14  
 
NCP703  
APPLICATIONS INFORMATION  
400  
350  
300  
250  
200  
150  
100  
0.90  
0.80  
0.70  
0.60  
0.50  
P
, T = 25°C, 2 OZ Cu  
A
D(MAX)  
P
, T = 25°C, 1 OZ Cu  
D(MAX) A  
q
, 1 OZ Cu  
700  
JA  
0.40  
0.30  
q
, 2 OZ Cu  
JA  
0
100  
200  
300  
400  
500  
600  
800  
2
PCB Copper Area (mm )  
Figure 51. qJA vs. Copper Area (XDFN6)  
Reverse Current  
Output Noise  
The PMOS pass transistor has an inherent body diode  
which will be forward biased in the case that V > V .  
The IC is designed for ultra−low noise output voltage  
without external noise filter capacitor (C ). Figures 3 6  
OUT  
IN  
nr  
Due to this fact in cases, where the extended reverse current  
condition can be anticipated the device may require  
additional external protection.  
shows NCP703 noise performance. Generally the noise  
performance in the indicated frequency range improves with  
increasing output current.  
Although even at I  
= 1 mA the noise levels are below  
OUT  
Load Regulation  
20 mV  
.
RMS  
The NCP703 features very good load regulation of  
typically 6 mV in 0 mA to 300 mA range. In order to achieve  
this very good load regulation a special attention to PCB  
design is necessary. The trace resistance from the OUT pin  
to the point of load can easily approach 100 mΩ which will  
cause 30 mV voltage drop at full load current, deteriorating  
the excellent load regulation.  
Turn−On Time  
The turn−on time is defined as the time period from EN  
assertion to the point in which V will reach 98% of its  
nominal value. This time is dependent on various  
application conditions such as V , C , T .  
OUT  
OUT(NOM) OUT  
A
PCB Layout Recommendations  
Line Regulation  
The IC features very good line regulation of 0.6 mV/V  
To obtain good transient performance and good regulation  
characteristics place C and C capacitors close to the  
IN  
OUT  
measured from V = V  
operated applications it may be important that the line  
+ 0.5 V to 5.5 V. For battery  
device pins and make the PCB traces wide. In order to  
minimize the solution size, use 0402 capacitors. Larger  
copper area connected to the pins will also improve the  
device thermal resistance. The actual power dissipation can  
be calculated from Equation 2.  
IN  
OUT  
regulation from V = V  
+ 0.5 V up to 4.5 V is only  
IN  
OUT  
0.45 mV/V.  
Power Supply Rejection Ratio  
The NCP703 features very good Power Supply Rejection  
ratio. If desired the PSRR at higher frequencies in the range  
100 kHz – 10 MHz can be tuned by the selection of C  
capacitor and proper PCB layout.  
OUT  
www.onsemi.com  
15  
NCP703  
ORDERING INFORMATION  
Device  
Voltage Option  
1.8 V  
Marking  
Package  
Shipping  
NCP703MX18TCG  
NCP703MX28TCG  
NCP703MX30TCG  
NCP703MX33TCG  
NCP703SN18T1G  
NCP703SN19T1G  
NCP703SN28T1G  
NCP703SN30T1G  
NCP703SN33T1G  
NCP703SN35T1G  
J
2.8 V  
K
XDFN6  
3000 / Tape & Reel  
3.0 V  
L
3.3 V  
P
1.8 V  
AEC  
AEG  
AED  
AEE  
AEF  
AEH  
1.9 V  
2.8 V  
TSOP5  
3000 / Tape & Reel  
3.0 V  
3.3 V  
3.5 V  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
16  
NCP703  
PACKAGE DIMENSIONS  
XDFN6 1.5x1.5, 0.5P  
CASE 711AE  
ISSUE B  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.10 AND 0.20mm FROM TERMINAL TIP.  
L
D
A
B
L1  
DETAIL A  
MILLIMETERS  
ALTERNATE TERMINAL  
CONSTRUCTIONS  
DIM  
A
MIN  
0.35  
0.00  
MAX  
0.45  
0.05  
E
PIN ONE  
A1  
A3  
b
REFERENCE  
0.13 REF  
EXPOSED Cu  
MOLD CMPD  
0.20  
0.30  
2X  
0.10  
C
1.50 BSC  
D
E
1.50 BSC  
0.50 BSC  
e
2X  
0.10  
C
L
0.40  
---  
0.60  
0.15  
0.70  
TOP VIEW  
L1  
L2  
DETAIL B  
0.50  
ALTERNATE  
A
DETAIL B  
CONSTRUCTIONS  
0.05  
0.05  
C
C
A3  
A1  
RECOMMENDED  
MOUNTING FOOTPRINT*  
5X  
0.73  
SEATING  
PLANE  
C
6X  
SIDE VIEW  
0.35  
DETAIL A  
1
e
5X  
L
1.80  
3
L2  
0.50  
PITCH  
0.83  
DIMENSIONS: MILLIMETERS  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
6
4
6X b  
0.10  
0.05  
C
C
A
B
NOTE 3  
BOTTOM VIEW  
www.onsemi.com  
17  
NCP703  
PACKAGE DIMENSIONS  
TSOP−5  
CASE 483  
ISSUE M  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
NOTE 5  
5X  
D
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH  
THICKNESS. MINIMUM LEAD THICKNESS IS THE  
MINIMUM THICKNESS OF BASE MATERIAL.  
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS. MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT  
EXCEED 0.15 PER SIDE. DIMENSION A.  
5. OPTIONAL CONSTRUCTION: AN ADDITIONAL  
TRIMMED LEAD IS ALLOWED IN THIS LOCATION.  
TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2  
FROM BODY.  
0.20 C A B  
2X  
0.10  
T
M
5
4
3
2X  
0.20  
T
B
S
1
2
K
B
A
DETAIL Z  
G
A
MILLIMETERS  
TOP VIEW  
DIM  
A
B
C
D
G
H
J
K
M
S
MIN  
2.85  
1.35  
0.90  
0.25  
MAX  
3.15  
1.65  
1.10  
0.50  
DETAIL Z  
J
0.95 BSC  
C
0.01  
0.10  
0.20  
0
0.10  
0.26  
0.60  
0.05  
H
SEATING  
PLANE  
END VIEW  
C
10  
3.00  
_
_
SIDE VIEW  
2.50  
SOLDERING FOOTPRINT*  
1.9  
0.074  
0.95  
0.037  
2.4  
0.094  
1.0  
0.039  
0.7  
0.028  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCP703/D  

