NCV4269AD133R2G [ONSEMI]

Micropower 150 mA LDO Linear Regulator;
NCV4269AD133R2G
型号: NCV4269AD133R2G
厂家: ONSEMI    ONSEMI
描述:

Micropower 150 mA LDO Linear Regulator

文件: 总20页 (文件大小:163K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV4269A  
5.0 V, 3.3 V Micropower  
150 mA LDO Linear  
Regulator with DELAY,  
Adjustable RESET, and  
Sense Output  
www.onsemi.com  
MARKING  
The NCV4269A is a 5.0 V and 3.3 V precision micropower voltage  
regulator with an output current capability of 150 mA.  
DIAGRAMS  
The output voltage is accurate within 2.0% with a maximum  
dropout voltage of 0.5 V at 100 mA. Low quiescent current is a feature  
drawing only 190 mA with a 1.0 mA load. This part is ideal for any and  
all battery operated microprocessor equipment.  
8
SO−8  
D1 SUFFIX  
CASE 751  
4269Ax  
ALYW  
8
1
G
1
Microprocessor control logic includes an active reset output RO  
with delay and a SI/SO monitor which can be used to provide an early  
warning signal to the microprocessor of a potential impending reset  
signal. The use of the SI/SO monitor allows the microprocessor to finish  
any signal processing before the reset shuts the microprocessor down.  
The active Reset circuit operates correctly at an output voltage as  
low as 1.0 V. The Reset function is activated during the power up  
sequence or during normal operation if the output voltage drops  
outside the regulation limits.  
8
SO−8  
EXPOSED PAD  
PD SUFFIX  
4269Ax  
ALYW  
G
8
1
CASE 751AC  
1
14  
SO−14  
D2 SUFFIX  
CASE 751A  
NCV4269AxG  
AWLYWW  
The reset threshold voltage can be decreased by the connection of an  
14  
external resistor divider to the R  
lead. The regulator is protected  
ADJ  
1
against reverse battery, short circuit, and thermal overload conditions.  
The device can withstand load dump transients making it suitable for  
use in automotive environments. The device has also been optimized  
for EMC conditions.  
1
20  
20  
SO−20  
DW SUFFIX  
CASE 751D  
NCV4269Ax  
AWLYYWWG  
Features  
5.0 V and 3.3 V Output Voltage Options, 2.0% Accuracy  
Low 190 mA Quiescent Current  
1
1
Active Reset Output Low Down to V = 1.0 V  
Q
X
= 5 (5.0 V Output)  
= 3 (3.3 V Output)  
= Assembly Location  
Adjustable Reset Threshold  
A
150 mA Output Current Capability  
WL, L = Wafer Lot  
YY, Y = Year  
WW, W = Work Week  
Fault Protection  
+60 V Peak Transient Voltage  
−40 V Reverse Voltage  
Short Circuit  
G, G  
= Pb Free  
Thermal Overload  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 16 of this data sheet.  
Early Warning through SI/SO Leads  
Internally Fused Leads in SO−14 and SO−20 Packages  
Integrated Pullup Resistor at Logic Outputs (To Use External  
Resistors, Select the NCV4279A)  
Very Low Dropout Voltage  
Electrical Parameters Guaranteed Over Entire Temperature Range  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AEC−Q100  
Qualified and PPAP Capable  
These are Pb−Free Devices  
© Semiconductor Components Industries, LLC, 2015  
1
Publication Order Number:  
