NCV33204DR2 [ONSEMI]

Rail-to-Rail Operational Amplifiers; 轨至轨运算放大器
NCV33204DR2
型号: NCV33204DR2
厂家: ONSEMI    ONSEMI
描述:

Rail-to-Rail Operational Amplifiers
轨至轨运算放大器

运算放大器 光电二极管
文件: 总16页 (文件大小:204K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MC33201, MC33202,  
MC33204, NCV33202,  
NCV33204  
Low Voltage, Rail−to−Rail  
Operational Amplifiers  
http://onsemi.com  
The MC33201/2/4 family of operational amplifiers provide  
rail−to−railoperation on both the input and output. The inputs can be  
driven as high as 200 mV beyond the supply rails without phase  
reversal on the outputs, and the output can swing within 50 mV of each  
rail. This rail−to−rail operation enables the user to make full use of the  
supply voltage range available. It is designed to work at very low  
supply voltages (± 0.9 V) yet can operate with a supply of up to +12 V  
and ground. Output current boosting techniques provide a high output  
current capability while keeping the drain current of the amplifier to a  
minimum. Also, the combination of low noise and distortion with a  
high slew rate and drive capability make this an ideal amplifier for  
audio applications.  
PDIP−8  
P, VP SUFFIX  
CASE 626  
8
1
SOIC−8  
D, VD SUFFIX  
CASE 751  
8
1
Micro8]  
DM SUFFIX  
CASE 846A  
Low Voltage, Single Supply Operation  
(+1.8 V and Ground to +12 V and Ground)  
Input Voltage Range Includes both Supply Rails  
8
1
Output Voltage Swings within 50 mV of both Rails  
No Phase Reversal on the Output for Over−driven Input Signals  
PDIP−14  
P, VP SUFFIX  
CASE 646  
High Output Current (I = 80 mA, Typ)  
SC  
Low Supply Current (I = 0.9 mA, Typ)  
D
14  
600 W Output Drive Capability  
1
Extended Operating Temperature Ranges  
(−40° to +105°C and −55° to +125°C)  
SOIC−14  
D, VD SUFFIX  
CASE 751A  
Typical Gain Bandwidth Product = 2.2 MHz  
Pb−Free Packages are Available  
14  
1
TSSOP−14  
DTB SUFFIX  
CASE 948G  
14  
1
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 10 of this data sheet.  
DEVICE MARKING INFORMATION  
See general marking information in the device marking  
section on page 11 of this data sheet.  
Semiconductor Components Industries, LLC, 2004  
1
Publication Order Number:  
March, 2004 − Rev. 12  
MC33201/D  
MC33201, MC33202, MC33204, NCV33202, NCV33204  
PIN CONNECTIONS  
MC33201  
MC33204  
All Case Styles  
All Case Styles  
Output 1  
Inputs 1  
1
2
3
4
5
6
7
14 Output 4  
1
2
3
4
8
7
6
5
NC  
V
NC  
13  
Inputs 4  
12  
1
2
4
3
CC  
Inputs  
Output  
NC  
V
CC  
11  
10  
9
V
EE  
V
EE  
Inputs 2  
Output 2  
Inputs 3  
Output 3  
(Top View)  
8
MC33202  
All Case Styles  
(Top View)  
Output 1  
1
2
3
4
8
7
6
5
V
CC  
Output 2  
1
Inputs 1  
Inputs 2  
2
V
EE  
(Top View)  
V
CC  
V
CC  
V
EE  
V
CC  
V
inꢀ−  
V
out  
V
CC  
V
inꢀ+  
V
EE  
This device contains 70 active transistors (each amplifier).  
Figure 1. Circuit Schematic  
(Each Amplifier)  
http://onsemi.com  
2
MC33201, MC33202, MC33204, NCV33202, NCV33204  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
+13  
Unit  
V
Supply Voltage (V to V  
)
V
S
CC  
EE  
Input Differential Voltage Range  
V
IDR  
Note 1  
V
Common Mode Input Voltage Range (Note 2)  
V
CM  
V
CC  
+ 0.5 V to  
V
V
EE  
− 0.5 V  
Output Short Circuit Duration  
Maximum Junction Temperature  
Storage Temperature  
t
Note 3  
+150  
sec  
°C  
s
T
J
T
stg  
− 65 to +150  
Note 3  
°C  
Maximum Power Dissipation  
P
mW  
D
DC ELECTRICAL CHARACTERISTICS (T = 25°C)  
A
Characteristic  
V
CC  
= 2.0 V  
V
CC  
= 3.3 V  
V = 5.0 V  
CC  
Unit  
Input Offset Voltage  
mV  
V
IO (max)  
MC33201  
± 8.0  
± 8.0  
± 6.0  
MC33202, NCV33202  
MC33204  
±10  
±12  
±10  
±12  
± 8.0  
±10  
Output Voltage Swing  
V
OH  
V
OL  
(R = 10 kW)  
(R = 10 kW)  
L
1.9  
0.10  
3.15  
0.15  
4.85  
0.15  
V
min  
V
max  
L
Power Supply Current  
per Amplifier (I )  
mA  
1.125  
1.125  
1.125  
D
Specifications at V = 3.3 V are guaranteed by the 2.0 V and 5.0 V tests. V = GND.  
CC  
EE  
DC ELECTRICAL CHARACTERISTICS (V = + 5.0 V, V = Ground, T = 25°C, unless otherwise noted.)  
CC  
EE  
A
Characteristic  
Figure  
Symbol  
Min  
Typ  
Max  
Unit  
Input Offset Voltage (V  
0 V to 0.5 V, V  
1.0 V to 5.0 V)  
3
V
IO  
mV  
CM  
CM  
MC33201: T = + 25°C  
6.0  
9.0  
13  
8.0  
11  
14  
14  
10  
13  
17  
A
MC33201: T = − 40° to +105°C  
A
MC33201V: T = − 55° to +125°C  
A
MC33202: T = + 25°C  
A
MC33202: T = − 40° to +105°C  
A
MC33202V: T = − 55° to +125°C  
A
NCV33202V: T = − 55° to +125°C (Note 4)  
A
MC33204: T = + 25°C  
A
MC33204: T = − 40° to +105°C  
A
MC33204V: T = − 55° to +125°C  
A
Input Offset Voltage Temperature Coefficient (R = 50 W)  
4
DV /DT  
mV/°C  
S
IO  
T = − 40° to +105°C  
T = − 55° to +125°C  
A
2.0  
2.0  
A
Input Bias Current (V  
= 0 V to 0.5 V, V  
= 1.0 V to 5.0 V)  
5, 6  
I
IB  
nA  
CM  
CM  
T = + 25°C  
80  
100  
200  
250  
500  
A
T = − 40° to +105°C  
A
T = − 55° to +125°C  
A
Input Offset Current (V  
= 0 V to 0.5 V, V  
= 1.0 V to 5.0 V)  
I
nA  
V
CM  
CM  
IO  
T = + 25°C  
5.0  
10  
50  
100  
200  
A
T = − 40° to +105°C  
A
T = − 55° to +125°C  
A
Common Mode Input Voltage Range  
V
ICR  
V
EE  
V
CC  
1. The differential input voltage of each amplifier is limited by two internal parallel back−to−back diodes. For additional differential input voltage  
range, use current limiting resistors in series with the input pins.  
2. The input common mode voltage range is limited by internal diodes connected from the inputs to both supply rails. Therefore, the voltage  
on either input must not exceed either supply rail by more than 500 mV.  
3. Power dissipation must be considered to ensure maximum junction temperature (T ) is not exceeded. (See Figure 2)  
J
4. NCV33202 and NCV33204 are qualified for automotive use.  
http://onsemi.com  
3
 
