NCV4279C [ONSEMI]

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET and Sense Output;
NCV4279C
型号: NCV4279C
厂家: ONSEMI    ONSEMI
描述:

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET and Sense Output

文件: 总14页 (文件大小:123K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV4279C  
5.0 V Micropower 150 mA  
LDO Linear Regulator with  
DELAY, Adjustable RESET,  
and Sense Output  
www.onsemi.com  
The NCV4279C is a 5.0 V precision micropower voltage regulator  
with an output current capability of 150 mA.  
MARKING  
DIAGRAMS  
The output voltage is accurate within 2.0% with a maximum  
dropout voltage of 0.5 V at 100 mA. Low quiescent current is a feature  
drawing only 125 mA with a 1.0 mA load. This part is ideal for any and  
all battery operated microprocessor equipment.  
Microprocessor control logic includes an active reset output RO  
with delay and a SI/SO monitor which can be used to provide an early  
warning signal to the microprocessor of a potential impending reset  
signal. The use of the SI/SO monitor allows the microprocessor to  
finish any signal processing before the reset shuts the microprocessor  
down.  
8
SO−8  
D1 SUFFIX  
CASE 751  
4279C5  
ALYW  
G
8
1
1
14  
SO−14  
D2 SUFFIX  
CASE 751A  
NCV4279C5G  
AWLYWW  
14  
The active Reset circuit operates correctly at an output voltage as  
low as 1.0 V. The Reset function is activated during the power up  
sequence or during normal operation if the output voltage drops  
outside the regulation limits.  
1
1
A
= Assembly Location  
WL, L = Wafer Lot  
= Year  
WW, W = Work Week  
The reset threshold voltage can be decreased by the connection of an  
Y
external resistor divider to the R  
lead. The regulator is protected  
ADJ  
G
= PB−Free Package  
against reverse battery, short circuit, and thermal overload conditions.  
The device can withstand load dump transients making it suitable for  
use in automotive environments. The device has also been optimized  
for EMC conditions.  
If the application requires pullup resistors at the logic outputs Reset  
and Sense Out, the NCV4269C with integrated resistors can be used.  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 12 of this data sheet.  
Features  
5.0 V 2.0% Output  
Low 125 mA Quiescent Current  
Active Reset Output Low Down to V = 1.0 V  
Q
Adjustable Reset Threshold  
150 mA Output Current Capability  
Fault Protection  
+60 V Peak Transient Voltage  
−40 V Reverse Voltage  
Short Circuit  
Thermal Overload  
Early Warning through SI/SO Leads  
Internally Fused Leads in SO−14 Package  
Very Low Dropout Voltage  
Electrical Parameters Guaranteed Over Entire Temperature Range  
AEC−Q100 Grade 1 Qualified and PPAP Capable  
These are Pb−Free Devices  
© Semiconductor Components Industries, LLC, 2015  
1
Publication Order Number:  
May, 2015 − Rev. 4  
NCV4279C/D  
NCV4279C  
I
Q
Error  
Amplifier  
Current and  
Reference  
and Trim  
Saturation  
Control  
RO  
D
or  
Reference  
SO  
R
ADJ  
+
SI  
GND  
Figure 1. Block Diagram  
PIN CONNECTIONS  
1
14  
R
SI  
ADJ  
1
8
D
I
I
Q
GND  
GND  
GND  
GND  
RO  
GND  
GND  
GND  
Q
SI  
SO  
RO  
GND  
R
ADJ  
D
SO  
SO−8  
SO−14  
PACKAGE PIN DESCRIPTION  
Package Pin Number  
SO−8  
SO−14  
Pin Symbol  
Function  
Reset Threshold Adjust; if not used to connect to GND.  
3
4
5
1
2
R
ADJ  
D
Reset Delay; To Set Time Delay, Connect to GND with a Capacitor  
Ground  
3, 4, 5, 6,  
10, 11, 12  
GND  
6
7
8
1
2
7
8
RO  
SO  
Q
Reset Output; This is an Open−Collector Output. Leave Open if Not Used.  
Sense Output; This is an Open−Collector Output. If not used, keep open.  
5 V Output; Connect to GND with a 10 mF Capacitor, ESR < 2.5 W.  
Input; Connect to GND Directly at the IC with a Ceramic Capacitor.  
Sense Input; If not used, Connect to Q.  