January, 2015 − Rev. 4  
NCV4269A/D  
NCV4269A  
I
Q
Error  
Amplifier  
Current and  
Reference  
and Trim  
R
SO  
Saturation  
Control  
R
RO  
RO  
D
or  
Reference  
SO  
R
ADJ  
+
SI  
GND  
Figure 1. Block Diagram  
PIN CONNECTIONS  
1
20  
R
SI  
ADJ  
D
1
14  
I
R
SI  
ADJ  
1
8
NC  
GND  
NC  
GND  
GND  
GND  
GND  
NC  
Q
D
I
I
Q
GND  
GND  
GND  
GND  
RO  
GND  
GND  
GND  
Q
SI  
SO  
RO  
GND  
GND  
GND  
GND  
NC  
NC  
RO  
R
ADJ  
D
SO  
SO  
SO−8  
SO−14  
SO−20L  
PACKAGE PIN DESCRIPTION  
Package Pin Number  
Pin  
Symbol  
SO−8 SO−8 EP  
SO−14  
SO−20L  
Function  
Reset Threshold Adjust; if not used to connect to GND.  
3
4
5
3
4
5
1
2
1
2
R
ADJ  
D
Reset Delay; To Set Time Delay, Connect to GND with Capacitor  
Ground  
3, 4, 5, 6,  
10, 11, 12  
4, 5, 6, 7, 14,  
15, 16, 17  
GND  
6
6
7
3, 8, 9, 13, 18  
10  
NC  
RO  
No connection to these pins from the IC.  
Reset Output; The Open−Collector Output has a 20 kW Pullup Resistor  
to Q. Leave Open if Not Used.  
7
7
8
11  
SO  
Sense Output; This Open−Collector Output is Internally Pulled Up by  
20 kW pullup resistor to Q. If not used, keep open.  
8
1
2
8
1
9
13  
14  
12  
19  
20  
Q
I
5 V or 3.3 V Output; Connect to GND with a 10 mF Capacitor, ESR < 5 W  
Input; Connect to GND Directly at the IC with a Ceramic Capacitor.  
Sense Input; If not used, Connect to Q.  
2
SI  
EPAD  
EPAD  
Connect to ground potential or leave unconnected  
www.onsemi.com  
2
NCV4269A  
MAXIMUM RATINGS (T = −40°C to 150°C)  
J
Parameter  
Symbol  
Min  
Max  
Unit  
Input to Regulator  
V
−40  
45  
V
I
I
I
Internally Limited Internally Limited  
Input Transient to Regulator  
Sense Input  
V
60  
V
I
V
SI  
−40  
−1  
45  
1
V
mA  
I
SI  
Reset Threshold Adjust  
Reset Delay  
V
I
−0.3  
−10  
7
10  
V
mA  
RADJ  
RADJ  
V
D
−0.3  
7
V
I
D
Internally Limited Internally Limited  
Ground  
I
50  
7
mA  
V
q
Reset Output  
V
RO  
RO  
−0.3  
I
Internally Limited Internally Limited  
Sense Output  
V
I
−0.3  
7
V
SO  
SO  
Internally Limited Internally Limited  
Regulated Output  
V
−0.5  
−10  
7.0  
V
mA  
Q
I
Q
Junction Temperature  
Storage Temperature  
T
STG  
−50  
150  
150  
°C  
°C  
J
T
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
RECOMMENDED OPERATING RANGE  
Input Voltage Operating Range  
5.0 Version  
3.3 Version  
V
I
V
5.5  
4.4  
45  
45  
Junction Temperature Operating Range  
T
J
−40  
150  
°C  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
LEAD TEMPERATURE SOLDERING AND MSL  
Parameter  
Symbol  
MSL  
Value  
MSL, 20−Lead LS Temperature 265°C Peak (Note 3)  
MSL, 8−Lead, 14−Lead, LS Temperature 265°C Peak (Note 3)  
MSL, 8−Lead EP, LS Temperature 260°C  
3
1
2
MSL  
MSL  
1. This device series incorporates ESD protection and exceeds the following ratings:  
Human Body Model (HBM) 4.0 kV per AEC−Q100−002.  
Machine Model (MM) 200 V per AEC−Q100−003.  
2. Latchup Current Maximum Rating: 150 mA per AEC−Q100−004.  
3. +5°C/−0°C, 40 Sec Max−at−Peak, 60 − 150 Sec above 217°C.  
www.onsemi.com  
3
 
