NCS29001 [ONSEMI]

LED Backlight Driver; LED背光驱动器
NCS29001
型号: NCS29001
厂家: ONSEMI    ONSEMI
描述:

LED Backlight Driver
LED背光驱动器

驱动器
文件: 总16页 (文件大小:208K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCS29001  
LED Backlight Driver  
The NCS29001 is an integrated LED driver used in LCD display  
backlighting applications. A configurable bill of materials allows the  
designer to create a highly efficient solution for a variety of LCD  
screen sizes. The NCS29001 uses a boost type converter to deliver  
constant current in a string of LEDs. High accuracy PWM dimming is  
supported for a frequency up to 500 Hz . The integrated soft start  
function provides excellent control during the power up sequence to  
avoid current overshoot. The device protects against output  
overvoltage, open / short LED, and thermal overload. The NCS29001  
is offered in the cost effective SOIC14 package.  
http://onsemi.com  
MARKING  
DIAGRAM  
14  
14  
1
NCS29001G  
AWLYWW  
Features  
SOIC14 NB  
CASE 751A  
8.5 V to 18 V Input Voltage Range  
1
1% Vref Voltage Accuracy to set LED Current  
PWM Controlled Dimming  
Soft Start Limits InRush Current  
Open Feedback Protection  
Open LED Protection  
NCS29001= Specific Device Code  
A
WL  
Y
= Assembly Location  
= Wafer Lot  
= Year  
WW  
G
= Work Week  
= PbFree Package  
Short LED Protection  
LED String Cathode Short to ground Protection  
Max Duty Cycle Above 90%  
SOIC14 Package  
PIN CONNECTIONS  
VIN  
GATE  
1
14  
This is a PbFree Device  
Vref  
GND  
PWMin  
RT  
2
3
4
5
6
7
13 CS  
Typical Application  
TFTLCD TV Panels  
LCD Monitor Panels  
PGND  
12  
11  
NCS29001  
PWMout  
10 FBN  
FBP  
9
8
COMP  
OVP  
STBY  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 15 of  
this data sheet.  
© Semiconductor Components Industries, LLC, 2013  
1
Publication Order Number:  
October, 2013 Rev. 1  
NCS29001/D  
NCS29001  
Figure 1. Block Diagram  
http://onsemi.com  
2
NCS29001  
PINOUT ASSIGNMENT  
VIN  
Vref  
1
2
3
14  
13  
12  
GATE  
CS  
GND  
PGND  
PWMin  
RT  
4
5
6
7
NCS29001  
11  
10  
9
PMWout  
FBN  
FBP  
COMP  
OVP  
STBY  
8
Figure 2. NSC29001 Pinout  
PIN DESCRIPTION  
Pin #  
Symbol  
VIN  
Type  
Input  
Description  
1
2
VIN supply input. Small 1.0 mF low ESR bypass capacitor required from VIN to GND.  
VREF  
Output  
5 V / 10 mA reference voltage. Small 1.0 mF low ESR bypass capacitor required from VREF to  
GND.  
3
4
5
6
GND  
PWMin  
RT  
Ground  
Output  
Output  
Input  
Analog ground.  
PWM dimming control input.  
The resistor connected between RT and GND sets the switching frequency  
FBP  
The reference voltage for the feedback (FBN). Reference level can be adjusted from 0.5 V up to  
3.0 V using an external voltage divider.  
7
STBY  