MC33201, MC33202, MC33204, NCV33202, NCV33204  
DC ELECTRICAL CHARACTERISTICS (cont.) (V = + 5.0 V, V = Ground, T = 25°C, unless otherwise noted.)  
CC  
EE  
A
Characteristic  
Figure  
Symbol  
Min  
Typ  
Max  
Unit  
Large Signal Voltage Gain (V = + 5.0 V, V = − 5.0 V)  
7
A
VOL  
kV/V  
CC  
EE  
R = 10 kW  
R = 600 W  
L
50  
25  
300  
250  
L
Output Voltage Swing (V = ± 0.2 V)  
8, 9, 10  
V
ID  
R = 10 kW  
V
V
4.85  
4.75  
4.95  
0.05  
4.85  
0.15  
0.15  
L
OH  
R = 10 kW  
L
OL  
R = 600 W  
V
OH  
L
R = 600 W  
L
V
0.25  
OL  
Common Mode Rejection (V = 0 V to 5.0 V)  
11  
12  
CMR  
60  
90  
dB  
in  
Power Supply Rejection Ratio  
PSRR  
mV/V  
V
/V = 5.0 V/GND to 3.0 V/GND  
500  
50  
25  
80  
CC EE  
Output Short Circuit Current (Source and Sink)  
Power Supply Current per Amplifier (V = 0 V)  
13, 14  
15  
I
mA  
mA  
SC  
I
O
D
T = − 40° to +105°C  
T = − 55° to +125°C  
A
0.9  
0.9  
1.125  
1.125  
A
AC ELECTRICAL CHARACTERISTICS (V = + 5.0 V, V = Ground, T = 25°C, unless otherwise noted.)  
CC  
EE  
A
Characteristic  
Figure  
Symbol  
Min  
Typ  
Max  
Unit  
Slew Rate  
(V = ± 2.5 V, V = − 2.0 V to + 2.0 V, R = 2.0 kW, A = +1.0)  
16, 26  
SR  
V/ms  
0.5  
1.0  
2.2  
12  
65  
90  
28  
S
O
L
V
Gain Bandwidth Product (f = 100 kHz)  
Gain Margin (R = 600 W, C = 0 pF)  
17  
GBW  
MHz  
dB  
20, 21, 22  
20, 21, 22  
23  
A
M
L
L
Phase Margin (R = 600 W, C = 0 pF)  
O
Deg  
dB  
L
L
M
Channel Separation (f = 1.0 Hz to 20 kHz, A = 100)  
CS  
V
Power Bandwidth (V = 4.0 V , R = 600 W, THD 1 %)  
BW  
P
kHz  
%
O
pp  
L
Total Harmonic Distortion (R = 600 W, V = 1.0 V , A = 1.0)  
24  
THD  
L
O
pp  
V
f = 1.0 kHz  
f = 10 kHz  
0.002  
0.008  
Open Loop Output Impedance  
(V = 0 V, f = 2.0 MHz, A = 10)  
Z
W
O
100  
200  
8.0  
O
V
Differential Input Resistance (V  
= 0 V)  
R
C
e
kW  
CM  
in  
in  
n
Differential Input Capacitance (V  
= 0 V)  
pF  
CM  
Equivalent Input Noise Voltage (R = 100 W)  
25  
25  
S
nV/  
Hz  
f = 10 Hz  
f = 1.0 kHz  
25  
20  
Equivalent Input Noise Current  
f = 10 Hz  
i
n
pA/  
Hz  
0.8  
0.2  
f = 1.0 kHz  
http://onsemi.com  
4
MC33201, MC33202, MC33204, NCV33202, NCV33204  
2500  
2000  
1500  
1000  
500  
40  
35  
30  
360 amplifiers tested from  
3 (MC33204) wafer lots  
ꢁV = +ꢀ5.0 V  
ꢁV = Gnd  
EE  
ꢁT = 25°C  
A
ꢁDIP Package  
8 and 14 Pin DIP Pkg  
CC  
TSSOP−14 Pkg  
25  
SO−14 Pkg  
20  
15  
10  
5.0  
0
SOIC−8  
Pkg  
0
−ꢀ55 −ꢀ40 −ꢀ25  
0
25  
50  
85  
125  
−10 −ꢀ8.0 −ꢀ6.0 −ꢀ4.0 −ꢀ2.0  
0
2.0 4.0 6.0 8.0  
10  
T , AMBIENT TEMPERATURE (°C)  
A
V , INPUT OFFSET VOLTAGE (mV)  
IO  
Figure 2. Maximum Power Dissipation  
versus Temperature  
Figure 3. Input Offset Voltage Distribution  
50  
40  
30  
20  
200  
160  
120  
80  
V
V
= +ꢀ5.0 V  
= Gnd  
360 amplifiers tested from  
3 (MC33204) wafer lots  
ꢁV = +ꢀ5.0 V  
ꢁV = Gnd  
EE  
ꢁT = 25°C  
A
ꢁDIP Package  
CC  
EE  
CC  
V
CM  
= 0 V to 0.5 V  
V
CM  
> 1.0 V  
10  
0
40  
0
−ꢀ55  
−ꢀ40 −ꢀ25  
0
25  
70  
85  
125  
−ꢀ50 −ꢀ40 −ꢀ30 −ꢀ20 −10  
0
10  
20  
30  
40  
50  
m
°
, INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT ( V/ C)  
TC  
V
IO  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 4. Input Offset Voltage  
Temperature Coefficient Distribution  