NCV4269A  
THERMAL CHARACTERISTICS  
Characteristic  
Test Conditions (Typical Values)  
Unit  
SO−8 Package (Note 4)  
Junction−to−Pin 4 ( Y − JL4, Y  
)
53.8  
°C/W  
°C/W  
L4  
Junction−to−Ambient Thermal Resistance (R , q  
)
)
170.9  
q
JA JA  
SO−8 EP Package (Note 4)  
Junction−to−Pin 8 ( Y − JL8, Y  
)
23.7  
71.4  
7.7  
°C/W  
°C/W  
°C/W  
L8  
Junction−to−Ambient Thermal Resistance (R , q  
q
JA JA  
Junction−to−Pad ( Y − JPad)  
SO−14 Package (Note 4)  
Junction−to−Pin 4 ( Y − JL4, Y  
)
18.4  
°C/W  
°C/W  
L4  
Junction−to−Ambient Thermal Resistance (R , q  
)
)
111.6  
q
JA JA  
SO−20 Package (Note 4)  
Junction−to−Pin 4 ( Y − JL4, Y  
)
21.8  
95.3  
°C/W  
°C/W  
L4  
Junction−to−Ambient Thermal Resistance (R , q  
q
JA JA  
2
4. 2 oz copper, 50 mm copper area, 1.5 mm thick FR4  
www.onsemi.com  
4
 