9
13  
14  
I
SI  
www.onsemi.com  
2
NCV4279C  
MAXIMUM RATINGS (T = −40°C to 150°C)  
J
Parameter  
Symbol  
Min  
Max  
Unit  
Input to Regulator  
V
−40  
45  
V
I
I
I
Internally Limited Internally Limited  
Input Peak Transient Voltage (Note 3)  
Sense Input  
V
60  
V
I
V
SI  
−40  
−1  
45  
1
V
mA  
I
SI  
Reset Threshold Adjust  
Reset Delay  
V
I
−0.3  
−10  
7
10  
V
mA  
RADJ  
RADJ  
V
D
−0.3  
7
V
I
D
Internally Limited Internally Limited  
Ground  
I
50  
7
mA  
V
q
Reset Output  
V
RO  
RO  
−0.3  
I
Internally Limited Internally Limited  
Sense Output  
V
I
−0.3  
7
V
SO  
SO  
Internally Limited Internally Limited  
Regulated Output  
V
−0.5  
−10  
7
V
mA  
Q
I
Q
Junction Temperature  
Storage Temperature  
T
STG  
−50  
150  
150  
°C  
°C  
J
T
Input Voltage Operating Range  
Junction Temperature Operating Range  
V
T
−40  
45  
150  
V
°C  
I
J
LEAD TEMPERATURE SOLDERING AND MSL  
Parameter  
Symbol  
Value  
Unit  
MSL, 8−Lead, 14−Lead, LS Temperature 260°C Peak (Note 4)  
MSL  
1
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. This device series incorporates ESD protection and exceeds the following ratings:  
Human Body Model (HBM) 4.0 kV per AEC−Q100−002.  
Machine Model (MM) 200 V per AEC−Q100−003.  
2. Latchup tested per AEC−Q100−004.  
3. Load Dump Test B (with centralized load dump suppression) according to ISO16750−2 standard. Guaranteed by design. Not tested in  
production. Passed Class A according to ISO16750−1.  
4. Lead free: 60−150 Sec above 217°C, 40 Sec Max at Peak, 265°C Peak.  
THERMAL CHARACTERISTICS  
Characteristic  
Test Conditions (Typical Values)  
Unit  
SO−8 Package (Note 5)  
Junction−to−Pin 6 (Y − JL6, Y  
)
63.2  
167  
°C/W  
°C/W  
L6  
Junction−to−Ambient Thermal Resistance (R , q  
)
)
q
JA JA  
SO−14 Package (Note 5)  
Junction−to−Pin 4 (Y − JL4, Y  
)
18.4  
114  
°C/W  
°C/W  
L4  
Junction−to−Ambient Thermal Resistance (R , q  
q
JA JA  
2
5. 2 oz copper, 100 mm copper area, 1.5 mm thick FR4  
www.onsemi.com  
3
 
NCV4279C  
ELECTRICAL CHARACTERISTICS (T = −40°C T 150°C, V = 13.5 V unless otherwise specified)  
J
J
I
Characteristic  
REGULATOR  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Output Voltage  
Current Limit  
V
1 mA v I v 100 mA; 6 V v V v 16 V  
4.90  
150  
5.00  
430  
125  
560  
230  
0.9  
0.25  
1
5.10  
500  
250  
650  
450  
3.0  
0.5  
20  
V
Q
Q
I
I
Q
mA  
mA  
mA  
mA  
mA  
V
Current Consumption; I = I – I  
I
I = 1 mA, RO, SO High  
Q
q
I
Q
Q
Q
Q
q
q
q
q
Current Consumption; I = I – I  
I
I
Q
= 1 mA, RO High, SO Low (Note 6)  
q
I
Current Consumption; I = I – I  
I
I
I
= 10 mA, RO, SO High  
= 50 mA, RO, SO High  
q
I
Q
Q
Current Consumption; I = I – I  
I
q
I
Dropout Voltage  
Load Regulation  
Line Regulation  
V
dr  
I
= 100 mA (Note 7)  
= 5 mA to 100 mA  
Q
Q
DV  
DV  
I
mV  
mV  
Q
V = 6 V to 26 V; I = 1 mA  
1
30  
Q
I
Q
RESET GENERATOR  
Reset Switching Threshold  
V
4.50  
1.26  
4.65  
1.35  
0.03  
1.8  
0.45  
4.80  
1.44  
0.4  
2.2  
0.60  
0.1  
9.5  
V
V
RT  
Reset Adjust Switching Threshold  
Reset Output Saturation Voltage  
Upper Delay Switching Threshold  
Lower Delay Switching Threshold  
Saturation Voltage on Delay Capacitor  
Charge Current  
V
V > 3.5 V  
Q
RADJ,TH  
V
V
Q
< V , R = 20 kW  
V
RO,SAT  
RT RO  
V
UD  
1.4  
0.3  
V
V
V
LD  
V
D,SAT  
V
< V  
RT  
V
Q
I ,  
D C  
V
= 1 V  
3.0  
17  
6.5  
28  
mA  
ms  
ms  
D
Delay Time L ³ H  
t
C
C
= 100 nF  
= 100 nF  
d
D
D
Delay Time H ³ L  
t
1.5  
RR  
INPUT VOLTAGE SENSE  
Sense Threshold High  
V
1.24  
1.16  
1.31  
1.20  
0.03  
0.1  
1.38  
1.28  
0.4  
V
V
SI,High  
Sense Threshold Low  
V
SI,Low  
Sense Output Saturation Voltage  
Sense Input Current  
V
V
SI  
< 1.20 V; V > 3 V; R = 20 kW  
V
SO,Low  
Q
SO  
I
SI  
−1.0  
1.0  
mA  
THERMAL SHUTDOWN  
Thermal Shutdown Temperature (Note 8)  