Figure 5. Input Bias Current  
versus Temperature  
150  
100  
300  
260  
50  
0
220  
180  
140  
100  
−ꢀ50  
−100  
−150  
−ꢀ200  
−ꢀ250  
V
V
= +ꢀ5.0 V  
= Gnd  
CC  
V
V
= 12 V  
= Gnd  
CC  
EE  
EE  
R = 600 W  
L
DV = 0.5 V to 4.5 V  
T = 25°C  
A
O
0
2.0  
V
4.0  
6.0  
8.0  
10  
12  
−ꢀ55 −ꢀ40 −ꢀ25  
0
25  
70  
85  
105 125  
, INPUT COMMON MODE VOLTAGE (V)  
T , AMBIENT TEMPERATURE (°C)  
CM  
A
Figure 6. Input Bias Current  
versus Common Mode Voltage  
Figure 7. Open Loop Voltage Gain versus  
Temperature  
http://onsemi.com  
5
MC33201, MC33202, MC33204, NCV33202, NCV33204  
V
V
12  
10  
CC  
R = 600 W  
L
T = 25°C  
A
T = −ꢀ55°C  
A
T = 125°C  
A
− 0.2 V  
− 0.4 V  
+ 0.4 V  
+ 0.2 V  
CC  
T = 25°C  
A
8.0  
6.0  
4.0  
2.0  
0
V
V
V
CC  
EE  
V
CC  
V
EE  
= +ꢀ5.0 V  
= −ꢀ5.0 V  
T = 25°C  
A
EE  
T = 125°C  
A
T = −ꢀ55°C  
A
V
EE  
20  
±1.0  
±ꢀ2.0  
±ꢀ3.0  
, V SUPPLY VOLTAGE (V)  
EE  
±ꢀ4.0  
±ꢀ5.0  
±ꢀ6.0  
0
5.0  
10  
I , LOAD CURRENT (mA)  
15  
V
CC  
L
Figure 8. Output Voltage Swing  
versus Supply Voltage  
Figure 9. Output Saturation Voltage  
versus Load Current  
12  
9.0  
6.0  
100  
80  
60  
40  
V
V
= +ꢀ6.0 V  
= −ꢀ6.0 V  
CC  
EE  
V
V
= +ꢀ6.0 V  
= −ꢀ6.0 V  
CC  
R = 600 W  
L
A = +1.0  
T = 25°C  
A
3.0  
0
EE  
20  
0
V
T = −ꢀ55° to +125°C  
A
10  
1.0 k  
10 k  
100 k  
1.0 M  
100  
1.0 k  
10 k  
100 k  
1.0 M  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
Figure 10. Output Voltage  
versus Frequency  
Figure 11. Common Mode Rejection  
versus Frequency  
120  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
Source  
PSR+  
PSR−  
Sink  
V
V
= +ꢀ6.0 V  
= −ꢀ6.0 V  
V
V
= +ꢀ6.0 V  
= −ꢀ6.0 V  
CC  
EE  
CC  
EE  
T = 25°C  
A
T = −ꢀ55° to +125°C  
A
10  
0
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
100  
1.0 k  
10 k  
100 k  
1.0 M  
f, FREQUENCY (Hz)  
V
out  
, OUTPUT VOLTAGE (V)  
Figure 12. Power Supply Rejection  
versus Frequency  
Figure 13. Output Short Circuit Current  
versus Output Voltage  
http://onsemi.com  
6
MC33201, MC33202, MC33204, NCV33202, NCV33204  
2.0  
1.6  
150  
125  
V
CC  
V
EE  
= +ꢀ5.0 V  
= Gnd  
T = 125°C  
100  
75  
50  
25  
0
A
Source  
Sink  
1.2  
T = 25°C  
A
0.8  
0.4  
0
T = −ꢀ55°C  
A
−ꢀ55 −ꢀ40 −ꢀ25  
0
25  
70 85  
105 125  
±ꢀ0  
±1.0  
±ꢀ2.0  
±ꢀ3.0  
±ꢀ4.0  
±ꢀ5.0  
±ꢀ6.0  
T , AMBIENT TEMPERATURE (°C)  
A
V
CC  
,
V
EE  
, SUPPLY VOLTAGE (V)  
Figure 14. Output Short Circuit Current  
versus Temperature  
Figure 15. Supply Current per Amplifier  
versus Supply Voltage with No Load  
2.0  
4.0  
3.0  
2.0  
1.0  
0
V
V
V
= +ꢀ2.5 V  
= −ꢀ2.5 V  
= ±ꢀ2.0 V  
V
V
= +ꢀ2.5 V  
= −ꢀ2.5 V  
CC  
CC  
EE  
EE  
f = 100 kHz  
O
1.5  
1.0  
0.5  
0
+Slew Rate  
−Slew Rate  
−ꢀ55 −ꢀ40 −ꢀ25  
0
25  
70 85  
105 125  
−ꢀ55 −ꢀ40 −ꢀ25  
0
25  
70 85  
105 125  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 16. Slew Rate  
versus Temperature  
Figure 17. Gain Bandwidth Product  
versus Temperature  
70  
50  
40  
80  
70  
50  
40  
80  
V = ±ꢀ6.0 V  
C = 0 pF  
L
S
T = 25°C  
T = 25°C  
A
R = 600 W  
A
R = 600 W  
L
L
30  
10  
120  
160  
200  
240  
30  
10  
120  
160  
1A  
1A  
2A  
2A  
2B  
1B  
1A − Phase, C = 0 pF  
L
1B − Gain, C = 0 pF  
1A − Phase, V = ±ꢀ6.0 V  
S
2B  
1B  
L