NCV4269A  
ELECTRICAL CHARACTERISTICS (−40°C T 150°C, V = 13.5 V unless otherwise specified)  
J
I
Characteristic  
REGULATOR  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Output Voltage (5.0 V Version)  
Output Voltage (3.3 V Version)  
Current Limit  
V
1 mA v I v 100 mA, 6 V v V v 16 V  
4.90  
5.00  
3.30  
200  
190  
250  
2.0  
5.10  
3.366  
500  
250  
450  
3.0  
V
Q
Q
I
V
Q
1 mA v I v 100 mA, 5.5 V v V v 16 V  
3.234  
V
Q
I
I
Q
150  
mA  
mA  
mA  
mA  
V
Current Consumption; I = I – I  
I
I = 1 mA, RO, SO High  
Q
q
I
Q
Q
Q
q
q
q
Current Consumption; I = I – I  
I
I
= 10 mA, RO, SO High  
= 50 mA, RO, SO High  
Q
q
I
Q
Current Consumption; I = I – I  
I
I
q
I
Dropout Voltage (5.0 V Version)  
Load Regulation  
V
dr  
V = 5 V, I = 100 mA  
0.25  
10  
0.5  
I
Q
DV  
DV  
I
Q
= 5 mA to 100 mA  
20  
mV  
mV  
Q
Line Regulation  
V = 6 V to 26 V I = 1 mA  
10  
30  
Q
I
Q
RESET GENERATOR  
Reset Switching Threshold  
5.0 V Version  
3.3 V Version  
V
V
V
RT  
4.50  
2.97  
4.65  
3.07  
4.80  
3.17  
Reset Adjust Switching Threshold  
5.0 V Version  
3.3 V Version  
V
RADJ,TH  
V
Q
V
Q
> 3.5 V  
> 2.3 V  
1.26  
1.26  
1.35  
1.35  
1.44  
1.44  
Reset Pullup Resistance  
R
10  
20  
40  
kW  
V
RO,INT  
Reset Output Saturation Voltage  
V
V
Q
< V , R  
0.1  
0.4  
RO,SAT  
RT RO, INT  
Upper Delay Switching Threshold  
5.0 V Version  
3.3 V Version  
V
UD  
V
1.4  
0.7  
1.8  
1.23  
2.2  
1.6  
Lower Delay Switching Threshold  
5.0 V Version  
3.3 V Version  
V
LD  
V
0.3  
0.3  
0.45  
0.49  
0.60  
0.60  
Saturation Voltage on Delay Capacitor  
V
D,SAT  
V
Q
< V  
RT  
0.1  
V
Charge Current  
5.0 V Version  
3.3 V Version  
I
mA  
D,C  
V
D
V
D
= 1 V  
= 1 V  
3.0  
3.0  
6.5  
4.3  
9.5  
7.0  
Delay Time L ³ H  
t
C
C
= 100 nF  
= 100 nF  
17  
28  
73  
ms  
d
D
D
Delay Time H ³ L  
t
3.15  
ms  
RR  
INPUT VOLTAGE SENSE  
Sense Threshold High  
Sense Threshold Low  
Sense Output Saturation Voltage  
Sense Resistor Pullup  
Sense Input Current  
V
1.24  
1.16  
1.31  
1.20  
0.1  
1.38  
1.28  
0.4  
V
V
SI,High  
V
SI,Low  
V
V
SI  
< 1.20 V; V > 3 V; R  
V
SO,Low  
Q
SO  
R
10  
20  
40  
kW  
mA  
SO,INT  
I
SI  
−1.0  
0.1  
1.0  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
5
NCV4269A  
I
I
I
Q
I
Q
C
I
C
Q
22 mF  
R
1000 mF  
ADJ1  
470 nF  
I
SI  
I
RADJ  
SI  
D
RADJ  
V
Q
GND  
RO  
SO  
V
I
I
D
I
q
V
RO  
V
SO  
V
SI  
V
RADJ  
V
D
C
R
D
ADJ2  
100 nF  
Figure 2. Measuring Circuit  
V
I
t
t
< t  
RR  
V
Q
V
RT  
dV  
dt  
I
C
D
D
+
V
D
V
UD  
V
LD  
t
t
t
d
RR  
V
RO  
V
RO,SAT  
t
Power−on−Reset  
Thermal  
Shutdown  
Voltage Dip  
at Input  
Undervoltage  
Secondary  
Spike  
Overload  
at Output  
Figure 3. Reset Timing Diagram  
www.onsemi.com  
6
NCV4269A  
Sense Input Voltage  
V
SI,High  
V
SI,Low  
t
Sense Output Voltage  
High  
Low  
t
Figure 4. Sense Timing Diagram  
TYPICAL PERFORMANCE CHARACTERISTICS − 5.0 V OPTION  
16  
3.2  
V = 13.5 V  
V = 13.5 V  
I
14  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
I
V
D
= 1.0 V  
12  
10  
8
V
UD  
6
4
V
LD  
2
0
−40  
0
40  
80  
120  
160  
−40  
0
40  
80  
120  
160  
T , (°C)  
J
T , (°C)  
J
Figure 5. Charge Current ID,C vs. Temperature TJ  
Figure 6. Switching Voltage VUD and VLD vs.  
Temperature TJ  
www.onsemi.com  
7
 