T
SD  
I
= 1 mA  
150  
200  
°C  
OUT  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
6. Including 20 kW external SO pull−up resistor current.  
7. Dropout voltage = V − V measured when the output voltage has dropped 100 mV from the nominal value obtained at 13.5 V input.  
I
Q
8. Values based on design and/or characterization.  
www.onsemi.com  
4
 
NCV4279C  
I
I
I
Q
I
Q
C
Q
22 mF  
C
I
R
1000 mF  
ADJ1  
R
470 nF  
RO  
R
SO  
I
SI  
I
RADJ  
SI  
D
RADJ  
V
Q
GND  
RO  
SO  
V
I
I
D
I
q
V
RO  
V
SO  
V
SI  
V
RADJ  
V
D
C
R
D
ADJ2  
100 nF  
Figure 2. Measuring Circuit  
V
I
t
t
< t  
RR  
V
Q
V
RT  
dV  
dt  
I
C
D
D
+
V
D
V
UD  
V
LD  
t
t
t
d
RR  
V
RO  
V
RO,SAT  
t
Power−on−Reset  
Thermal  
Shutdown  
Voltage Dip  
at Input  
Undervoltage  
Secondary  
Spike  
Overload  
at Output  
Figure 3. Reset Timing Diagram  
www.onsemi.com  
5
NCV4279C  
Sense Input Voltage  
V
SI,High  
V
SI,Low  
t
Sense Output Voltage  
High  
Low  
t
Figure 4. Sense Timing Diagram  
TYPICAL PERFORMANCE CHARACTERISTICS  
16  
3.2  
V = 13.5 V  
V = 13.5 V  
I
I
14  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
V
D
= 1.0 V  
12  
10  
8
V
UD  
6
4
V
LD  
2
0.4  
0
0
−40  
0
40  
80  
120  
160  
−40  
0
40  
80  
120  
160  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 5. Charge Current ID,C vs. Temperature TJ  
Figure 6. Switching Voltage VUD and VLD vs.  
Temperature TJ  
www.onsemi.com  
6
NCV4279C  
TYPICAL PERFORMANCE CHARACTERISTICS  
500  
400  
300  
1.7  
1.6  
T = 125°C  
J
1.5  
1.4  
T = 25°C  
J
1.3  
1.2  
200  
100  
0
T = −40°C  
J
1.1  
1.0  
0.9  
−40  
0
30  
60  
90  
120  
150  
180  
0
40  
80  
120  
160  
T , JUNCTION TEMPERATURE (°C)  
J
I , OUTPUT CURRENT (mA)  
Q
Figure 8. Reset Adjust Switching Threshold,  
Figure 7. Drop Voltage Vdr vs. Output Current IQ  
V
RADJ,TH vs. Temperature TJ  
14  
12  
10  
8
12  
10  
8
6
R = 50 W  
L
6
R = 100 W  
L
R = 33 W  
L
4
R = 200 W  
L
4
R = 50 W  
L
2
0
2
0
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
2
4
6
8
10  
V , INPUT VOLTAGE (V)  
I
V , INPUT VOLTAGE (V)  
I
Figure 10. Output Voltage VQ vs. Input Voltage VI  
Figure 9. Current Consumption Iq vs. Input  
Voltage VI  
1.6  
5.2  
5.1  
5.0  
4.9  
4.8  
V = 13.5 V  
I
1.5  
1.4  
1.3  
1.2  
V = 13.5 V  
I
I
Q
= 1 mA  
V
SI, High  
V
SI, Low  
4.7  
4.6  
1.1  
1.0  
−40  
0
40  
80  
120  
160  
−40  
0
40  
80  
120  
160  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 11. Sense Threshold VSI vs. Temperature TJ  
Figure 12. Output Voltage VQ vs. Temperature TJ  
www.onsemi.com  
7
NCV4279C  
TYPICAL PERFORMANCE CHARACTERISTICS  
4.0  
3.5  
400  
350  
300  
250  
200  
150  
100  
T = 125°C  
J
V = 13.5 V  
I
3.0  
2.5  
2.0  
1.5  
1.0  
T = 25°C  
J
T = 25°C  
J
V
Q
= 0 V  
50  
0
0.5  
0
0
5
10  
15 20  
25 30 35 40  
45 50  
0
20  
40  
60  
80  
100  
120  
V , INPUT VOLTAGE (V)  
I
I , OUTPUT CURRENT (mA)  
Q
Figure 13. Output Current IQ vs. Input Voltage VI  
Figure 14. Current Consumption Iq vs. Output  
Current IQ  
1.6  
1.4  
3.0  
2.5  
2.0  
1.5  
1.0  
T = 125°C  
V = 13.5 V  
T = 25°C  
J
J
I
1.2  
1.0  
0.8  
0.6  
0.4  
I
= 100 mA  
Q
I
I
= 50 mA  
= 10 mA  
Q
0.5  
0
0.2  
0
Q
0
10  
20  
30  
40  
50  
6
8
10  
12 14  
16  
18  
20 22  
24 26  
V , INPUT VOLTAGE (V)  
I
I , OUTPUT CURRENT (mA)  
Q
Figure 15. Current Consumption Iq vs.  