相关型号:

NCP703SN28T1G

300 mA, Ultra-Low Quiescent Current, IQ 12 A, Ultra-Low Noise, LDO Voltage Regulator
ONSEMI

NCP703SN30T1G

300 mA, Ultra-Low Quiescent Current, IQ 12 A, Ultra-Low Noise, LDO Voltage Regulator
ONSEMI

NCP703SN33T1G

300 mA, Ultra-Low Quiescent Current, IQ 12 A, Ultra-Low Noise, LDO Voltage Regulator
ONSEMI

NCP703SN35T1G

300 mA, Ultra-Low Quiescent Current, IQ 12 A, Ultra-Low Noise, LDO Voltage Regulator
ONSEMI

NCP703_13

300 mA, Ultra-Low Quiescent Current, IQ 12 A, Ultra-Low Noise, LDO Voltage Regulator
ONSEMI

NCP703_16

300 mA, Ultra-Low Quiescent Current, IQ 12 A, Ultra-Low Noise, LDO Voltage Regulator
ONSEMI

NCP705

500 mA, Ultra-Low Quiescent Current, IQ 13 A, Ultra-Low Noise, LDO Voltage Regulator
ONSEMI

NCP705EMT33TCG

LDO Voltage Regulator
ONSEMI

NCP705MT09TCG

FIXED POSITIVE LDO REGULATOR
ONSEMI

NCP705MT18TCG

LDO Voltage Regulator
ONSEMI

NCP705MT28TCG

LDO Voltage Regulator
ONSEMI

NCP705MT30TCG

LDO Voltage Regulator
ONSEMI