2A − Phase, C = 300 pF  
1B − Gain, V = ±ꢀ6.0 V  
−10  
S
−10  
200  
240  
L
2B − Gain, C = 300 pF  
2A − Phase, V = ±ꢀ1.0 V  
S
L
2B − Gain, V = ±ꢀ1.0 V  
S
−ꢀ30  
−ꢀ30  
10 k  
100 k  
1.0 M  
10 M  
10 k  
100 k  
1.0 M  
10 M  
f, FREQUENCY (Hz)  
f, FREQUENCY (Hz)  
Figure 18. Voltage Gain and Phase  
versus Frequency  
Figure 19. Voltage Gain and Phase  
versus Frequency  
http://onsemi.com  
7
MC33201, MC33202, MC33204, NCV33202, NCV33204  
70  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
75  
60  
75  
60  
Phase Margin  
Phase Margin  
V
V
= +ꢀ6.0 V  
= −ꢀ6.0 V  
T = 25°C  
CC  
45  
30  
45  
30  
15  
V
V
= +ꢀ6.0 V  
= −ꢀ6.0 V  
CC  
EE  
EE  
A
R = 600 W  
L
C = 100 pF  
L
15  
0
Gain Margin  
Gain Margin  
0
100 k  
−ꢀ55 −ꢀ40 −ꢀ25  
0
25  
70 85  
105 125  
10  
100  
1.0 k  
10 k  
T , AMBIENT TEMPERATURE (°C)  
A
R , DIFFERENTIAL SOURCE RESISTANCE (W)  
T
Figure 20. Gain and Phase Margin  
versus Temperature  
Figure 21. Gain and Phase Margin  
versus Differential Source Resistance  
80  
70  
60  
50  
40  
30  
20  
10  
0
16  
14  
12  
10  
8.0  
6.0  
4.0  
2.0  
0
150  
V
V
= +ꢀ6.0 V  
= −ꢀ6.0 V  
CC  
EE  
A = 100  
V
Phase Margin  
Gain Margin  
R = 600 W  
L
A = 100  
120  
90  
60  
30  
0
V
T = 25°C  
A
A = 10  
V
V
V
V
= +ꢀ6.0 V  
= −ꢀ6.0 V  
CC  
EE  
= 8.0 V  
O
pp  
T = 25°C  
A
10  
100  
C , CAPACITIVE LOAD (pF)  
1.0 k  
100  
1.0 k  
f, FREQUENCY (Hz)  
10 k  
L
Figure 22. Gain and Phase Margin  
versus Capacitive Load  
Figure 23. Channel Separation  
versus Frequency  
10  
50  
40  
5.0  
4.0  
V
= −ꢀ5.0 V  
R = 600 W  
V
= +ꢀ5.0 V  
EE  
V
V
= +ꢀ6.0 V  
= −ꢀ6.0 V  
CC  
CC  
T = 25°C  
L
A
EE  
V
O
= 2.0 V  
T = 25°C  
A
pp  
1.0  
A = 1000  
V
30  
20  
10  
3.0  
2.0  
1.0  
0
A = 100  
V
0.1  
0.01  
Noise Voltage  
Noise Current  
A = 10  
V
A = 1.0  
V
0
10  
0.001  
10  
100  
1.0 k  
f, FREQUENCY (Hz)  
10 k  
100 k  
100  
1.0 k  
f, FREQUENCY (Hz)  
10 k  
100 k  
Figure 24. Total Harmonic Distortion  
versus Frequency  
Figure 25. Equivalent Input Noise Voltage  
and Current versus Frequency  
http://onsemi.com  
8
MC33201, MC33202, MC33204, NCV33202, NCV33204  
DETAILED OPERATING DESCRIPTION  
General Information  
Circuit Information  
The MC33201/2/4 family of operational amplifiers are  
unique in their ability to swing rail−to−rail on both the input  
and the output with a completely bipolar design. This offers  
low noise, high output current capability and a wide  
common mode input voltage range even with low supply  
voltages. Operation is guaranteed over an extended  
temperature range and at supply voltages of 2.0 V, 3.3 V and  
5.0 V and ground.  
Rail−to−rail performance is achieved at the input of the  
amplifiers by using parallel NPN−PNP differential input  
stages. When the inputs are within 800 mV of the negative  
rail, the PNP stage is on. When the inputs are more than 800  
mV greater than V , the NPN stage is on. This switching of  
EE  
input pairs will cause a reversal of input bias currents (see  
Figure 6). Also, slight differences in offset voltage may be  
noted between the NPN and PNP pairs. Cross−coupling  
techniques have been used to keep this change to a minimum.  
In addition to its rail−to−rail performance, the output stage  
