NCV1455BDR2 [ONSEMI]

Timers; 计时器
NCV1455BDR2
型号: NCV1455BDR2
厂家: ONSEMI    ONSEMI
描述:

Timers
计时器

文件: 总10页 (文件大小:151K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC1455, MC1455B,  
NCV1455B  
Timers  
The MC1455 monolithic timing circuit is a highly stable controller  
capable of producing accurate time delays or oscillation. Additional  
terminals are provided for triggering or resetting if desired. In the time  
delay mode, time is precisely controlled by one external resistor and  
capacitor. For astable operation as an oscillator, the free−running  
frequency and the duty cycle are both accurately controlled with two  
external resistors and one capacitor. The circuit may be triggered and  
reset on falling waveforms, and the output structure can source or sink  
up to 200 mA or drive MTTL circuits.  
Direct Replacement for NE555 Timers  
Timing from Microseconds through Hours  
Operates in Both Astable and Monostable Modes  
Adjustable Duty Cycle  
http://onsemi.com  
MARKING  
DIAGRAMS  
XXXXXXXXX  
AWL  
8
YYWW  
1
P1 SUFFIX  
PLASTIC PACKAGE  
CASE 626  
High Current Output Can Source or Sink 200 mA  
Output Can Drive MTTL  
Temperature Stability of 0.005% per °C  
Normally ON or Normally OFF Output  
8
8
XXXXXX  
ALYW  
1
D SUFFIX  
PLASTIC PACKAGE  
CASE 751  
1
xx  
A
= Specific Device Code  
= Assembly Location  
WL, L = Wafer Lot  
YY, Y = Year  
WW, W = Work Week  
1.0 k  
Load  
MT2  
3
8
MT1  
6
7
G
4
2
R
20ꢀM  
C
10 k  
MC1455  
ORDERING INFORMATION  
5
See detailed ordering and shipping information in the package  
dimensions section on page ___ of this data sheet.  
(Create − Named − OrderingInfoText.)  
0.01 mF  
1.0 mF  
0.1 mF  
1
1N4003  
−10 V  
3.5 k  
10 mF  
1N4740  
t = 1.1; R and C = 22 sec  
Time delay (t) is variable by  
changing R and C (see Figure 16).  
+
250 V  
Figure 1. 22 Second Solid State Time Delay Relay Circuit  
V
CC  
I
CC  
V
R
Reset  
4
8
700  
7
5
V
CC  
V
CC  
+
Control  
Voltage  
0.01 mF  
Discharge  
8
MC1455  
3
5 k  
Threshold  
6
7
3
6
5
V
S
Discharge  
Output  
+
Threshold  
2.0 k  
Output  
I
th  
Comp  
A
Flip  
Flop  
Gnd  
1
Trigger  
I
Sink  
V
O
R
S
Control Voltage  
2
I
Source  
Q
5 k  
5 k  
Inhibit/  
Reset  
+
Comp  
B
2
Trigger  
Test circuit for measuring DC parameters (to set output and  
measure parameters):  
a) When V w 2/3 V , V is low.  
S
CC  
O
b) When V v 1/3 V , V is high.  
S
CC  
O
1
4
c) When V is low, Pin 7 sinks current. To test for Reset, set V  
O
O
Gnd  
Reset  
c) high, apply Reset voltage, and test for current flowing into Pin 7.  
c) When Reset is not in use, it should be tied to V  
.
CC  
Figure 2. Representative Block Diagram  
Figure 3. General Test Circuit  
Semiconductor Components Industries, LLC, 2004  