Input  
The converter enters in standby mode when STBY is floating or pulled high. When STBY goes  
from low to high the circuit will discharge the capacitors on the COMP pin and keep PWMout high  
to discharge the output capacitor. STBY must remain high for 50 ms before the part enters  
standby mode.  
8
OVP  
Output  
This pin provides the overvoltage protection for the converter. When the voltage at this pin  
exceeds 1.2 V, the boost converter stops immediately and the device enters standby mode.  
9
COMP  
FBN  
Power  
Input  
Loop compensation pin  
10  
Feedback pin and LED cathode connection. External resistor from FBN to GND sets the LED  
current.  
11  
12  
13  
PWMout  
PGND  
CS  
Output  
Ground  
Power  
PWM dimming output driver.  
Power ground.  
This pin is used to sense the drain current of the external power MOSFET. It includes a builtin  
blanking time.  
14  
GATE  
Output  
This pin is the output GATE driver for an external Nchannel power MOSFET  
http://onsemi.com  
3
NCS29001  
ATTRIBUTES  
Characteristics  
Values  
ESD protection (all pins)  
Human Body Model (HBM) (Note 1)  
Machine Model (MM)  
2 kV  
150 V  
Moisture sensitivity (Note 2)  
Level 1  
Flammability Rating Oxygen Index: 28 to 34  
UL 94 V0 @ 0.125 in  
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test  
1. Human Body Model (HBM), R = 1500 W, C = 100 pF.  
2. For additional information, see Application Note AND8003/D.  
ABSOLUTE MAXIMUM RATINGS  
Rating  
V
V
Unit  
V
MIN  
MAX  
V
IN  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
30  
PWMin  
STBY  
FBP  
5.5  
5.5  
5.5  
5.5  
5.5  
5.5  
V
V
V
FBN  
V
OVP  
CS  
V
V
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may  
affect device reliability.  
OPERATING CONDITIONS (T = +25°C)  
A
Rating  
Min  
Typ  
Max  
18  
1
Unit  
V
V
IN  
8.5  
12  
VIL_PWMin: PWMin input low voltage  
VIH_PWMin: PWMin input high voltage  
FBP  
V
2
V
0.5  
3.0  
1
V
VIL_STBY: STBY input low voltage  
VIH_STBY: STBY input high voltage  
RT clock frequency resistor (Note 3)  
Fdim dimming frequency (5 V amplitude)  
Ddim dimming dutycycle  
V
2
20  
100  
3
V
140  
300  
95  
kW  
Hz  
%
NOTE: With respect to the GND pin.  
3. Choose RT to keep clock frequency between 100 kHz and 500 kHz.  
THERMAL RATINGS  
Parameter  
Symbol  
Rating  
150  
Unit  
°C/W  
°C  
Junction to ambient thermal impedance (Note 4)  
Maximum Junction Temperature (Note 5)  
Operating Ambient Temperature  
Storage temperature  
R
q
JA  
T
J
+150  
T
A
40 to +85  
65 to +150  
°C  
T
stg  
°C  
4. Power dissipation must be considered to ensure maximum junction temperature (qJA) is not exceeded.  
5. Thermal Pad attached to PCB, 0 lfm airflow, and 76 mm x 76 mm copper area.  
http://onsemi.com  
4
 