is current boosted to provide 80 mA of output current,  
enabling the op amp to drive 600 W loads. Because of this  
high output current capability, care should be taken not to  
exceed the 150°C maximum junction temperature.  
Since the common mode input voltage range extends from  
V
CC  
to V , it can be operated with either single or split  
EE  
voltage supplies. The MC33201/2/4 are guaranteed not to  
latch or phase reverse over the entire common mode range,  
however, the inputs should not be allowed to exceed  
maximum ratings.  
V
V
= +ꢀ6.0 V  
= −ꢀ6.0 V  
V
V
= +ꢀ6.0 V  
= −ꢀ6.0 V  
CC  
CC  
EE  
EE  
R = 600 W  
L
C = 100 pF  
R = 600 W  
L
C = 100 pF  
L
L
T = 25°C  
A
T = 25°C  
A
t, TIME (5.0 ms/DIV)  
t, TIME (10 ms/DIV)  
Figure 26. Noninverting Amplifier Slew Rate  
Figure 27. Small Signal Transient Response  
V
CC  
V
EE  
= +ꢀ6.0 V  
= −ꢀ6.0 V  
R = 600 W  
L
C = 100 pF  
L
A = 1.0  
V
T = 25°C  
A
t, TIME (10 ms/DIV)  
Figure 28. Large Signal Transient Response  
Surface mount board layout is a critical portion of the total  
design. The footprint for the semiconductor packages must be  
the correct size to ensure proper solder connection interface  
between the board and the package. With the correct pad  
geometry, the packages will self−align when subjected to a  
solder reflow process.  
http://onsemi.com  
9
MC33201, MC33202, MC33204, NCV33202, NCV33204  
ORDERING INFORMATION  
Operational  
Amplifier Function  
Operating  
Temperature Range  
Device  
MC33201D  
Package  
SOIC−8  
SOIC−8  
PDIP−8  
SOIC−8  
SOIC−8  
Shipping  
Single  
T = −40° to +105°C  
98 Units / Rail  
2500 Units / Tape & Reel  
50 Units / Rail  
A
MC33201DR2  
MC33201P  
MC33201VD  
MC33202D  
T = −55° to 125°C  
98 Units / Rail  
A
Dual  
T = −40 ° to +105°C  
98 Units / Rail  
A
SOIC−8  
(Pb−Free)  
MC33202DG  
MC33202DR2  
MC33202DR2G  
SOIC−8  
2500 Units / Tape & Reel  
SOIC−8  
(Pb−Free)  
Dual  
MC33202DMR2  
MC33202P  
T = −40 ° to +105°C  
Micro−8  
PDIP−8  
SOIC−8  
SOIC−8  
SOIC−8  
PDIP−8  
SO−14  
4000 Units / Tape & Reel  
50 Units / Rail  
A
MC33202VD  
T = −55° to 125°C  
A
98 Units / Rail  
MC33202VDR2  
NCV33202VDR2*  
MC33202VP  
2500 Units / Tape & Reel  
2500 Units / Tape & Reel  
50 Units / Rail  
Quad  
MC33204D  
T = −40 ° to +105°C  
A
55 Units / Rail  
MC33204DR2  
MC33204DTB  
MC33204DTBR2  
MC33204P  
SO−14  
2500 Units / Tape & Reel  
96 Units / Rail  
TSSOP−14  
TSSOP−14  
PDIP−14  
SO−14  
2500 Units / Tape & Reel  
25 Units / Rail  
MC33204VD  
T = −55° to 125°C  
A
55 Units / Rail  
MC33204VDR2  
NCV33204DR2*  
NCV33204DTBR2*  
MC33204VP  
SO−14  
2500 Units / Tape & Reel  
2500 Units / Tape & Reel  
2500 Units / Tape & Reel  
25 Units / Rail  
SO−14  
TSSOP−14  
PDIP−14  
*NCV33202 and NCV33204 are qualified for automotive use.  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
10  
MC33201, MC33202, MC33204, NCV33202, NCV33204  
MARKING DIAGRAMS  
PDIP−8  
P SUFFIX  
CASE 626  
PDIP−8  
VP SUFFIX  
CASE 626  
Micro−8  
DM SUFFIX  
CASE 846A  
SOIC−8  
D SUFFIX  
CASE 751  
SOIC−8  
VD SUFFIX  
CASE 751  
SO−14  
D SUFFIX  
CASE 751A  
8
1
8
8
1
8
1
8
14  
*
MC3320xP  
AWL  
MC33202VP  
AWL  
3320x  
ALYW  
320xV  
ALYW  
3202  
AYW  
MC33204D  
AWLYWW  