NCV4269A  
TYPICAL PERFORMANCE CHARACTERISTICS − 5.0 V OPTION  
500  
400  
300  
200  
100  
0
1.7  
1.6  
1.5  
1.4  
T = 125°C  
J
T = 25°C  
J
1.3  
1.2  
T = −40°C  
J
1.1  
1.0  
0.9  
−40  
0
30  
60  
90  
I , (mA)  
120  
150  
180  
0
40  
80  
120  
160  
T , (°C)  
J
Q
Figure 8. Reset Adjust Switching Threshold,  
RADJ,TH vs. Temperature TJ  
Figure 7. Drop Voltage Vdr vs. Output Current IQ  
V
35  
30  
25  
20  
15  
10  
5
12  
10  
8
6
R = 50 W  
L
R = 33 W  
L
R = 100 W  
L
4
R = 200 W  
L
R = 50 W  
L
2
0
0
0
0
10  
20  
30  
40  
50  
2
4
6
8
10  
V , (V)  
I
V , (V)  
I
Figure 10. Output Voltage VQ vs. Input Voltage VI  
Figure 9. Current Consumption Iq vs. Input  
Voltage VI  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
5.2  
5.1  
5.0  
4.9  
4.8  
4.7  
4.6  
V = 13.5 V  
I
V = 13.5 V  
I
V
SI, High  
V
SI, Low  
−40  
0
40  
80  
120  
160  
−40  
0
40  
80  
120  
160  
T , (°C)  
J
T , (°C)  
J
Figure 11. Sense Threshold VSI vs. Temperature TJ  
Figure 12. Output Voltage VQ vs. Temperature TJ  
www.onsemi.com  
8
NCV4269A  
TYPICAL PERFORMANCE CHARACTERISTICS − 5.0 V OPTION  
350  
300  
250  
200  
150  
100  
50  
12  
V = 13.5 V  
T = 25°C  
J
I
10  
8
T = 25°C  
J
T = 125°C  
J
6
4
2
0
0
0
10  
20  
30  
40  
50  
0
20  
40  
60  
I , (mA)  
80  
100  
120  
V , (V)  
I
Q
Figure 13. Output Current Limit IQ vs. Input  
Voltage VI  
Figure 14. Current Consumption Iq vs. Output  
Current IQ  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
7
6
5
4
3
2
1
0
T = 125°C  
J
V = 13.5 V  
T = 25°C  
J
I
I
= 100 mA  
Q
I
I
= 50 mA  
= 10 mA  
Q
Q
0
10  
20  
30  
40  
50  
6
8
10  
12 14  
16  
18  
20 22  
24 26  
V , (V)  
I
I , (mA)  
Q
Figure 15. Current Consumption Iq vs.  
Output Current IQ  
Figure 16. Quiescent Current Iq vs.  
Input Voltage VI  
250  
200  
150  
100  
50  
100  
10  
T = 25°C  
J
Unstable Region  
I
= 100 mA  
Q
1
Stable Region for  
2.2 mF to 10 mF  
0.1  
0.01  
6
8
10  
12 14  
16 18  
20 22  
24 26  
0
25  
50  
75  
100  
125  
150  
V , (V)  
I
OUTPUT CURRENT IN MILLIAMPS  
Figure 18. Output Stability, Capacitance ESR  
vs. Output Load Current  
Figure 17. Quiescent Current Iq vs. Input Voltage VI  
www.onsemi.com  
9
NCV4269A  
TYPICAL PERFORMANCE CHARACTERISTICS − 3.3 V OPTION  
10  
8
2.0  
V = 13.5 V  
I
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V = 13.5 V  
I
V
D
= 1.0 V  
V
UD  
6
4
V
LD  
2
0
−40  
0
40  
80  
120  
160  
−40  
0
40  
80  
120  
160  
T , (°C)  
J
T , (°C)  
J
Figure 19. Charge Current ID,C vs. Temperature TJ  
Figure 20. Switching Voltage VUD and VLD vs.  
Temperature TJ  
25  
20  
15  
10  
5
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
R = 20 W  
L
R = 66 W  
L
R = 132 W  
L
R = 33 W  
L
0
−40  
0
40  
80  
120  
160  
0
10  
20  
30  
40  
T , (°C)  
J
V , (V)  
I
Figure 22. Current Consumption Iq vs. Input  
Voltage VI  
Figure 21. Reset Adjust Switching Threshold,  
VRADJ,TH vs. Temperature TJ  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
5
4
3
2
1
0
V = 13.5 V  
I
I
Q
= 100 mA  
V
SI, High  
V
SI, Low  
−40  
0
40  
80  
120  
160  
0
2
4
6
8
10  
V , (V)  
I
T , (°C)  
J
Figure 24. Sense Threshold VSI vs. Temperature  
TJ  
Figure 23. Output Voltage VQ vs. Input Voltage VI  
www.onsemi.com  
10  
NCV4269A  
TYPICAL PERFORMANCE CHARACTERISTICS − 3.3 V OPTION  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
350  
300  
T = 25°C  
J
250  
V = 13.5 V  
I
T = 125°C  
J
200  
150  
100  
50  
0
−40  
0
40  
80  
120  
160  
0
10  
20  
30  
40  
50  
T , (°C)  
J
V , (V)  
I
Figure 25. Output Voltage VQ vs. Temperature TJ  
Figure 26. Output Current Limit IQ vs. Input  
Voltage VI  
12  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
V = 13.5 V  
T = 25°C  
J
V = 13.5 V  
I
I
10  
8
T = 25°C  
J
6
4
2
0
0
20  
40  
60  
I , (mA)  
80  
100  
120  
0
10  
20  
30  
40  
50  
I , (mA)  
Q
Q
Figure 27. Current Consumption Iq vs. Output  
Current IQ  
Figure 28. Current Consumption Iq vs.  
Output Current IQ  
7
6
5
4
3
2
1
0
250  
200  
150  
T = 25°C  
T = 125°C  
J
J
I
= 100 mA  
Q
I
= 100 mA  
Q
I
= 50 mA  
= 10 mA  
Q
100  
50  
I
Q
6
8
10  
12 14  
16  
V , (V)  
18  
20 22  
24 26  
6
8
10  
12 14  
16 18  
20 22  
24 26  
V , (V)  
I
I
Figure 29. Quiescent Current Iq vs.  
Input Voltage VI  
Figure 30. Quiescent Current Iq vs. Input  
Voltage VI  
www.onsemi.com  
11  
NCV4269A  
TYPICAL PERFORMANCE CHARACTERISTICS − 3.3 V OPTION  
100  
Unstable Region  
10  
Stable Region for  
2.2 mF to 10 mF  
1
0.1  
0.01  
0
25  
50  
75  
100  
125  
150  
OUTPUT CURRENT IN MILLIAMPS  
Figure 31. Output Stability, Capacitance ESR  
vs. Output Load Current  