1
Publication Order Number:  
MC1455/D  
March, 2004 − Rev. 8  
MC1455, MC1455B, NCV1455B  
MAXIMUM RATINGS (T = +25°C, unless otherwise noted.)  
A
Rating  
Symbol  
Value  
+18  
Unit  
Vdc  
mA  
Power Supply Voltage  
V
CC  
Discharge Current (Pin 7)  
I
7
200  
Power Dissipation (Package Limitation)  
P1 Suffix, Plastic Package  
P
625  
5.0  
625  
160  
mW  
mW/°C  
mW  
D
Derate above T = +25°C  
A
P
D
D Suffix, Plastic Package  
°C/W  
Derate above T = +25°C  
A
Operating Temperature Range (Ambient)  
MC1455B  
MC1455  
T
A
°C  
−40 to +85  
0 to +70  
−40 to +125  
NCV1455B  
Maximum Operating Die Junction Temperature  
Storage Temperature Range  
T
+150  
°C  
°C  
J
T
stg  
−65 to +150  
ELECTRICAL CHARACTERISTICS (T = +25°C, V = +5.0 V to +15 V, unless otherwise noted.)  
A
CC  
Characteristics  
Operating Supply Voltage Range  
Supply Current  
Symbol  
Min  
Typ  
Max  
Unit  
V
V
4.5  
16  
CC  
CC  
I
mA  
3.0  
10  
6.0  
15  
V
CC  
V
CC  
= 5.0 V, R = R  
L
= 15 V, R = R, Low State (Note 1)  
L
Timing Error (R = 1.0 kW to 100 kW) (Note 2)  
Initial Accuracy C = 0.1 mF  
Drift with Temperature  
1.0  
50  
0.1  
%
PPM/°C  
%/V  
Drift with Supply Voltage  
Threshold Voltage/Supply Voltage  
Trigger Voltage  
V /V  
2/3  
th CC  
V
T
V
5.0  
1.67  
V
CC  
V
CC  
= 15 V  
= 5.0 V  
Trigger Current  
I
0.4  
0.5  
0.7  
0.1  
0.1  
1.0  
mA  
V
T
Reset Voltage  
V
R
Reset Current  
I
R
mA  
mA  
nA  
V
Threshold Current (Note 3)  
Discharge Leakage Current (Pin 7)  
Control Voltage Level  
I
th  
0.25  
100  
I
dischg  
V
CL  
OL  
9.0  
2.6  
10  
3.33  
11  
4.0  
V
CC  
V
CC  
= 15 V  
= 5.0 V  
Output Voltage Low  
V
V
0.1  
0.4  
2.0  
2.5  
0.25  
0.75  
2.5  
0.35  
I
I
I
I
I
I
= 10 mA (V = 15 V)  
CC  
Sink  
Sink  
Sink  
Sink  
Sink  
Sink  
= 50 mA (V = 15 V)  
CC  
= 100 mA (V = 15 V)  
CC  
= 200 mA (V = 15 V)  
CC  
= 8.0 mA (V = 5.0 V)  
CC  
0.25  
= 5.0 mA (V = 5.0 V)  
CC  
Output Voltage High  
V
OH  
V
12.5  
13.3  
3.3  
V
CC  
V
CC  
V
CC  
= 15 V (I  
= 15 V (I  
= 5.0 V (I  
= 200 mA)  
= 100 mA)  
= 100 mA)  
Source  
Source  
12.75  
2.75  
Source  
Rise Time Differential Output  
Fall Time Differential Output  
t
100  
100  
ns  
ns  
r
t
f
1. ‘Supply current when output is high is typically 1.0 mA less.  
2. Tested at V = 5.0 V and V = 15 V Monostable mode.  
CC  
CC  
3. This will determine the maximum value of R + R for 15 V operation. The maximum total R = 20 MW.  
A
B
4. T  
= 0°C for MC1455, T = −40°C for MC1455B, NCV1455B  
low  
low  
T
high  
= +70°C for MC1455, T  
= +85°C for MC1455B, T  
= +125°C for NCV1455B  
high  
high  
5. NCV prefix is for Automotive and other applications requiring site and change control.  
http://onsemi.com  
2
 
