NCV4276CDT33RKG [ONSEMI]

400 mA Low-Drop Voltage Regulator;
NCV4276CDT33RKG
型号: NCV4276CDT33RKG
厂家: ONSEMI    ONSEMI
描述:

400 mA Low-Drop Voltage Regulator

输出元件 调节器
文件: 总16页 (文件大小:164K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV4276C  
400 mA Low-Drop Voltage  
Regulator  
The NCV4276C is a 400 mA output current integrated low dropout  
regulator family designed for use in harsh automotive environments.  
It includes wide operating temperature and input voltage ranges. The  
device is offered with 3.3 V, 5.0 V, and adjustable voltage versions  
available in 2% output voltage accuracy. It has a high peak input  
voltage tolerance and reverse input voltage protection. It also  
provides overcurrent protection, overtemperature protection and  
inhibit for control of the state of the output voltage. The NCV4276C  
http://onsemi.com  
MARKING  
DIAGRAMS  
2
DPAK  
5PIN  
DT SUFFIX  
family is available in DPAK and D PAK surface mount packages.  
76CXXG  
ALYWW  
The output is stable over a wide output capacitance and ESR range.  
The NCV4276C has improved startup behavior during input voltage  
transients.  
1
CASE 175AA  
5
1
The NCV4276C is pin for pin compatible with NCV4276B.  
Features  
3.3 V, 5.0 V, and Adjustable Voltage Version (from 2.5 V to 20 V)  
2% Output Voltage  
400 mA Output Current  
2
D PAK  
NC  
V4276CXX  
AWLYWWG  
5PIN  
DS SUFFIX  
CASE 936A  
1
500 mV (max) Dropout Voltage (5.0 V Output)  
Inhibit Input  
5
1
Very Low Current Consumption  
Fault Protection  
*Tab is connected to Pin 3 on all packages.  
= Assembly Location  
WL, L = Wafer Lot  
+45 V Peak Transient Voltage  
42 V Reverse Voltage  
A
Short Circuit  
Y
= Year  
WW  
G
XX  
= Work Week  
= PbFree Device  
= 33 (3.3 V)  
= 50 (5.0 V)  
= AJ (Adj. Voltage)  
Thermal Overload  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AECQ100  
Qualified and PPAP Capable  
These are PbFree Devices  
ORDERING INFORMATION  
See detailed ordering and shipping information in the ordering  
information section on page 14 of this data sheet.  
©
Semiconductor Components Industries, LLC, 2014  
1
Publication Order Number:  
January, 2014 Rev. 0  
NCV4276C/D  
NCV4276C  
I
Q
Error  
Amplifier  
Current Limit and  
Saturation Sense  
Bandgap  
Reference  
+
Thermal  
Shutdown  
INH  
GND  
NC  
Figure 1. NCV4276C Block Diagram  
I
Q
Error  
Amplifier  
Current Limit and  
Saturation Sense  
Bandgap  
Reference  
+
Thermal  
Shutdown  
INH  
GND  
VA  
Figure 2. NCV4276C Adjustable Block Diagram  
PIN FUNCTION DESCRIPTION  
Pin No.  
Symbol  
I
Description  
1
2
3
4
Input; Battery Supply Input Voltage.  
INH  
Inhibit; Set lowto inhibit.  
GND  
NC / VA  
Ground; Pin 3 internally connected to heatsink.  
Not connected for fixed voltage version / Voltage Adjust Input for adjustable voltage version; use an external  
voltage divider to set the output voltage  
5
Q
Output: Bypass with a capacitor to GND. See Figures 3 to 8 and Regulator Stability Considerations section.  
http://onsemi.com  
2
NCV4276C  
MAXIMUM RATINGS  
Rating  
Symbol  
Min  
42  
Max  
45  
Unit  
V
Input Voltage  
V
I
V
I
Input Peak Transient Voltage  
Inhibit INH Voltage  
Voltage Adjust Input VA  
Output Voltage  
45  
V
V
42  
0.3  
1.0  
45  
V
INH  
V
10  
V
VA  
V
40  
V
Q
Ground Current  
I
100  
40  
mA  
V
q
Input Voltage Operating Range (Note 1)  
V
V
Q
+ 0.5 V or 4.5 V  
(Note 2)  
I
ESD Susceptibility  
(Human Body Model)  
(Machine Model)  
(Charged Device Model)  
4.0  
250  
1.25  
kV  
V
kV  
Junction Temperature  
Storage Temperature  
T
40  
50  
150  
150  
°C  
°C  
J
T
stg  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Functionaloperation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
2. Minimum V = 4.5 V or (V + 0.5 V), whichever is higher.  
I
Q
LEAD TEMPERATURE SOLDERING REFLOW (Note 3)  
Lead Temperature Soldering  
T
SLD  
°C  
Reflow (SMD styles only), Leaded, 60150 s above 183, 30 s max at peak  
Reflow (SMD styles only), Lead Free, 60150 s above 217, 40 s max at peak  
Wave Solder (through hole styles only), 12 sec max  
240  
265  
310  
3. Per IPC / JEDEC JSTD020C.  
THERMAL CHARACTERISTICS  
Characteristic  
DPAK 5PIN PACKAGE  
Test Conditions (Typical Value)  
Unit  
Min Pad Board (Note 4)  
1, Pad Board (Note 5)  
JunctiontoTab (psiJLx, y  
)
3.8  
4.3  
C/W  
C/W  
JLx  
JunctiontoAmbient (R , q  
)
75.1  
58.5  
q
JA JA  
2
D PAK 5PIN PACKAGE  
0.4 sq. in. Spreader Board (Note 6)  
1.2 sq. in. Spreader Board (Note 7)  
JunctiontoTab (psiJLx, y  
)
5.4  
5.4  
C/W  
C/W  
JLx  
JunctiontoAmbient (R , q  
)
54.2  
43.3  
q
JA JA  
2
2
2
2
4. 1 oz. copper, 0.26 inch (168 mm ) copper area, 0.062thick FR4.  
5. 1 oz. copper, 1.14 inch (736 mm ) copper area, 0.062thick FR4.  
2
2
6. 1 oz. copper, 0.373 inch (241 mm ) copper area, 0.062thick FR4.  
2
2
7. 1 oz. copper, 1.222 inch (788 mm ) copper area, 0.062thick FR4.  
http://onsemi.com  
3
 