YYWW  
YYWW  
1
1
1
SO−14  
VD SUFFIX  
CASE 751A  
PDIP−14  
P SUFFIX  
CASE 646  
PDIP−14  
VP SUFFIX  
CASE 646  
TSSOP−14  
DTB SUFFIX  
CASE 948G  
14  
14  
14  
1
14  
1
14  
1
*
*
MC33204P  
AWLYYWW  
MC33204VP  
AWLYYWW  
MC33204VD  
AWLYWW  
MC33  
204  
ALYW  
MC33  
204V  
ALYW  
1
1
x
= 1 or 2  
A
= Assembly Location  
WL, L = Wafer Lot  
YY, Y = Year  
WW, W = Work Week  
*This marking diagram applies to NCV3320x  
http://onsemi.com  
11  
MC33201, MC33202, MC33204, NCV33202, NCV33204  
PACKAGE DIMENSIONS  
PDIP−8  
P, VP SUFFIX  
CASE 626−05  
ISSUE L  
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
8
5
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
−B−  
MILLIMETERS  
INCHES  
MIN  
0.370  
1
4
DIM MIN  
MAX  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
A
B
C
D
F
9.40  
6.10  
3.94  
0.38  
1.02  
10.16  
6.60 0.240  
4.45 0.155  
0.51 0.015  
1.78 0.040  
F
−A−  
NOTE 2  
L
G
H
J
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
1.27 0.030  
0.30 0.008  
3.43  
0.050  
0.012  
0.135  
K
L
0.115  
C
7.62 BSC  
0.300 BSC  
M
N
−−−  
0.76  
10  
−−−  
1.01 0.030  
10  
0.040  
_
_
J
−T−  
SEATING  
PLANE  
N
M
D
K
G
H
M
M
M
B
0.13 (0.005)  
T
A
http://onsemi.com  
12  
MC33201, MC33202, MC33204, NCV33202, NCV33204  
SOIC−8  
D, VD SUFFIX  
CASE 751−07  
ISSUE AA  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
−X−  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER  
SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN  
EXCESS OF THE D DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
S
M
M
B
0.25 (0.010)  
Y
1
K
−Y−  
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW  
STANDAARD IS 751−07  
G
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
5.00  
4.00  
1.75  
0.51  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
4.80  
3.80  
1.35  
0.33  
0.189  
0.150  
0.053  
0.013  
0.050 BSC  
0.004  
0.007  
0.016  
0
0.010  
0.228  
C
N X 45  
_
SEATING  
PLANE  
−Z−  
1.27 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25  
0.25  
1.27  
8
0.010  
0.010  
0.050  
8
M
J
H
D
K
M
N
S
_
_
_
_
0.25  
5.80  
0.50  
6.20  
0.020  
0.244  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
0.275  
4.0  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
SOIC−8  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
13  
MC33201, MC33202, MC33204, NCV33202, NCV33204  
PACKAGE DIMENSIONS  
Micro8  
DM SUFFIX  
CASE 846A−02  
ISSUE F  
−A−  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,  
PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
−B−  
K
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED 0.25 (0.010)  
PER SIDE.  
PIN 1 ID  
5. 846A−01 OBSOLETE, NEW STANDARD 846A−02.  
G
D 8 PL  
MILLIMETERS  
INCHES  
M
S
S
0.08 (0.003)  
T
B
A
DIM MIN  
MAX  
3.10  
3.10  
1.10  
MIN  
MAX  
0.122  
0.122  
0.043  
0.016  
A
B
C
D
G
H
J
2.90  
2.90  
−−−  
0.25  
0.65 BSC  
0.05  
0.13  
4.75  
0.40  
0.114  
0.114  
−−−  
0.40 0.010  
SEATING  
PLANE  
0.026 BSC  
−T−  
0.15 0.002  
0.23 0.005  
5.05 0.187  
0.70 0.016  
0.006  
0.009  
0.199  
0.028  
C
0.038 (0.0015)  
K
L
L
J
H
STYLE 1:  
STYLE 2:  
STYLE 3:  
PIN 1. SOURCE  
PIN 1. SOURCE 1  
2. GATE 1  
3. SOURCE 2  
4. GATE 2  
PIN 1. N−SOURCE  
2. N−GATE  