MC1455, MC1455B, NCV1455B  
150  
125  
100  
10  
25°C  
8.0  
6.0  
0°C  
75  
50  
4.0  
25°C  
70°C  
2.0  
25  
0
0
0
0.1  
0.2  
0.3  
0.4  
5.0  
10  
V , SUPPLY VOLTAGE (Vdc)  
CC  
15  
V
Tꢀ(min)  
, MINIMUM TRIGGER VOLTAGE (x V = Vdc)  
CC  
Figure 4. Trigger Pulse Width  
Figure 5. Supply Current  
2.0  
1.8  
10  
1.6  
1.4  
25°C  
25°C  
1.0  
0.1  
1.2  
1.0  
0.8  
0.6  
0.4  
5.0 V V 15 V  
CC  
0.2  
0
0.01  
1.0  
2.0  
5.0  
10  
(mA)  
20  
50  
100  
1.0  
2.0  
5.0  
10  
(mA)  
20  
50  
100  
I
I
Sink  
Source  
Figure 6. High Output Voltage  
Figure 7. Low Output Voltage  
@ VCC = 5.0 Vdc  
10  
10  
25°C  
1.0  
1.0  
0.1  
0.1  
25°C  
0.01  
0.01  
1.0  
1.0  
2.0  
5.0  
10  
(mA)  
20  
50  
100  
2.0  
5.0  
10  
20  
50  
100  
I
I
(mA)  
Sink  
Sink  
Figure 8. Low Output Voltage  
@ VCC = 10 Vdc  
Figure 9. Low Output Voltage  
@ VCC = 15 Vdc  
http://onsemi.com  
3
MC1455, MC1455B, NCV1455B  
1.015  
1.010  
1.015  
1.010  
1.005  
1.000  
1.005  
1.000  
0.995  
0.990  
0.985  
0.995  
0.990  
0.985  
0
5.0  
10  
15  
20  
75  
50  
25  
0
25  
50  
75  
100  
125  
V
CC  
, SUPPLY VOLTAGE (Vdc)  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 10. Delay Time versus Supply Voltage  
Figure 11. Delay Time versus Temperature  
300  
250  
200  
150  
0°C  
100  
25°C  
70°C  
50  
0
0
0.1  
0.2  
0.3  
0.4  
V
Tꢀ(min)  
, MINIMUM TRIGGER VOLTAGE (x V = Vdc)  
CC  
Figure 12. Propagation Delay  
versus Trigger Voltage  
http://onsemi.com  
4
MC1455, MC1455B, NCV1455B  
Control Voltage  
Threshold  
Comparator  
Trigger  
Comparator  
Flip−Flop  
Output  
V
CC  
6.8 k  
4.7 k  
830  
4.7ꢀk  
1.0 k  
5.0 k  
Threshold  
7.0 k  
3.9 k  
b
10 k  
Output  
c b  
e
c
4.7 k  
5.0 k  
5.0 k  
Trigger  
Reset  
220  
Reset  
100 k  
4.7 k  
Discharge  
Gnd  
Discharge  
100  
Figure 13. Representative Circuit Schematic  
GENERAL OPERATION  
The MC1455 is a monolithic timing circuit which uses an  
external resistor − capacitor network as its timing element. It  
can be used in both the monostable (one−shot) and astable  
modes with frequency and duty cycle controlled by the  
capacitor and resistor values. While the timing is dependent  
upon the external passive components, the monolithic circuit  
provides the starting circuit, voltage comparison and other  
functions needed for a complete timing circuit. Internal to the  
integrated circuit are two comparators, one for the input  
signal and the other for capacitor voltage; also a flip−flop and  
digital output are included. The comparator reference  
voltages are always a fixed ratio of the supply voltage thus  
providing output timing independent of supply voltage.  
has been triggered by an input signal, it cannot be retriggered  
until the present timing period has been completed. The time  
that the output is high is given by the equation t = 1.1 R C.  
A
Various combinations of R and C and their associated times  
are shown in Figure 16. The trigger pulse width must be less  
than the timing period.  
A reset pin is provided to discharge the capacitor, thus  
interrupting the timing cycle. As long as the reset pin is low,  
the capacitor discharge transistor is turned “on” and  
prevents the capacitor from charging. While the reset  
voltage is applied the digital output will remain the same.  
The reset pin should be tied to the supply voltage when not  
in use.  
Monostable Mode  
+V (5.0 V to 15 V)  
CC  
In the monostable mode, a capacitor and a single resistor  
are used for the timing network. Both the threshold terminal  
and the discharge transistor terminal are connected together  
in this mode (refer to circuit in Figure 14). When the input  
Reset  
4
R
V
8
A
CC  
R
L
Discharge  
7
voltage to the trigger comparator falls below 1/3 V , the  