www.onsemi.com  
12  
NCV4269A  
TYPICAL THERMAL CHARACTERISTICS  
200  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
0
100  
200  
300  
400  
500  
600  
700  
2
COPPER HEAT−SPREADER AREA (mm )  
SO−8 Std Package NCV4269A, 1.0 oz  
SO−8 Std Package NCV4269A, 2.0 oz  
SO−14 w/6 Thermal Leads NCV4269A, 1.0 oz  
SO−14 w/6 Thermal Leads NCV4269A, 2.0 oz  
SO−20 w/8 Thermal Leads NCV4269A, 1.0 oz  
SO−20 w/8 Thermal Leads NCV4269A, 2.0 oz  
Figure 32. Junction−to−Ambient Thermal Resistance (qJA) vs. Heat Spreader Area  
1000  
100  
10  
1
0.1  
0.000001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
PULSE TIME (s)  
2
Single Pulse (SO−8 Std Package) PCB = 50 mm , 2.0 oz  
Single Pulse (SO−8 EP Package)  
2
Single Pulse (SO−14 w/6 Thermal Leads) PCB = 50 mm , 2.0 oz  
2
Single Pulse (SO−20 w/8 Thermal Leads) PCB = 50 mm , 2.0 oz  
YLA (SO−8)  
YLA (SO−14)  
YLA (SO−20)  
Figure 33. R(t) vs. Pulse Time  
www.onsemi.com  
13  
NCV4269A  
APPLICATION DESCRIPTION  
OUTPUT REGULATOR  
If the reset adjust option is not needed, the R  
pin  
ADJ  
The output is controlled by a precision trimmed reference.  
The PNP output has base drive quiescent current control for  
regulation while the input voltage is low, preventing over  
saturation. Current limit and voltage monitors complement  
the regulator design to give safe operating signals to the  
processor and control circuits.  
should be connected to GND causing the reset threshold to  
go to its default value.  
RESET DELAY (D)  
The reset delay circuit provides a delay (programmable by  
capacitor C ) on the reset output lead RO. The delay lead D  
D
provides charge current I  
(typically 6.5 mA for 5 V  
D,C  
RESET OUTPUT (RO)  
Version or 4.3 mA for 3.3 V Version) to the external delay  
A reset signal, Reset Output, RO, (low voltage) is  
capacitor C during the following times:  
D
generated as the IC powers up. After the output voltage V  
1. During Powerup (once the regulation threshold has  
been exceeded).  
Q
increases above the reset threshold voltage V , the delay  
RT  
timer D is started. When the voltage on the delay timer V  
2. After a reset event has occurred and the device is  
back in regulation. The delay capacitor is set to  
D
passes V , the reset signal RO goes high. A discharge of  
UD  
the delay timer V is started when V drops and stays below  
discharge when the regulation (V , reset  
D
Q
RT  
the reset threshold voltage V . When the voltage of the  
threshold voltage) has been violated. When the  
RT  
delay timer V drops below the lower threshold voltage V  
delay capacitor discharges to V , the reset signal  
D
LD  
LD  
the reset output voltage V is brought low to reset the  
RO pulls low.  
RO  
processor.  
SETTING THE DELAY TIME  
The delay time is set by the delay capacitor C and the  
The reset output RO is an open collector NPN transistor  
with an internal 20 kW pullup resistor connected to the  
output Q, controlled by a low voltage detection circuit. The  
circuit is functionally independent of the rest of the IC,  
D
charge current I . The time is measured by the delay  
D
capacitor voltage charging from the low level of V  
to  
DSAT  
the higher level V . The time delay follows the equation:  
UD  
+ [C (V * V  
UD  
thereby guaranteeing that RO is valid for V as low as 1.0 V.  
Q
(eq. 2)  
t
d
)]ńI  
D, SAT D, C  
D
RESET ADJUST (RADJ  
)
Example (5 V Version):  
Using C = 100 nF.  
Use the typical value for V  
Use the typical value for V = 1.8 V.  
Use the typical value for Delay Charge Current I = 6.5 mA.  
The reset threshold V can be decreased from a typical  
value of 4.65 V (3.04 V for 3.3 V Version) to as low as 3.5 V  
(2.3 V for 3.3 V Version) by using an external voltage  
RT  
D
= 0.1 V.  
D,SAT  
UD  
divider connected from the Q lead to the pin R , as shown  
ADJ  
D
in Figure 34. The resistor divider keeps the voltage above  
the V  
(typical 1.35 V) for the desired input voltages,  
(eq. 3)  
t
d
+ [100 nF(1.8 * 0.1 V)]ń6.5 mA + 26.2 ms  
RADJ,TH  
and overrides the internal threshold detector. Adjust the  
voltage divider according to the following relationship:  
V
RT  
+ V  
@ (R  
) R  
)ńR  
ADJ2 ADJ2  
(eq. 1)  
RADJ, TH  
ADJ1  
V
BAT  
I
Q
V
DD  
C **  
10 mF  
(2.2 mF)  
R
R
Q
ADJ1  
ADJ2  
C *  
I
0.1 mF  
R
ADJ  
NCV4269A  
R
R
SI1  
SI2  
D
SI  
C
D
RO  
I/O  
SO  
I/O  
GND  
*C required if regulator is located far from the power supply filter.  
I
** C − minimum cap required for stability is 2.2 mF while higher over/under−shoots may be  
Q
expected. Cap must operate at minimum temperature expected.  
Figure 34. Application Diagram  
www.onsemi.com  
14  
 