NCV4276C  
ELECTRICAL CHARACTERISTICS (V = 13.5 V; 40°C < T < 150°C; unless otherwise noted.)  
I
J
Characteristic  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
OUTPUT  
Output Voltage, 5.0 V Version  
Output Voltage, 5.0 V Version  
Output Voltage, 3.3 V Version  
Output Voltage, 3.3 V Version  
Output Voltage, Adjustable Version  
V
V
V
V
5.0 mA < I < 400 mA,  
4.9  
4.9  
5.0  
5.0  
3.3  
3.3  
5.1  
5.1  
V
V
V
V
V
Q
Q
Q
Q
Q
6.0 V < V < 28 V  
I
5.0 mA < I < 200 mA,  
Q
6.0 V < V < 40 V  
I
5.0 mA < I < 400 mA,  
3.234  
3.234  
2%  
3.366  
3.366  
+2%  
Q
4.5 V < V < 28 V  
I
5.0 mA < I < 200 mA,  
Q
4.5 V < V < 40 V  
I
AV  
5.0 mA < I < 400 mA  
Q
Q
V +1 < V < 40 V  
Q
I
I
V > 4.5 V  
Output Current Limitation  
I
V
= 90% V  
QTYP  
QTYP  
400  
600  
1100  
10  
mA  
Q
Q
(V  
= 2.5 V for ADJ version)  
Quiescent Current (Sleep Mode)  
I
V
INH  
= 0 V  
mA  
q
I = I I  
q
I
Q
Quiescent Current, I = I I  
I
I
I
I
I
= 1.0 mA  
95  
5
200  
15  
mA  
mA  
mA  
q
I
Q
Q
Q
q
q
q
Q
Q
Q
Q
Quiescent Current, I = I I  
I
I
= 250 mA  
= 400 mA  
= 250 mA,  
q
I
Quiescent Current, I = I I  
10  
35  
q
I
Dropout Voltage,  
V
DR  
V
DR  
= V V  
I Q  
Adjustable Version  
V > 4.5 V  
250  
250  
3.0  
4.0  
500  
500  
20  
mV  
mV  
mV  
mV  
I
Dropout Voltage (5.0 V Version)  
Load Regulation  
V
DR  
I
Q
I
Q
= 250 mA (Note 8)  
= 5.0 mA to 400 mA  
DV  
Q,LO  
Line Regulation  
DV  
DV = 12 V to 32 V,  
15  
Q
I
I
Q
= 5.0 mA  
Power Supply Ripple Rejection  
PSRR  
f = 100 Hz, V = 0.5 V  
70  
dB  
r
r
PP  
INHIBIT  
Inhibit Voltage, Output High  
V
V
V
V
V
w V  
QMIN  
2.3  
2.2  
10  
2.8  
V
V
INH  
INH  
INH  
Q
Inhibit Voltage, Output Low (Off)  
v 0.1 V  
1.8  
5.0  
Q
Input Current  
I
= 5.0 V  
20  
mA  
INH  
THERMAL SHUTDOWN  
Thermal Shutdown Temperature (Note 9)  
T
SD  
I
Q
= 5.0 mA  
150  
210  
°C  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performancemay not be indicated by the Electrical Characteristics if operated under different conditions.  
8. Measured when the output voltage V has dropped 100 mV from the nominal valued obtained at V = 13.5 V.  
Q
9. Guaranteed by design, not tested in production.  
http://onsemi.com  
4
 