CC  
Output  
3
comparator output triggers the flip−flop so that its output  
sets low. This turns the capacitor discharge transistor “off”  
and drives the digital output to the high state. This condition  
allows the capacitor to charge at an exponential rate which  
is set by the RC time constant. When the capacitor voltage  
6
MC1455  
Threshold  
5
C
2
R
L
Trigger  
Control  
Voltage  
1
0.01 mF  
reaches 2/3 V , the threshold comparator resets the  
CC  
flip−flop. This action discharges the timing capacitor and  
returns the digital output to the low state. Once the flip−flop  
Figure 14. Monostable Circuit  
http://onsemi.com  
5
MC1455, MC1455B, NCV1455B  
100  
10  
1.0  
0.1  
0.01  
0.001  
t = 50 ms/cm  
(R = 10 kW, C = 0.01 mF, R = 1.0 kW, V = 15 V)  
10 ms 100 ms 1.0 ms 10 ms 100 ms  
1.0  
10  
100  
t , TIME DELAY (s)  
d
A
L
CC  
Figure 15. Monostable Waveforms  
Figure 16. Time Delay  
+V (5.0 V to 15 V)  
CC  
Reset  
4
R
A
V
8
CC  
R
L
Output  
7ꢁDischarge  
6ꢁThreshold  
5
3
Trigger  
2
MC1455  
R
B
Control  
Voltage  
R
L
1
C
t = 20 ms/cm  
(R = 5.1 kW, C = 0.01 mF, R = 1.0 kW; R = 3.9 kW, V = 15 V)  
A
L
B
CC  
Figure 17. Astable Circuit  
Figure 18. Astable Waveforms  
Astable Mode  
In the astable mode the timer is connected so that it will  
retrigger itself and cause the capacitor voltage to oscillate  
To obtain the maximum duty cycle R must be as small as  
A
possible; but it must also be large enough to limit the  
discharge current (Pin 7 current) within the maximum rating  
of the discharge transistor (200 mA).  
between 1/3 V and 2/3 V . See Figure 17.  
CC  
CC  
The external capacitor changes to 2/3 V through R and  
CC  
A
R and discharges to 1/3 V through R . By varying the  
The minimum value of R is given by:  
B
CC  
B
A
ratio of these resistors the duty cycle can be varied. The  
charge and discharge times are independent of the supply  
voltage.  
V
(Vdc)  
V
(Vdc)  
CC  
0.2  
CC  
R
w
w
A
I7 (A)  
100  
10  
The charge time (output high) is given by:  
t
1
+ 0.695(R ) R )C  
A B  
The discharge time (output low) is given by:  
t
+ 0.695(R )C  
B
2
1.0  
0.1  
Thus the total period is given by:  
T + t ) t + 0.695(R ) 2R )C  
1
2
A
B
1
1
1.44  
(R ) 2R )C  
0.01  
The frequency of oscillation is then:  
f +  
+
A
B
(R + 2 R )  
A B  
0.001  
and may be easily found as shown in Figure 19.  
0.1  
1.0  
10  
100  
1.0 k  
f, FREE RUNNING FREQUENCY (Hz)  
10 k  
100  
R
B
The duty cycle is given by:  
DC +  
R
) 2R  
B
A
Figure 19. Free Running Frequency  
http://onsemi.com  
6
MC1455, MC1455B, NCV1455B  
APPLICATIONS INFORMATION  
Missing Pulse Detector  
Linear Voltage Ramp  
In the monostable mode, the resistor can be replaced by a  
constant current source to provide a linear ramp voltage. The  
The timer can be used to produce an output when an input  
pulse fails to occur within the delay of the timer. To  
accomplish this, set the time delay to be slightly longer than  
the time between successive input pulses. The timing cycle  
is then continuously reset by the input pulse train until a  
change in frequency or a missing pulse allows completion of  
the timing cycle, causing a change in the output level.  
capacitor still charges from 0 V to 2/3 V . The linear  
CC  
CC  
ramp time is given by:  
2
3
VCC  
1
V
CC − VB − VBE  
RE  
t =  
, where I =  
If V is much larger than V , then t can be made  
B
BE  
independent of V  
.
CC  
+V (5.0 V to 15 V)  
CC  
V
V
CC  
V
CC  
Reset  
4
R
L
R
A
8
Reset  
4
8
CC  
Discharge  
3
R
R1  
E
2N4403  
or Equiv  
7
Output  
Input  
3
V
E
Digital  
Output  
Threshold  
MC1455  
7
6
5
V
B
Control  
Voltage  
6
5
C
2
I
MC1455  
Trigger  
2
0.01 mF  
Sweep  
Output  
R2  
1
Trigger  
C
2N4403  
or Equiv  
Control  
Voltage  
1