NCS29001  
ELECTRICAL SPECIFICATIONS V = 12 V, T  
= –40°C to 85°C; typical values are at 25°C  
IN  
AMB  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
VIN (VIN Pin)  
I
Operating Supply Current  
V
IN  
= 12 V; PWMin = 5 V; no load,  
STBY = 5 V  
5
mA  
uA  
VIN  
I
Shutdown Mode Supply Current  
PWMin = GND  
Ambient temperature 25°C  
STBY = 5 V  
12  
SHUTDOWN  
UVLO  
Under Voltage Lockout  
Threshold  
VIN Rising  
7.5  
8
8.5  
V
DUVLO  
UVLO Hysteresis  
Startup time  
475  
mV  
ms  
T
Time from standby falling edge to  
steadystate V operation with 30%  
100  
startup  
boost  
dimming pattern (Note 6)  
VREF (VREF Pin)  
VREF  
Vref voltage  
REF bypassed with a 1 mF capacitor to  
4.95  
5
5.05  
V
GND  
Line_Reg  
Load_Reg  
Line Regulation  
Load Regulation  
Iref output current  
V
= 8.5 V to 24 V at I_REF = 10 mA  
0.08  
0.20  
0.6  
10  
%
mV/mA  
mA  
IN  
0 mA < I_REF < 10 mA at VIN = 12 V  
I
(Vref)  
VREF bypassed with a 1 mF capacitor  
CC  
to GND  
GATE (GATE, RT Pins)  
V
GATE output high voltage  
GATE short circuit current  
GATE sinking current  
V
= 12 V  
7.5  
10  
0.33  
0.33  
40  
15  
V
A
OH_GATE  
SOURCE  
IN  
I
0.45  
0.45  
I
A
SINK  
T
RISE  
GATE output rise time  
Output voltage risetime @ C = 1 nF,  
1090% of output signal (Note 6)  
ns  
L
T
FALL  
GATE output fall time  
Output voltage falltime @ C = 1 nF,  
9010% of output signal (Note 6)  
20  
ns  
L
R
Source resistance  
Sink resistance  
13  
6.0  
95  
W
W
OH  
R
OL  
LSS_MAX  
D
Maximum Duty Cycle  
(Note 6)  
93  
%
F
OSC  
Boost Switching Frequency  
range  
100  
500  
kHz  
DF  
Frequency Accuracy  
RT pin output voltage  
10  
+10  
%
V
OSC  
V
RT  
0.85  
1
1.15  
PWM DIMMING (PWMin, PWMout Pins)  
V
PWMout output high voltage  
V
IN  
= 12 V  
7.5  
10  
1
15  
V
OH_PWMout  
DD_DIM  
PWMout/PWMin Duty cycle  
Tolerance  
0.98  
1.02  
%
T
PWMout output rise time  
Output voltage risetime @ C = 1 nF,  
2
2
us  
us  
RISE  
FALL  
L
1090% of output signal  
T
PWMout output fall time  
Output voltage falltime @ C = 1 nF,  
L
9010% of output signal  
I
PWMout short circuit current  
PWMout sinking current  
Source resistance  
15  
15  
20  
20  
mA  
mA  
W
SOURCE  
I
SINK  
R
270  
230  
OH  
R
Sink resistance  
W
OL  
6. Guaranteed by characterization and design  
http://onsemi.com  
5
NCS29001  
ELECTRICAL SPECIFICATIONS V = 12 V, T  
= –40°C to 85°C; typical values are at 25°C  
IN  
AMB  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
CURRENT SENSE (CS Pin)  
V
CS  
Reference voltage threshold for  
current clamp monitoring OCP  
comparator  
0.5  
0.6  
V
I
Slope compensation ramp  
130  
A/s  
RAMP  
PROTECTION (OVP, FBP, FBN Pins)  
V
Output Overvoltage Protection  
on OVP pin  
1.2  
75  
75  
1.3  
V
OVP  
V
Short Circuit Protection on OVP  
pin  
60  
60  
mV  
mV  
SCP  
V
UVPfb  
Output Undervoltage Protection  
on FBN  
T
Thermal Shutdown  
TSD hytheresis  
(Note 6)  
(Note 6)  
140  
150  
15  
160  
°C  
°C  
SD  
DT  
SD  
STANDBY (STBY Pin)  
Standby mode delay  
T
(Note 6)  
50  
ms  
STANDBY  
6. Guaranteed by characterization and design  
APPLICATION DIAGRAM  
VIN  
D1  
Inductor  
L
V
IN  
VIN  
IC  
C
OUT  
NCS29001  
R
R
OVP1  
OVP2  
Q1  
1
VIN  
GATE  
CS  
14  
13  
12  
R
sc  
2
3
Vref  
GND  
PGND  
RCS  
4
5
6
7
PWMin  
RT  
PWMout  
FBN  
11  
10  
9
Rref1  
Rref2  
Q1  
Q2  
R
T
FBP  
COMP  
OVP  
R
comp  
STBY  
8
Backlight O  
Standby  
C
C
comp2  
comp  
Figure 3. Application Schematic  
http://onsemi.com  
6
 