NCV4276C  
Output  
I
I
I
Q
I 1  
5 Q  
5.5 45 V  
C
1.0 mF  
C
C
Q
22 mF  
I1  
I2  
Input  
100 nF  
NCV4276C  
INH  
NC  
R
L
2
4
3
I
INH  
GND  
Figure 3. Applications Circuit; Fixed Voltage Version  
V
Q
= [(R1 + R2) * V ] / R2  
ref  
Output  
I
I
I
Q
I 1  
5 Q  
Input  
C
I1  
C
I2  
C
Q
C *  
b
1.0 mF  
100 nF  
22 mF  
NCV4276C  
R
R
1
INH  
VA  
R
L
2
4
3
I
INH  
GND  
2
C * Required if usage of low ESR output capacitor C is demand, see Regulator Stability Considerations section  
b
Q
Figure 4. Applications Circuit; Adjustable Voltage Version  
http://onsemi.com  
5
 
NCV4276C  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
10  
100  
Unstable Region  
Stable Region  
Unstable Region  
10  
1
1
Stable Region  
0.1  
0.1  
0.01  
C
= 10 mF  
C = 22 mF  
Q
Q
0.01  
0
50  
100  
150 200  
250  
300  
350 400  
0
50  
100  
150 200  
250  
300  
350 400  
I , OUTPUT CURRENT (mA)  
Q
I , OUTPUT CURRENT (mA)  
Q
Figure 5. Output Stability with Output Capacitor  
ESR, Fixed Versions (5.0 V and 3.3 V)  
Figure 6. Output Stability with Output Capacitor  
ESR, Fixed Versions (5.0 V and 3.3 V)  
1000  
100  
10  
10  
1
C capacitor not connected  
C capacitor not connected  
b
b
Unstable Region  
Stable Region  
Unstable Region  
C
Q
= 22 mF  
C
V
= 22 mF  
= 2.5 V  
Q
Stable Region  
1
V
Q
= 12 V  
Q
V
= 6 V  
Q
0.1  
0.1  
0.01  
Unstable Region  
Unstable Region  
50 100  
I , OUTPUT CURRENT (mA)  
0.01  
0
50  
100  
150 200  
250  
300  
350 400  
0
150 200  
250  
300  
350 400  
I , OUTPUT CURRENT (mA)  
Q
Q
Figure 7. Output Stability with Output Capacitor  
ESR, Adjustable Version  
Figure 8. Output Stability with Output Capacitor  
ESR, Adjustable Version  
http://onsemi.com  
6
 