NCV4269A  
SENSE INPUT (SI) / SENSE OUTPUT (SO) VOLTAGE  
MONITOR  
(−25°C to −40°C), both the value and ESR of the capacitor  
will vary considerably. The capacitor manufacturer’s data  
sheet usually provides this information.  
An on−chip comparator is available to provide early  
warning to the microprocessor of a possible reset signal  
(Figure 4). The output is from an open collector driver with  
an internal 20 kW pull up resistor to output Q. The reset signal  
typically turns the microprocessor off instantaneously. This  
can cause unpredictable results with the microprocessor. The  
signal received from the SO pin will allow the microprocessor  
time to complete its present task before shutting down. This  
function is performed by a comparator referenced to the band  
gap voltage. The actual trip point can be programmed  
externally using a resistor divider to the input monitor SI  
The 10 mF output capacitor C shown in Figure 34 should  
Q
work for most applications; however, it is not necessarily the  
optimized solution. Stability is guaranteed at C is min  
Q
2.2 mF and max ESR is 10 W. There is no min ESR limit  
which was proved with MURATA’s ceramic caps  
GRM31MR71A225KA01 (2.2 mF, 10 V, X7R, 1206) and  
GRM31CR71A106KA01 (10 mF, 10 V, X7R, 1206) directly  
soldered between output and ground pins.  
CALCULATING POWER DISSIPATION IN A SINGLE  
OUTPUT LINEAR REGULATOR  
The maximum power dissipation for a single output  
regulator (Figure 34) is:  
(Figure 34). The values for R and R are selected for a  
SI1  
SI2  
typical threshold of 1.20 V on the SI Pin.  
SIGNAL OUTPUT  
Figure 35 shows the SO Monitor timing waveforms as a  
result of the circuit depicted in Figure 34. As the output  
P
+ [V  
I(max)  
* V  
]I  
) V  
I
(eq. 4)  
D(max)  
Q(min) Q(max)  
I(max) q  
where:  
V
I(max)  
V
Q(min)  
Q(max)  
is the maximum input voltage,  
is the minimum output voltage,  
is the maximum output current for the application,  
voltage (V ) falls, the monitor threshold (V  
), is  
Q
SI,Low  
crossed. This causes the voltage on the SO output to go low  
sending a warning signal to the microprocessor that a reset  
signal may occur in a short period of time. T  
time the microprocessor has to complete the function it is  
currently working on and get ready for the reset  
shutdown signal. When the voltage on the SO goes low and  
the RO stays high the current consumption is typically  
560 mA at 1 mA load current.  
I
and I is the quiescent current the regulator consumes at  
q
is the  
WARNING  
I
.
Q(max)  
Once the value of P  
permissible value of R  
is known, the maximum  
D(max)  
can be calculated:  
qJA  
= (150°C – T ) / P  
D
R
(eq. 5)  
q
JA  
A
The value of R  
can then be compared with those in the  
qJA  
package section of the data sheet. Those packages with  
’s less than the calculated value in equation 2 will keep  
V
Q
R
qJA  
the die temperature below 150°C. In some cases, none of the  
packages will be sufficient to dissipate the heat generated by  
the IC, and an external heatsink will be required. The current  
SI  
V
SI,Low  
flow  
and  
voltages  
are  
shown  
in  
the  
Measurement Circuit Diagram.  
HEATSINKS  
V
RO  
A heatsink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
Each material in the heat flow path between the IC and the  
outside environment will have a thermal resistance. Like  
series electrical resistances, these resistances are summed to  
SO  
T
WARNING  
determine the value of R  
:
qJA  
Figure 35. SO Warning Waveform Time Diagram  
R
+ R  
) R  
) R  
qCS qSA  
(eq. 6)  
qJA  
qJC  
where:  
STABILITY CONSIDERATIONS  
R
qJC  
R
qCS  
R
qSA  
= the junction−to−case thermal resistance,  
= the case−to−heat sink thermal resistance, and  
= the heat sink−to−ambient thermal resistance.  
The input capacitor C in Figure 34 is necessary for  
I
compensating input line reactance. Possible oscillations caused  
by input inductance and input capacitance can be damped by  
using a resistor of approximately 1.0 W in series with C  
The output or compensation capacitor helps determine  
three main characteristics of a linear regulator: startup delay,  
load transient response and loop stability.  
The capacitor value and type should be based on cost,  
availability, size and temperature constraints. The  
aluminum electrolytic capacitor is the least expensive  
solution, but, if the circuit operates at low temperatures  
R
qJC  
appears in the package section of the data sheet. Like  
I.  
R
qJA  
, it too is a function of package type. R  
and R  
are  
qCS  
qSA  
functions of the package type, heatsink and the interface  
between them. These values appear in data sheets of  
heatsink manufacturers. Thermal, mounting, and  
heatsinking considerations are discussed in the  
ON Semiconductor application note AN1040/D, available  
on the ON Semiconductor website.  
www.onsemi.com  
15  
 