NCS29001  
APPLICATION CONDITIONS  
Symbol  
VIN  
Parameter  
VIN pin voltage  
Condition  
Min  
8.5  
8.5  
50  
Typ  
Max  
18  
Unit  
12  
V
IC  
VIN  
Inductor input voltage  
Output voltage range  
80  
Inductor  
V
OUT  
V
/VIN Max = 5  
Inductor  
240  
V
OUT  
VIN  
= 8.5 to 24 V | V  
= 50 to 80 V  
= 80 to 130 V  
= 130 to 240 V  
Inductor  
Inductor  
Inductor  
OUT  
VIN  
= 24 to 50 V | V  
OUT  
OUT  
VIN  
= 50 to 80 V | V  
h
Peak efficiency  
VIN = 12 V, V  
= 130 V, I  
= 240 V, I  
= 200 mA  
= 200 mA  
95  
95  
%
%
IC  
OUT  
OUT  
OUT  
OUT  
VIN = 12 V, V  
IC  
Dς  
Output Voltage Accuracy  
including voltage ripple, from 40°C to 85°C,  
2  
2
ΟΥΤ  
VIN = 8.5 V to 18 V  
IC  
POWER UP SEQUENCE  
Standby  
VIN  
UVLO  
PWMin  
Vcomp  
PWMout  
GATE  
Figure 4. Soft Start Power Up from Standby  
For the device to begin the soft start sequence the VIN pin voltage needs to be above the UVLO threshold and the OVP pin  
voltage needs to be above the V threshold. From standby mode soft start will begin when STBY pin goes low and PWMin  
SCP  
pin goes high and lasts for a fixed number of clock cycles. This ensures that smooth start up if the device is powered on from  
standby with a PWM input.  
http://onsemi.com  
7
NCS29001  
STANDBY ON AND OFF SEQUENCE  
Discharging the  
output capacitor  
Vout  
Standby  
VIN  
UVLO  
Vin IC  
PWMin  
Vfb & I(LED)  
PWMout  
GATE  
Figure 5. Entering Standby Mode  
The STBY pin contains an internal 5 MW pullup resistor to VREF. This resistor limits current consumption when the device  
is in standby mode and also ensures the device will remain in standby if the STBY pin is left floating.  
When the STBY goes high the boost converter will stop switching and the PWMout pin will switch, or remain high for 50 ms.  
This allows the output capacitor to discharge and the LED current to fall to zero. The device will be in a low power standby  
mode and can begin soft start from the next enable sequence.  
http://onsemi.com  
8
NCS29001  
VCC > UVLO  
POR  
Control logic,  
V1,V2,V4,Vref  
Oscilator enabled  
STBY falling  
edge?  
STBY rising  
edge?  
Y
N
STBY,10 uA  
SCP&D1 Open?  
N
OVP  
Soft Start,  
charging Rc,Cc  
throug Iss  
PWM Hi  
Y
N
PWMO high  
Y
VFBN surpass  
VFBP?  
FUVP?  
Y
Y, Fault1  
N
Delay 100uS Max  
during Soft start,  
and reduced delay  
time for normal  
operation  
OTA take  
control  
PWM Dimming  
N
Fault 2  
DRV goes low immediately,  
PWMDout keeps high  
discharging the output  
capacitor,  
DRV goes low immediately,  
PWMDout goes low  
immediately  
Cc being discharged,  
Delay 50 ms  
STBY rising  
edge?  
DRV grouded, PWMO  
grounded  
Y
Figure 6. Power Up State Machine  
http://onsemi.com  
9
NCS29001  
SOFT START WITH PWM INPUT  
Figure 7 below shows an example of a soft start when the device is powered up from standby with a PWM input. The PWM  
signal here is at 100 Hz with a duty cycle of 30%. In this case the LED reaches 100% of its programmed value in 100 ms. This  
time can be decreased if the PWM signal runs at a higher duty cycle.  
Soft start with PWM dimming active  
100ms with 30% dimming duty cycle,  
100Hz  
PWMin and PWMout  
Vfbn & LED  
current  
LED current reaches 100%  
when Vfbn crosses Vfbp  
Vfbp  
Vcomp is kept during  
dimming off  
Back light LED brightness gradually  
rise to the set value  
Figure 7. Soft Start with PWM Input  
GATE AND PWMOUT PIN DRIVER CIRCUIT  
Since external transistors are required for the boost converter and PWM dimming functions, the device contains an internal  
10 V regulator to drive the gate of these transistors. In the case of the PWM transistor this also functions as a level translator  
for the PWMin input pin. When selecting external components it is important that the transistor has enough gate drive to ensure  
low R  
for the expected current.  
DS(on)  
It should be noted that the internal 10 V regulator will start to drop when the VIN voltage is sufficiently low. When the V  
voltage is 8.5 V the gate drivers will be limited to around 7.7 V.  
IN  
http://onsemi.com  
10  
 