NCV4276C  
TYPICAL PERFORMANCE CHARACTERISTICS Fixed Versions  
5.10  
5.05  
5.00  
3.36  
V = 13.5 V  
R = 1 kW  
L
I
V = 13.5 V  
R = 660 W  
L
I
3.34  
3.32  
3.30  
3.28  
4.95  
4.90  
3.26  
3.24  
40  
0
40  
80  
120  
160  
40  
0
40  
80  
120  
160  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 9. Output Voltage vs.  
Figure 10. Output Voltage vs.  
Junction Temperature, 5.0 V Version  
Junction Temperature, 3.3 V Version  
6
5
4
3
2
12  
10  
T = 25°C  
R = 20 W  
L
J
T = 25°C  
R = 20 W  
L
J
8
6
4
1
0
2
0
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
V , INPUT VOLTAGE (V)  
I
V , INPUT VOLTAGE (V)  
I
Figure 11. Quiescent Current vs.  
Input Voltage, 5.0 V Version  
Figure 12. Quiescent Current vs. Input Voltage,  
3.3 V Version  
4
6
5
4
3
2
3
2
T = 25°C  
R = 20 W  
L
J
T = 25°C  
J
R = 20 W  
L
1
0
1
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
V , INPUT VOLTAGE (V)  
I
V , INPUT VOLTAGE (V)  
I
Figure 13. Output Voltage vs. Input Voltage,  
5.0 V Version  
Figure 14. Output Voltage vs. Input Voltage,  
3.3 V Version  
http://onsemi.com  
7
NCV4276C  
TYPICAL PERFORMANCE CHARACTERISTICS Fixed Versions  
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.2  
0.8  
0.4  
0
0.2  
0.4  
0.4  
R = 6.8 kW  
T = 25°C  
J
L
0.6  
R = 6.8 kW  
T = 25°C  
J
L
0.8  
1.2  
0.8  
1.0  
50 40 30 20 10  
0
10 20 30 40 50  
50 40 30 20 10  
0
10 20  
30 40 50  
V , INPUT VOLTAGE (V)  
I
V , INPUT VOLTAGE (V)  
I
Figure 15. Input Current vs. Input Voltage,  
5.0 V Version  
Figure 16. Input Current vs. Input Voltage,  
3.3 V Version  
400  
350  
700  
600  
500  
400  
300  
200  
T = 125°C  
J
300  
250  
200  
150  
100  
T = 25°C  
J
T = 25°C  
J
100  
0
V
Q
= 0 V  
50  
0
0
50  
100  
150  
200  
250  
300 350 400  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
I , OUTPUT CURRENT (mA)  
Q
V , INPUT VOLTAGE (V)  
I
Figure 17. Dropout Voltage vs. Output Current,  
Only 5 V Version  
Figure 18. Maximum Output Current vs.  
Input Voltage  
0.5  
0.4  
0.3  
0.2  
18  
16  
14  
12  
10  
8
V = 13.5 V  
T = 25°C  
J
I
V = 13.5 V  
T = 25°C  
J
I
6
4
0.1  
0
2
0
0
100  
200  
300  
400  
500  
600  
0
10  
20  
30  
40  
50  
I , OUTPUT CURRENT (mA)  
Q
I , OUTPUT CURRENT (mA)  
Q
Figure 19. Quiescent Current vs.  
Output Current (High Load)  
Figure 20. Quiescent Current vs.  
Output Current (Low Load)  
http://onsemi.com  
8
NCV4276C  
TYPICAL PERFORMANCE CHARACTERISTICS Adjustable Version  
2.55  
2.54  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
5.0  
4.5  
V = 13.5 V  
R = 500 W  
L
I
T = 25°C  
R = 20 W  
L
J
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
2.46  
2.45  
0.5  
0
40  
0
40  
80  
120  
160  
0
5
10  
15  
20  
25  
30  
35  
40  
T , JUNCTION TEMPERATURE (°C)  
J
V , INPUT VOLTAGE (V)  
I
Figure 21. Output Voltage vs.  
Junction Temperature  
Figure 22. Quiescent Current vs.  
Input Voltage  
3
2
0.6  
0.4  
0.2  
0
0.2  
0.4  
0.6  
1
0
T = 25°C  
R = 20 W  
L
J
T = 25°C  
R = 6.8 kW  
L
J
0.8  
1.0  
50 40 30 20 10  
0
10 20 30 40 50  
0
1
2
3
4
5
6
7
8
9
10  
V , INPUT VOLTAGE (V)  
I
V , INPUT VOLTAGE (V)  
I
Figure 23. Output Voltage vs. Input Voltage  
Figure 24. Input Current vs. Input Voltage  
http://onsemi.com  
9
NCV4276C  
TYPICAL PERFORMANCE CHARACTERISTICS Adjustable Version  
400  
350  
300  
250  
700  
600  
T = 125°C  
J
500  
400  
300  
200  
T = 25°C  
J
200  
150  
100  
T = 25°C  
J
V
Q
= 0 V  
100  
0
50  
0
0
50  
100  
150 200  
250 300  
350 400  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
I , OUTPUT CURRENT (mA)  
Q
V , INPUT VOLTAGE (V)  
I
Figure 26. Maximum Output Current vs.  
Input Voltage  
Figure 25. Dropout Voltage vs. Output Current,  
Output Voltage set to 5.0 V  
18  
16  
14  
12  
10  
8
0.5  
0.4  
0.3  
0.2  
T = 25°C  
V = 13.5 V  
I
J
T = 25°C  
V = 13.5 V  
I
J
6
4
0.1  
0
2
0
0
100  
200  
300  
400  
500  
600  
0
10  
20  
30  
40  
50  
I , OUTPUT CURRENT (mA)  
Q
I , OUTPUT CURRENT (mA)  
Q
Figure 28. Quiescent Current vs.  
Output Current (Low Load)  
Figure 27. Quiescent Current vs.  
Output Current (High Load)  