0.01 mF  
Figure 20. Linear Voltage Sweep Circuit  
Figure 21. Missing Pulse Detector  
t = 100 ms/cm  
t = 500 ms/cm  
(R = 10 kW, R2 = 100 kW, R1 = 39 kW, C = 0.01 mF, V = 15 V)  
E CC  
(R = 2.0 kW, R = 1.0 kW, C = 0.01 mF, V = 15 V)  
A L CC  
Figure 22. Linear Voltage Ramp Waveforms  
Figure 23. Missing Pulse Detector Waveforms  
http://onsemi.com  
7
MC1455, MC1455B, NCV1455B  
Pulse Width Modulation  
If the timer is triggered with a continuous pulse train in the  
monostable mode of operation, the charge time of the  
capacitor can be varied by changing the control voltage at  
Pin 5. In this manner, the output pulse width can be  
modulated by applying a modulating signal that controls the  
threshold voltage.  
+V (5.0 V to 15 V)  
CC  
R
A
R
L
4
8
t = 0.5 ms/cm  
(R = 10 kW, C = 0.02 mF, V = 15 V)  
A
CC  
7
3
2
Output  
C
Figure 25. Pulse Width Modulation Waveforms  
6
5
MC1455  
Test Sequences  
Clock  
Input  
Modulation  
Input  
Several timers can be connected to drive each other for  
sequential timing. An example is shown in Figure 26 where  
the sequence is started by triggering the first timer which  
runs for 10 ms. The output then switches low momentarily  
and starts the second timer which runs for 50 ms and so forth.  
1
Figure 24. Pulse Width Modulator  
V
CC  
(5.0 V to 15 V)  
18.2 k  
6
9.1 k  
9.1 k  
6
27 k  
27 k  
8
4
8
4
8
4
0.01 mF  
0.01 mF  
0.01 mF  
6
5
3
5
3
5
3
7
2
7
2
MC1455  
MC1455  
MC1455  
7
0.001 mF  
5.0 mF  
0.001 mF  
5.0 mF  
2
1
1
1
1.0 mF  
Load  
Load  
Load  
Figure 26. Sequential Timer  
DEVICE ORDERING INFORMATION  
Device  
MC1455P1  
Operating Temperature Range  
T = 0°C to +70°C  
Package  
Plastic Dip  
SO−8  
Shipping  
50 Units/Rail  
98 Units/Rail  
98 Units/Rail  
50 Units/Rail  
A
MC1455D  
T = 0°C to +70°C  
A
MC1455BD  
T = −40°C to +85°C  
A
SO−8  
MC1455BP1  
NCV1455BDR2*  
T = −40°C to +85°C  
A
Plastic Dip  
SO−8  
T = −40°C to +125°C  
A
2500/Tape & Rail  
*NCV prefix is for automotive and other applications requiring site and control changes.  
http://onsemi.com  
8
MC1455, MC1455B, NCV1455B  
PACKAGE DIMENSIONS  
P1 SUFFIX  
PLASTIC PACKAGE  
CASE 626−05  
ISSUE L  
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
8
5
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
−B−  
MILLIMETERS  
INCHES  
1
4
DIM MIN  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MIN  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
A
B
C
D
F
9.40  
6.10  
3.94  
0.38  
1.02  
0.370  
0.240  
0.155  
0.015  
0.040  
F
−A−  
NOTE 2  
L
G
H
J
K
L
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.050  
0.012  
0.135  
C
7.62 BSC  
0.300 BSC  
M
N
−−−  
0.76  
10  
_
1.01  
−−−  
0.030  
10  
_
0.040  
J
−T−  
SEATING  
PLANE  
N
M
D
K
G
H
M
M
M
0.13 (0.005)  
T
A
B
http://onsemi.com  
9
MC1455, MC1455B, NCV1455B  
PACKAGE DIMENSIONS  
D SUFFIX  
PLASTIC PACKAGE  
CASE 751−07  
(SO−8)  
ISSUE AA  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
−X−  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER  
SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN  
EXCESS OF THE D DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
S
M
M
B
0.25 (0.010)  
Y
1
K
−Y−  
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW  
STANDARD IS 751−07.  
G
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
5.00  
4.00  
1.75  
0.51  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
0.189  
0.150  
0.053  
0.013  
0.050 BSC  
0.004  
0.007  
0.016  
0
0.010  
0.228  
C
N X 45  
_
SEATING  
PLANE  
−Z−  
1.27 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25  
0.25  
1.27  
8
0.010  
0.010  
0.050  
8
M
J
H
D
_
_
_
_
0.25  
5.80  
0.50  
6.20  
0.020  
0.244  
M
S
S
X
0.25 (0.010)  
Z
Y
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
MC1455/D  