NCS29001  
VREF REFERENCE VOLTAGE  
The device contains an accurate 5 V reference that can supply up to 10 mA and can be accessed through the VREF pin. It  
can be used to program the LED feedback voltage by using a resistor divider on the FBP pin. This reference is only active when  
STBY = low. When the device is in standby mode the VREF pin voltage will drop to 4.2 V typical with a minimum of 3.5 V.  
The VREF will return to 5 V immediately when STBY is driven high.  
MINIMUM ON & OFF TIME  
If the steady state duty cycle and switching frequency combine to generate short Ton times (low VOUT/VIN converter ratio),  
the converter will skip some cycles to regulate V  
which will increase output voltage ripple. The timing limit is set by the  
OUT  
intrinsic loop propagation delay and the switching frequency will be limited by the minimum ON time and OFF time.  
THE INDUCTOR SELECTION  
For a given application, it is necessary to know the input voltage at the inductor (VIN  
), the output current (I  
)
INDUCTOR  
OUT  
set by RFBN and the voltage on the FBP pin, and the switching frequency (F ). The inductor can be chosen using the formula  
sw  
below:  
2
VIN  
1
(eq. 1)  
  ǒV Ǔ  
OUT * VIN  
ǒ Ǔ  
L
max t  
 
2   Fsw   IOUT  
VOUT  
The minimal inductor value is determined with the desired peak current flowing through the inductor. Using the chosen  
inductor value the steady state duty cycle and peak inductor current can be calculated:  
Ǹ
  ǒV  
Ǔ
OUT * VIN  
2   L   Fsw   IOUT  
(eq. 2)  
D +  
VIN  
And the inductor peak current is now:  
2   IOUT   (VOUT * VIN)  
L   Fsw  
VIN   D  
L   Fsw  
(eq. 3)  
+ Ǹ  
Ipeak  
+
THE CURRENT SENSE RESISTOR  
Set a current limit between 2 and 2.5 times the peak inductor current to account for inductor tolerance:  
I
limit + 2.5   Ipeak  
(eq. 4)  
The current limit reference fixed on the over-current protection comparator is V = 0.5 V and the resistance can be calculated  
CS  
using following the equation:  
VCS  
RCS  
+
(eq. 5)  
2.5   Ipeak  
SLOPE COMPENSATION  
After the current sense resistor is calculated additional calculations are needed for the external slope compensation ramp. Using  
the R value the typical slope of the compensation ramp can be calculated:  
SENSE  
V
OUT * VIN  
1
(eq. 6)  
Mramp + RSENSE  
2
L
Using the typical value for , the external compensation resistor can be calculated as follows:  
MRAMP  
(eq. 7)  
RSC  
+
IRAMP  
The slope compensation ramp has an offset current, , which is used to calculate the peak ramp current and finally the adjusted  
current sense resistor.  
IRAMP  
(eq. 8)  
I
RAMP,peak + IOFF ) D  
RSW  
CS * RCS   IRAMP,peak  
V
(eq. 9)  
RCS  
+
I
limit ) IRAMP,peak  
http://onsemi.com  
11  
 