http://onsemi.com  
10  
NCV4276C  
Circuit Description  
Minimum ESR for C = 10 mF and 22 mF is native ESR  
of ceramic capacitor with which the fixed output voltage  
devices are performing stable. Murata ceramic capacitors  
were used,  
Q
The NCV4276C is an integrated low dropout regulator  
that provides a regulated voltage at 400 mA to the output.  
It is enabled with an input to the inhibit pin. The regulator  
voltage is provided by a PNP pass transistor controlled by  
an error amplifier with a bandgap reference, which gives it  
the lowest possible dropout voltage. The output current  
capability is 400 mA, and the base drive quiescent current  
is controlled to prevent oversaturation when the input  
voltage is low or when the output is overloaded. The  
regulator is protected by both current limit and thermal  
shutdown. Thermal shutdown occurs above 150°C to  
protect the IC during overloads and extreme ambient  
temperatures.  
GCM32ER71E106KA57 (10 mF, 25V, X7R, 1210),  
GRM32ER71E226ME15 (22 mF, 25V, X7R, 1210).  
Calculating Bypass Capacitor  
If usage of low ESR ceramic capacitors is demand in case  
of Adjustable Regulator, connect the bypass capacitor C  
b
between Voltage Adjust pin and Q pin according to  
Applications circuit at Figure 4.  
Parallel combination of bypass capacitor C with the  
b
feedback resistor R contributes in the device transfer  
1
function as an additional zero and affects the device loop  
stability, therefore its value must be optimized. Attention  
to the Output Capacitor value and its ESR must be paid. See  
also Stability in High Speed Linear LDO Regulators  
Application Note, AND8037/D for more information.  
Optimal value of bypass capacitor is given by following  
expression  
Regulator  
The error amplifier compares the reference voltage to a  
sample of the output voltage (V ) and drives the base of a  
Q
PNP series pass transistor via a buffer. The reference is a  
bandgap design to give it a temperaturestable output.  
Saturation control of the PNP is a function of the load  
current and input voltage. Oversaturation of the output  
power device is prevented, and quiescent current in the  
ground pin is minimized. See Figure 4, Test Circuit, for  
circuit element nomenclature illustration.  
1
C
b
+
@ (F)  
2   p   f   R  
z
1
where  
R = the upper feedback resistor  
1
Regulator Stability Considerations  
The input capacitors (C and C ) are necessary to  
stabilize the input impedance to avoid voltage line  
influences. Using a resistor of approximately 1.0 W in  
series with C can stop potential oscillations caused by  
stray inductance and capacitance.  
f = the frequency of the zero added into the device  
z
I1  
I2  
transfer function by R and C external components.  
1
b
Set the R resistor according to output voltage  
1
requirement. Chose the f with regard on the output  
z
I2  
capacitance C , refer to the table below.  
Q
C
Q
(mF)  
10  
22  
47  
The output capacitor helps determine three main  
characteristics of a linear regulator: startup delay, load  
transient response and loop stability. The capacitor value  
and type should be based on cost, availability, size and  
temperature constraints. The aluminum electrolytic  
capacitor is the least expensive solution, but, if the circuit  
operates at low temperatures (25°C to 40°C), both the  
value and ESR of the capacitor will vary considerably. The  
capacitor manufacturer’s data sheet usually provides this  
information.  
f Range (kHz)  
16 18  
11 18  
8 18  
z
Ceramic capacitors and its part numbers listed bellow  
have been used as low ESR output capacitors C from the  
table above to define the frequency ranges of additional  
zero required for stability.  
Q
GCM32ER71E106KA57 (10 mF, 25V, X7R, 1210)  
GRM32ER71E226ME15 (22 mF, 25V, X7R, 1210)  
GRM32ER61C476ME15 (47 mF, 16 V, X5R, 1210)  
The value for the output capacitor C , shown in Figure 3,  
Q
should work for most applications; see also Figures 5 to 8  
for output stability at various load and Output Capacitor  
ESR conditions. Stable region of ESR in Figures 5 to 8  