3. P−SOURCE  
4. P−GATE  
2. SOURCE  
3. SOURCE  
4. GATE  
5. DRAIN  
6. DRAIN  
7. DRAIN  
8. DRAIN  
5. DRAIN 2  
6. DRAIN 2  
7. DRAIN 1  
8. DRAIN 1  
5. P−DRAIN  
6. P−DRAIN  
7. N−DRAIN  
8. N−DRAIN  
SOLDERING FOOTPRINT*  
1.04  
8X 0.041  
0.38  
8X  
0.015  
3.20  
4.24  
5.28  
0.126  
0.167 0.208  
0.65  
6X0.0256  
SCALE 8:1  
mm  
inches  
ǒ
Ǔ
Micro8E  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
14  
MC33201, MC33202, MC33204, NCV33202, NCV33204  
PACKAGE DIMENSIONS  
PDIP−14  
P, VP SUFFIX  
CASE 646−06  
ISSUE M  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
14  
1
8
7
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
B
INCHES  
DIM MIN MAX  
MILLIMETERS  
A
F
MIN  
18.16  
6.10  
3.69  
0.38  
1.02  
MAX  
18.80  
6.60  
4.69  
0.53  
1.78  
A
B
C
D
F
0.715  
0.240  
0.145  
0.015  
0.040  
0.770  
0.260  
0.185  
0.021  
0.070  
L
N
C
G
H
J
0.100 BSC  
2.54 BSC  
0.052  
0.008  
0.115  
0.290  
−−−  
0.095  
0.015  
0.135  
0.310  
10 −−−  
_
1.32  
0.20  
2.92  
7.37  
2.41  
0.38  
3.43  
7.87  
−T−  
SEATING  
PLANE  
K
L
J
K
M
N
10  
_
0.015  
0.039  
0.38  
1.01  
D 14 PL  
H
G
M
M
0.13 (0.005)  
SOIC−14  
D, VD SUFFIX  
CASE 751A−03  
ISSUE F  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
−A−  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
14  
8
7
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
−B−  
P 7 PL  
M
M
B
0.25 (0.010)  
1
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.344  
0.157  
0.068  
0.019  
0.049  
A
B
C
D
F
8.55  
3.80  
1.35  
0.35  
0.40  
8.75 0.337  
4.00 0.150  
1.75 0.054  
0.49 0.014  
1.25 0.016  
G
F
R X 45  
_
C
G
J
1.27 BSC  
0.050 BSC  
−T−  
SEATING  
PLANE  
J
0.19  
0.10  
0
0.25 0.008  
0.25 0.004  
0.009  
0.009  
7
M
K
D 14 PL  
K
M
P
R
7
0
_
_
_
_
M
S
S
A
0.25 (0.010)  
T
B
5.80  
0.25  
6.20 0.228  
0.50 0.010  
0.244  
0.019  
http://onsemi.com  
15  
MC33201, MC33202, MC33204, NCV33202, NCV33204  
PACKAGE DIMENSIONS  
TSSOP−14  
DTB SUFFIX  
CASE 948G−01  
ISSUE O  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,  
PROTRUSIONS OR GATE BURRS. MOLD FLASH  
OR GATE BURRS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED  
0.25 (0.010) PER SIDE.  
14X K REF  
M
S
S
0.10 (0.004)  
T
U
V
S
0.15 (0.006) T U  
N
0.25 (0.010)  
14  
8
2X L/2  
M
B
−U−  
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN  
EXCESS OF THE K DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
L
N
PIN 1  
IDENT.  
F
7
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
1
DETAIL E  
7. DIMENSION A AND B ARE TO BE DETERMINED  
AT DATUM PLANE −W−.  
S
K
0.15 (0.006) T U  
A
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
K1  
MAX  
0.200  
0.177  
0.047  
0.006  
0.030  
−V−  
A
B
4.90  
4.30  
−−−  
5.10 0.193  
4.50 0.169  
1.20  
J J1  
C
−−−  
D
0.05  
0.50  
0.15 0.002  
0.75 0.020  
F
SECTION N−N  
G
H
0.65 BSC  
0.026 BSC  
0.50  
0.09  
0.09  
0.19  
0.19  
0.60 0.020  
0.20 0.004  
0.16 0.004  
0.30 0.007  
0.25 0.007  
0.024  
0.008  
0.006  
0.012  
0.010  
J
J1  
K
−W−  
C
K1  
L
6.40 BSC  
_
0.252 BSC  
0
0.10 (0.004)  
M
0
8
8
_
_
_
SEATING  
PLANE  
−T−  
H
G
DETAIL E  
D
Micro8 is a trademark of International Rectifier.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
MC33201/D  