NCS29001  
OUTPUT CAPACITOR and OUTPUT VOLTAGE RIPPLE  
Calculating the output voltage ripple will size the output capacitor value. The output voltage ripple equation below takes  
into account the parasitic impedance (ESR) of this output capacitor:  
ǒ
Ǔ
IOUT   1 * D2  
(eq. 10)  
DVCOUT  
+
) ESR   IOUT  
COUT   Fsw  
Ipeak   L   Fsw  
VOUT * VIN  
IOUT  
(eq. 11)  
DVCOUT  
+
 
ǒ
1 *  
Ǔ
) ESR   IOUT  
COUT   Fsw  
Without taking into account the ESR, the output capacitor becomes:  
Ipeak   L   Fsw  
IOUT  
(eq. 12)  
C
OUT u  
 
ǒ
1 *  
Ǔ
DVOUT   Fsw  
VOUT * VIN  
If the ESR value of the selected output capacitor is high, the voltage ripple will increase. The error due to the ESR can be  
estimated follow the equation below:  
DVOUTESR + ESR   Ipeak  
(eq. 13)  
SIZING THE COMP PIN CAPACITOR  
The transistor Q1 is turned ON (reset of the duty cycle) when the Vf of the output current amplifier reaches the control output  
voltage V . The control voltage V is simply a reduced voltage out of the follower servicing the voltage on the COMP pin.  
c
c
In steady state, at DT , the voltage at the current amplifier output is represented by the equation below:  
sw  
V
C + Ipeak   RCS   Gi  
(eq. 14)  
V
comp + VC ) VOS  
(eq. 15)  
V
comp  
= COMP pin output voltage  
V = Voltage Control of the transconductance amplifier  
c
V = voltage offset of the transconductance amplifier  
os  
VIN   D   RCS   Gi  
L   Fsw  
(eq. 16)  
Vf +  
iEA   trise  
iEA   trise  
Vc ) Vos  
dv  
(eq. 17)  
i + C   
å Ccomp  
+
+
dt  
Vcomp  
i
t
= 4 mA error amplifier output current capability  
= soft start time  
EA  
rise  
V = 0.9 V voltage offset due to the follower  
os  
So  
iEA   trise  
(eq. 18)  
C
comp t  
V
C ) VOS  
iEA   30 ms  
C
comp + 0.7   
V
(eq. 19)  
 D R  
 G  
IN  
CS  
sw  
L ) VOS  
L F  
During the soft start and with the dimming function activated, the COMP pin voltage is rising during 30 ms within the 100 ms  
soft start time so V holds for another during 70 ms afterwards. Attention needs to be brought to the DC voltage rating. As  
comp  
the capacitor value decreases and the DC voltage increases, the value chosen needs to be  
http://onsemi.com  
12  
NCS29001  
SIZING THE Rcomp RESISTOR for the LOOP STABILITY  
Combining Equations 2 and 16 gives the following expression for I  
:
OUT  
2
Vf   L   Fsw  
IOUT  
+
(eq. 20)  
2   ǒV  
Ǔ
ǒ
Ǔ2  
OUT * VIN   RCS   Gi  
To obtain the small signal equation, partial derivates of the output current are calculated with respect to the control voltage Vc  
and the output voltage V  
.
OUT  
IOUT  
VC   L   Fsw  
+
(eq. 21)  
V
OUT  
ǒV  
Ǔ
  ǒR   G Ǔ2  
OUT * VIN  
CS  
i
2
IOUT  
VC   L   Fsw  
IOUT  
+
+
(eq. 22)  
Ǔ2  
ǒ
Ǔ2  
V
V
OUT * VIN  
OUT  
2   ǒV  
OUT * VIN   RCS   Gi  
From the AC model below the control to output transfer function can be calculated:  
Figure 8. Control to Output Transfer Function  
V
OUT(s)  
VOUT(s)  
IOUT(s)  
VC(s)  
H(s) +  
+
 