shows ESR values at which the LDO output voltage does  
not have any permanent oscillations at any dynamic  
changes of output load current. Marginal ESR is the value  
at which the output voltage waving is fully damped during  
four periods after the load change and no oscillation is  
further observable.  
ESR characteristics were measured with ceramic  
capacitors and additional series resistors to emulate ESR.  
Low duty cycle pulse load current technique has been used  
to maintain junction temperature close to ambient  
temperature.  
Inhibit Input  
The inhibit pin is used to turn the regulator on or off. By  
holding the pin down to a voltage less than 1.8 V, the output  
of the regulator will be turned off. When the voltage on the  
Inhibit pin is greater than 2.8 V, the output of the regulator  
will be enabled to power its output to the regulated output  
voltage. The inhibit pin may be connected directly to the  
input pin to give constant enable to the output regulator.  
Setting the Output Voltage (Adjustable Version)  
The output voltage range of the adjustable version can be  
set between 2.5 V and 20 V. This is accomplished with an  
external resistor divider feeding back the voltage to the IC  
back to the error amplifier by the voltage adjust pin VA.  
http://onsemi.com  
11  
NCV4276C  
The internal reference voltage is set to a temperature stable  
reference of 2.5 V.  
The output voltage is calculated from the following  
formula. Ignoring the bias current into the VA pin:  
In some cases, none of the packages will be sufficient to  
dissipate the heat generated by the IC, and an external  
heatsink will be required.  
I
Q
I
I
V
Q
+ [(R1 ) R2) * V ]ńR2  
ref  
SMART  
REGULATOR®  
V
I
V
Q
Use R2 < 50 k to avoid significant voltage output errors  
due to VA bias current.  
Connecting VA directly to Q without R1 and R2 creates  
an output voltage of 2.5 V.  
Control  
Features  
}
Designers should consider the tolerance of R1 and R2  
Iq  
during the design phase.  
The input voltage range for operation (pin 1) of the  
adjustable version is between (V + 0.5 V) and 40 V.  
Internal bias requirements dictate a minimum input voltage  
of 4.5 V. The dropout voltage for output voltages less than  
Q
Figure 29. Single Output Regulator with Key  
Performance Parameters Labeled  
4.0 V is (4.5 V V ).  
Q
Heatsinks  
A heatsink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
Each material in the heat flow path between the IC and  
the outside environment will have a thermal resistance.  
Like series electrical resistances, these resistances are  
Calculating Power Dissipation  
in a Single Output Linear Regulator  
The maximum power dissipation for a single output  
regulator (Figure 29) is:  
P
+ [V  
I(max)  
* V  
]I  
(1)  
D(max)  
Q(min) Q(max)  
summed to determine the value of R  
:
JA  
) V  
I
q
I(max) q  
(3)  
R
qJA  
+ R  
qJC  
) R ) R  
qCS qSA  
where  
where  
V
V
I
is the maximum input voltage,  
is the minimum output voltage,  
is the maximum output current for the  
application,  
I(max)  
Q(min)  
Q(max)  
R
R
R
is the junctiontocase thermal resistance,  
is the casetoheatsink thermal resistance,  
is the heatsinktoambient thermal  
resistance.  
JC  
q
q
q
CS  
SA  
I
is the quiescent current the regulator  
q
consumes at I  
.
Q(max)  
R
appears in the package section of the data sheet.  
JC  
q
Once the value of P  
is known, the maximum  
D(max)  
Like R , it too is a function of package type. R  
and  
JA  
CS  
q
q
permissible value of R  
can be calculated:  
JA  
q
R
are functions of the package type, heatsink and the  
interface between them. These values appear in data sheets  
of heatsink manufacturers.  
SA  
q
o
T
150 C *  
A
R
qJA  
+
(2)  
P
D
The value of R  
can then be compared with those in the  
JA  
q
Thermal, mounting, and heatsinking considerations are  
discussed in the ON Semiconductor application note  
AN1040/D.  
package section of the data sheet. Those packages with  
less than the calculated value in Equation 2 will keep  
R
JA  
q
the die temperature below 150°C.  
http://onsemi.com  
12  
 