相关型号:

NCV33204DR2G

Low Voltage, Rail-to-Rail Operational Amplifiers
ONSEMI

NCV33204DTBR2

Rail-to-Rail Operational Amplifiers
ONSEMI

NCV33204DTBR2G

Low Voltage, Rail-to-Rail Operational Amplifiers
ONSEMI

NCV33269

AC-DC Offline Switching Controllers/Regulators
ONSEMI

NCV33269D

800 mA, Adjustable Output, Low Dropout Voltage Regulator
ONSEMI

NCV33269DR2G

800 mA, Adjustable Output, Low Dropout Voltage Regulator
ONSEMI

NCV33269DT-5.0

800 mA, Adjustable Output, Low Dropout Voltage Regulator
ONSEMI

NCV33269DT-5.0G

800 mA, Adjustable Output, Low Dropout Voltage Regulator
ONSEMI

NCV33269DTRK

800 mA, Adjustable Output, Low Dropout Voltage Regulator
ONSEMI

NCV33269DTRK-012

12V FIXED POSITIVE LDO REGULATOR, 1.35V DROPOUT, PSSO2, DPAK-3
ROCHESTER

NCV33269DTRK-012

IC VREG 12 V FIXED POSITIVE LDO REGULATOR, 1.35 V DROPOUT, PSSO2, DPAK-3, Fixed Positive Single Output LDO Regulator
ONSEMI

NCV33269DTRK-012G

12V FIXED POSITIVE LDO REGULATOR, 1.35V DROPOUT, PSSO2, LEAD FREE, DPAK-3
ONSEMI