(eq. 23)  
(eq. 24)  
VC(s)  
I(s)  
I
OUT(s)  
VC(s)  
H(s) + ZOUT(s)   
1
ǒ
ǒ
Ǔ
Ǔ
ESR ) sC  
ESR ) sC  
  Req  
) Req  
1 ) s   ESR   COUT  
OUT  
(eq. 25)  
ZOUT(s) +  
+ Req   
ǒ
Ǔ
1 ) s   COUT ESR ) Req  
1
OUT  
Where  
Rac   R1  
Rac   R1  
Req  
+
2   ǒV  
Ǔ2  
ǒ
Ǔ2  
OUT * VIN   Rcs   Gi  
V
OUT * VIN  
1
R1 +  
+
+
(eq. 26)  
I
(s)  
(s)  
2
IOUT  
Vc   Fsw   L  
OUT  
V
OUT  
The dynamic resistance r  
is evaluated using the LED specification.  
AC(LED)  
RAC + Rsense ) rAC(LED)   nbLED  
(eq. 27)  
http://onsemi.com  
13  
NCS29001  
Theory  
The control to output transfer function is expressed following the formula below:  
s
1 ) w  
z
H(s) + H0   
(eq. 28)  
s
1 ) s  
p
Where  
I
VC   L   Fsw  
RAC   R1  
OUT  
Ho +  
  Req  
+
 