NCV4276C  
110  
100  
90  
80  
75  
70  
65  
60  
55  
50  
45  
40  
80  
1 oz  
1 oz  
70  
2 oz  
2 oz  
60  
50  
40  
35  
30  
0
100  
200 300  
400  
500  
600 700  
800  
0
100  
200  
300 400  
500  
600  
700 800  
2
2
COPPER SPREADER AREA (mm )  
COPPER SPREADER AREA (mm )  
Figure 30. RqJA vs. Copper Spreader Area,  
Figure 31. RqJA vs. Copper Spreader Area,  
DPAK 5Lead  
D2PAK 5Lead  
100  
10  
1
2
Cu Area 168 mm  
2
Cu Area 736 mm  
0.1  
0.000001 0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
PULSE TIME (sec)  
Figure 32. SinglePulse Heating Curves, DPAK 5Lead  
100  
10  
1
2
Cu Area 241 mm  
2
Cu Area 788 mm  
0.1  
0.000001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
PULSE TIME (sec)  
Figure 33. SinglePulse Heating Curves, D2PAK 5Lead  
http://onsemi.com  
13  
NCV4276C  
100  
10  
50% Duty Cycle  
20%  
10%  
5%  
2%  
1%  
1
Nonnormalized Response  
Single Pulse  
0.000001 0.00001  
0.1  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
PULSE TIME (sec)  
Figure 34. Duty Cycle for 1, Spreader Boards, DPAK 5Lead  
100  
10  
50% Duty Cycle  
20%  
10%  
5%  
2%  
1%  
1
Nonnormalized Response  
Single Pulse  
0.1  
0.000001 0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
PULSE TIME (sec)  
Figure 35. Duty Cycle for 1, Spreader Boards, D2PAK 5Lead  
ORDERING INFORMATION  
Device  
Output Voltage Accuracy  
Output Voltage  
Package  
Shipping  
NCV4276CDT33RKG  
DPAK, 5Pin  
(PbFree)  
2500 / Tape & Reel  
800 / Tape & Reel  
2500 / Tape & Reel  
800 / Tape & Reel  
2500 / Tape & Reel  
800 / Tape & Reel  
3.3 V  
2
NCV4276CDS33R4G  
NCV4276CDT50RKG  
NCV4276CDS50R4G  
NCV4276CDTADJRKG  
NCV4276CDSADJR4G  
D PAK, 5Pin  
(PbFree)  
DPAK, 5Pin  
(PbFree)  
2%  
5.0 V  
2
D PAK, 5Pin  
(PbFree)  
DPAK, 5Pin  
(PbFree)  
Adjustable  
2
D PAK, 5Pin  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
14  
NCV4276C  
PACKAGE DIMENSIONS  
DPAK 5, CENTER LEAD CROP  
DT SUFFIX  
CASE 175AA  
ISSUE A  
NOTES:  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
SEATING  
T−  
PLANE  
C
B
R
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
5.97  
6.35  
2.19  
0.51  
0.46  
0.61  
MAX  
6.22  
6.73  
2.38  
0.71  
0.58  
0.81  
E
V
A
B
C
D
E
F
G
H
J
0.235 0.245  
0.250 0.265  
0.086 0.094  
0.020 0.028  
0.018 0.023  
0.024 0.032  
0.180 BSC  
0.034 0.040  
0.018 0.023  
0.102 0.114  
0.045 BSC  
R1  
Z
A
K
S
4.56 BSC  
1 2 3 4  
5
0.87  
0.46  
2.60  
1.01  
0.58  
2.89  
U
K
L
1.14 BSC  
R
0.170 0.190  
4.32  
4.70  
0.63  
0.51  
0.89  
3.93  
4.83  
5.33  
1.01  
−−−  
1.27  
4.32  
F
J
R1 0.185 0.210  
S
U
V
Z
0.025 0.040  
0.020 −−−  
0.035 0.050  
0.155 0.170  
L
H
D 5 PL  
M
G
0.13 (0.005)  
T
SOLDERING FOOTPRINT*  
6.4  
0.252  
2.2  
0.086  
0.34  
0.013  
5.8  
0.228  
5.36  
0.217  
10.6  
0.417  
0.8  
0.031  
mm  