相关型号:

ONSEMI

NCV1729SN35T1G

Charge Pump, Switched Capacitor Voltage Inverter with Shutdown, 50 mA, 35 kHz
ONSEMI

NCV199A2SQT2G

Current-Shunt Monitor, Voltage Output Bi-Directional Zero-Drift
ONSEMI

NCV199A3SQT2G

Current-Shunt Monitor, Voltage Output Bi-Directional Zero-Drift
ONSEMI

NCV2001

0.9 V, Rail−to−Rail, Single Operational Amplifier
ONSEMI

NCV2001SN2T1G

0.9 V, Rail−to−Rail, Single Operational Amplifier
ONSEMI

NCV2001SQ2T2G

Operational Amplifier with sub-one volt operation, Rail to Rail I/O
ONSEMI

NCV2002

Sub-One Volt Rail-to-Rail Operational Amplifier with Enable Feature
ONSEMI

NCV2002SN1T1

Sub-One Volt Rail-to-Rail Operational Amplifier with Enable Feature
ONSEMI

NCV2002SN1T1G

Sub−One Volt Rail−to−Rail Operational Amplifier with Enable Feature
ONSEMI

NCV2002SN2T1

Sub-One Volt Rail-to-Rail Operational Amplifier with Enable Feature
ONSEMI

NCV2002SN2T1G

Sub−One Volt Rail−to−Rail Operational Amplifier with Enable Feature
ONSEMI