(eq. 29)  
RAC ) R1  
VC  
ǒV  
Ǔ
  ǒR   G Ǔ2  
OUT * VIN  
CS  
I
2   IOUT   L   Fsw  
RAC   R1  
1
Ho +  
 
 
(eq. 30)  
(eq. 31)  
Ǹ
RCS   Gi RAC ) R1  
ǒV  
Ǔ
OUT * VIN  
1
fp +  
ǒ
Ǔ
2p   ESR ) Req   COUT  
There is also a right half plane zero:  
1
fz +  
(eq. 32)  
2p   ESR   COUT  
As the boost converter also operates in DCM, there is also a right half plane zero regulated to high frequency:  
2   fsw  
(eq. 33)  
frhpz  
+
2p   D  
Type II compensation is used to compensate the two dominant poles f of the control to output transfer function.  
p
The compensator zero has to be placer at the f frequency of the transfer function.  
p
1
1
fp +  
+ fz +  
(eq. 34)  
2p   (ESR ) Req)   COUT  
2p   Rcomp   Ccomp  
(ESR ) Req)   COUT  
(eq. 35)  
(eq. 36)  
Rcomp  
+
Ccomp  
The dominant pole is expressed following the equation:  
1
fp1  
+
2p   REA   Ccomp  
COMP  
9
Cpad  
Ccomp2  
equivalent  
+
gm  
Rcomp  
With Cpad=10pF  
Cbw =  
Cpad+Comp2  
Type II  
Ccomp  
Compensation  
Figure 9. Slope Compensation Network  
The natural second pole is expressed following the equation:  
1
fp2  
+
(eq. 37)  
(eq. 38)  
2p   Rcomp   Cbw  
The zero is expressed following the equation:  
1
fz +  
2p   Rcomp   Ccomp  
http://onsemi.com  
14  
NCS29001  
OSCILLATOR FREQUENCY SETTING  
The simplified equation to set the switching frequency using resistor R :  
T
13750  
fsw  
+
(eq. 39)  
RT ) 5  
Where:  
R is expressed in kW.  
T
f
us expressed in kHz  
sw  
FBP OPTIONS  
The FBP pin is used to program the feedback voltage that sets the LED current. Typically a resistor divider is used from VREF  
to set the voltage between 0.5 V and 3.0 V. Additionally, to save component costs, the feedback voltage can be programmed  
with internal 0.8 V ( 1.5%) by tying the FBP pin to ground.  
FAULT DETECTION:  
Overvoltage Protection: A resistor divider from VOUT can be used to set the overvoltage protection on the OVP pin.  
When the OVP pin rises above 1.2 V the converter will shut off immediately and PWMout will be held high for 50 ms  
to discharge the output capacitor. After this time the device will enter standby mode requires a high to low transition on  
the STBY pin to restart.  
Short Circuit Protection: A resistor divider from VOUT can be used to set the short circuit protection on the OVP pin.  
When the OVP pin drops below 75 mV the converter will shut off immediately and enter standby mode. A high to low  
transition on the STBY pin is required to restart the device.  
Under Voltage Lockout (UVLO): The converter will immediately shut off and enter standby when the VIN pin voltage  
drops below 7.5 V. When the UVLO condition is cleared, a high to low transition on the STBY pin is required to restart  
the device.  
Temperature Shutdown: When the internal die temperature reaches 150°C, the device will behave the same as in the  
overvoltage condition.  
Layout Guidance  
In switching converters it is important to use wide, short traces for components in the main switching path. Resistor RCS,  
which is in the main switching path through transistor Q1, should be connected to power ground (PGND). Compensation  
network components, resistor dividers, and bypass capacitors should be referenced to quiet ground (GND). Bypass capacitors  
should be connected as close to the IC as possible.  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NCS29001DR2G  
SOIC14  
(PbFree)  
3000 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
15  
NCS29001  
PACKAGE DIMENSIONS  
SOIC14 NB  
CASE 751A03  
ISSUE K  
NOTES:  
D
A
B
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE PROTRUSION  
SHALL BE 0.13 TOTAL IN EXCESS OF AT  
MAXIMUM MATERIAL CONDITION.  
4. DIMENSIONS D AND E DO NOT INCLUDE  
MOLD PROTRUSIONS.  
14  
8
7
A3  
E
H
5. MAXIMUM MOLD PROTRUSION 0.15 PER  
SIDE.  
L
DETAIL A  
1
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
13X b  
M
M
B
0.25  
A
A1  
A3  
b
D
E
1.35  
0.10  
0.19  
0.35  
8.55  
3.80  
1.75 0.054 0.068  
0.25 0.004 0.010  
0.25 0.008 0.010  
0.49 0.014 0.019  
8.75 0.337 0.344  
4.00 0.150 0.157  
M
S
S
B
0.25  
C A  
DETAIL A  
h
A
X 45  
_
e
H
h
L
1.27 BSC  
0.050 BSC  
6.20 0.228 0.244  
0.50 0.010 0.019  
1.25 0.016 0.049  
5.80  
0.25  
0.40  
0
M
A1  
e
M
7
0
7
_
_
_
_
SEATING  
PLANE  
C
SOLDERING FOOTPRINT*  
6.50  
14X  
1.18  
1
1.27  
PITCH  
14X  
0.58  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,  
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. SCILLC  
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications  
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC  
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,  
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture  
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCS29001/D  

相关型号:

NCS29001DR2G

LED Backlight Driver
ONSEMI

NCS3-272+

RF Transformer, 2250MHz Min, 2725MHz Max, 1:3, ROHS COMPLIANT
MINI

NCS3-72

RF Transformer
MINI

NCS3-72+

RF Transformer
MINI

NCS3-ED12817/34B24

RF Transformer, 2200MHz Min, 2800MHz Max, CHIP
MINI

NCS32100XMNTXG

Industrial Rotary Position Sensor
ONSEMI

NCS325

Zero-Drift Operational Amplifier
ONSEMI

NCS325SN2T1G

Zero-Drift Operational Amplifier
ONSEMI

NCS325_16

Zero-Drift Operational Amplifier
ONSEMI

NCS325_17

Zero-Drift Operational Amplifier
ONSEMI

NCS333

Low Power, Zero-Drift Operational Amplifier
ONSEMI

NCS333A

Zero-Drift Operational Amplifier
ONSEMI