inches  
ǒ
Ǔ
SCALE 4:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
MountingTechniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
15  
NCV4276C  
PACKAGE DIMENSIONS  
D2PAK 5  
CASE 936A02  
ISSUE C  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. TAB CONTOUR OPTIONAL WITHIN DIMENSIONS A  
AND K.  
4. DIMENSIONS U AND V ESTABLISH A MINIMUM  
MOUNTING SURFACE FOR TERMINAL 6.  
5. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
FLASH OR GATE PROTRUSIONS. MOLD FLASH  
AND GATE PROTRUSIONS NOT TO EXCEED 0.025  
(0.635) MAXIMUM.  
T−  
TERMINAL 6  
OPTIONAL  
CHAMFER  
A
E
U
S
K
V
B
H
1
2
3
4 5  
INCHES  
MILLIMETERS  
M
L
DIM  
A
B
C
D
E
MIN  
MAX  
0.403  
0.368  
0.180  
0.036  
0.055  
MIN  
9.804  
9.042  
4.318  
0.660  
1.143  
MAX  
10.236  
9.347  
4.572  
0.914  
1.397  
0.386  
0.356  
0.170  
0.026  
0.045  
D
M
P
N
0.010 (0.254)  
T
G
R
G
H
K
L
M
N
P
0.067 BSC  
1.702 BSC  
14.707  
1.270 REF  
0.539  
0.579 13.691  
0.050 REF  
0.000  
0.088  
0.018  
0.058  
0.010  
0.102  
0.026  
0.078  
0.000  
2.235  
0.457  
1.473  
0.254  
2.591  
0.660  
1.981  
C
R
S
U
V
5_ REF  
5_ REF  
0.116 REF  
0.200 MIN  
0.250 MIN  
2.946 REF  
5.080 MIN  
6.350 MIN  
SOLDERING FOOTPRINT  
8.38  
0.33  
1.702  
0.067  
10.66  
0.42  
1.016  
0.04  
3.05  
0.12  
16.02  
0.63  
mm  
inches  
ǒ
Ǔ
SCALE 3:1  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,  
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. SCILLC  
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products  
for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including  
without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical  
experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components  
in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product  
could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall  
indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney  
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was  
negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws  
and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your loca  
Sales Representative  
NCV4276C/D  

相关型号:

NCV4276CDT50RKG

400 mA Low-Drop Voltage Regulator
ONSEMI

NCV4276CDTADJRKG

LDO Regulator, 400 mA, Low Dropout Adjustable, 2%, 2500-REEL
ONSEMI

NCV4276DS18

Low-Drop Voltage Regulator
ONSEMI

NCV4276DS18G

400 mA Low−Drop Voltage Regulator
ONSEMI

NCV4276DS18R4

Low-Drop Voltage Regulator
ONSEMI

NCV4276DS18R4G

400 mA Low−Drop Voltage Regulator
ONSEMI

NCV4276DS25

Low-Drop Voltage Regulator
ONSEMI

NCV4276DS25G

400 mA Low−Drop Voltage Regulator
ONSEMI

NCV4276DS25R4

Low-Drop Voltage Regulator
ONSEMI

NCV4276DS25R4G

400 mA Low−Drop Voltage Regulator
ONSEMI

NCV4276DS33

Low-Drop Voltage Regulator
ONSEMI

NCV4276DS33G

400 mA Low−Drop Voltage Regulator
ONSEMI