NCV4269A  
ORDERING INFORMATION  
Device  
Output Voltage  
Package  
Shipping  
NCV4269AD150G  
SO−8  
(Pb−Free)  
98 Units/Rail  
2500 Tape & Reel  
98 Units/Rail  
NCV4269AD150R2G  
NCV4269APD50G  
NCV4269APD50R2G  
NCV4269AD250G  
SO−8  
(Pb−Free)  
SO−8 EP  
(Pb−Free)  
SO−8 EP  
(Pb−Free)  
2500 Tape & Reel  
55 Units/Rail  
5.0 V  
SO−14  
(Pb−Free)  
NCV4269AD250R2G  
NCV4269ADW50G  
NCV4269ADW50R2G  
NCV4269AD133R2G  
SO−14  
(Pb−Free)  
2500 Tape & Reel  
38 Units/Rail  
SO−20L  
(Pb−Free)  
SO−20L  
(Pb−Free)  
1000 Tape & Reel  
2500 Tape & Reel  
SO−8  
(Pb−Free)  
3.3 V  
†For information on tape and reel specifications,including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
16  
NCV4269A  
PACKAGE DIMENSIONS  
SOIC−8 NB  
CASE 751−07  
ISSUE AK  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
−X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW  
STANDARD IS 751−07.  
S
M
M
B
0.25 (0.010)  
Y
1
K
−Y−  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
−Z−  
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
17  
NCV4269A  
PACKAGE DIMENSIONS  
SOIC−8 EP  
CASE 751AC  
ISSUE B  
2 X  
NOTES:  
1. DIMENSIONS AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. DIMENSIONS IN MILLIMETERS (ANGLES  
IN DEGREES).  
3. DIMENSION b DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE  
0.08 MM TOTAL IN EXCESS OF THE “b”  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
0.10  
C A-B  
D
DETAIL A  
D
A
8
EXPOSED  
PAD  
F
5
5
8
4. DATUMS A AND B TO BE DETERMINED  
AT DATUM PLANE H.  
G
E1  
E
2 X  
MILLIMETERS  
DIM MIN  
MAX  
1.75  
0.10  
1.65  
0.51  
0.48  
0.25  
0.23  
h
0.10 C D  
2 X  
A
A1  
A2  
b
b1  
c
1.35  
0.00  
1.35  
0.31  
0.28  
0.17  
0.17  
1
e
4
4
1
0.20  
C
PIN ONE  
LOCATION  
BOTTOM VIEW  
8 X b  
A
A
B
0.25 C A-B D  
END VIEW  
c
c1  
D
TOP VIEW  
4.90 BSC  
E
E1  
e
6.00 BSC  
3.90 BSC  
1.27 BSC  
H
A
0.10  
C
A2  
L
0.40  
1.27  
8 X  
(b)  
b1  
L1  
F
1.04 REF  
2.24  
GAUGE  
PLANE  
0.10  
C
3.20  
2.51  
0.50  
8
G
h
1.55  
0.25  
0
SEATING  
PLANE  
L
q
0.25  
q
_
_
c1  
SECTION A−A  
(L1)  
A1  
SIDE VIEW  
C
DETAIL A  
SOLDERING FOOTPRINT*  
2.72  
0.107  
1.52  
0.060  
Exposed  
Pad  
4.0  
0.155  
2.03  
0.08  
7.0  
0.275  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
18  
NCV4269A  
PACKAGE DIMENSIONS  
SO−14  
CASE 751A−03  
ISSUE G  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
−A−  
14  
8
7
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
−B−  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
P 7 PL  
M
M
B
0.25 (0.010)  
1
MILLIMETERS  
INCHES  
MIN  
G
DIM MIN  
MAX  
8.75  
4.00  
1.75  
0.49  
1.25  
MAX  
0.344  
0.157  
0.068  
0.019  
0.049  
F
R X 45  
_
C
A
B
C
D
F
8.55  
3.80  
1.35  
0.35  
0.40  
0.337  
0.150  
0.054  
0.014  
0.016  
−T−  
SEATING  
PLANE  
J
M
G
J
1.27 BSC  
0.050 BSC  
K
D 14 PL  
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
M
S
S
0.25 (0.010)  
T B  
A
K
M
P
R
_
_
_
_
5.80  
0.25  
6.20  
0.50  
0.228  
0.010  
0.244  
0.019  
www.onsemi.com  
19  
NCV4269A  
PACKAGE DIMENSIONS  
SO−20 WB  
CASE 751D−05  
ISSUE G  
D
A
q
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M, 1994.  
20  
11  
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD  
PROTRUSION.  
E
B
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE PROTRUSION  
SHALL BE 0.13 TOTAL IN EXCESS OF B  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
1
10  
MILLIMETERS  
DIM MIN  
MAX  
2.65  
0.25  
0.49  
0.32  
12.95  
7.60  
20X B  
A
A1  
B
C
D
E
2.35  
0.10  
0.35  
0.23  
12.65  
7.40  
M
S
S
B
T
0.25  
A
A
e
1.27 BSC  
H
h
10.05  
0.25  
0.50  
0
10.55  
0.75  
0.90  
7
SEATING  
PLANE  
L
18X e  
q
_
_
A1  
C
T
SMART REGULATOR is a registered trademark of Semiconductor Components Industries, LLC (SCILLIC).  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,  
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC  
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications  
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC  
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,  
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture  
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCV4269A/D  

相关型号:

NCV4269AD150G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269AD150R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269AD250G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269AD250R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269ADW50G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269ADW50R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269APD50G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269APD50R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4269A_15

Micropower 150 mA LDO Linear Regulator
ONSEMI

NCV4269C

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET and Sense Output
ONSEMI

NCV4269CD150R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET and Sense Output
ONSEMI

NCV4269CD250R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET and Sense Output
ONSEMI