Output Current IQ  
Figure 16. Quiescent Current Iq vs.  
Input Voltage VI  
250  
200  
150  
100  
50  
100  
10  
1
T = 25°C  
J
Unstable Region  
Stable Region for  
2.2 mF to 10 mF  
I
= 100 mA  
Q
0.1  
0.01  
6
8
10  
12 14  
16 18  
20 22  
24 26  
0
25  
50  
75  
100  
125  
150  
V , INPUT VOLTAGE (V)  
I
I , OUTPUT CURRENT (mA)  
Q
Figure 18. Output Stability, Capacitance ESR  
vs. Output Load Current  
Figure 17. Quiescent Current Iq vs. Input Voltage VI  
www.onsemi.com  
8
NCV4279C  
TYPICAL THERMAL CHARACTERISTICS  
200  
180  
160  
140  
120  
100  
80  
60  
40  
20  
0
0
100  
200  
300  
400  
500  
600  
700  
2
COPPER HEAT−SPREADER AREA (mm )  
SO−8 Std Package NCV4279, 1.0 oz  
SO−8 Std Package NCV4279, 2.0 oz  
SO−14 w/6 Thermal Leads NCV4279, 1.0 oz  
SO−14 w/6 Thermal Leads NCV4279, 2.0 oz  
Figure 19. Junction−to−Ambient Thermal Resistance (qJA) vs. Heat Spreader Area  
1000  
100  
10  
1
0.1  
0.000001  
0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
PULSE TIME (s)  
2
Single Pulse (SO−8 Std Package) PCB = 150 mm , 2.0 oz  
2
Single Pulse (SOIC−14 w/6 TL Package) PCB = 150 mm , 2.0 oz  
Figure 20. R(t) vs. Pulse Time  
www.onsemi.com  
9
NCV4279C  
APPLICATION DESCRIPTION  
OUTPUT REGULATOR  
If the reset adjust option is not needed, the R  
pin  
ADJ  
The output is controlled by a precision trimmed reference.  
The PNP output has drive quiescent current control for  
regulation while the input voltage is low, preventing over  
saturation. Current limit and voltage monitors complement  
the regulator design to give safe operating signals to the  
processor and control circuits.  
should be connected to GND causing the reset threshold to  
go to its default value (typically 4.65 V).  
RESET DELAY (D)  
The reset delay circuit provides a delay (programmable by  
capacitor C ) on the reset output lead RO. The delay lead D  
D
provides charge current I  
(typically 6.5 mA) to the  
D,C  
RESET OUTPUT (RO)  
external delay capacitor C during the following times:  
D
A reset signal, Reset Output, RO, (low voltage) is  
1. During Powerup (once the regulation threshold has  
been exceeded).  
generated as the IC powers up. After the output voltage V  
Q
increases above the reset threshold voltage V , the delay  
2. After a reset event has occurred and the device is  
back in regulation. The delay capacitor is set to  
RT  
timer D is started. When the voltage on the delay timer V  
D
passes V , the reset signal RO goes high. A discharge of  
discharge when the regulation (V , reset  
UD  
RT  
the delay timer V is started when V drops and stays below  
threshold voltage) has been violated. When the  
D
Q
the reset threshold voltage V . When the voltage of the  
delay capacitor discharges to V , the reset signal  
RT  
LD  
delay timer V drops below the lower threshold voltage V  
RO pulls low.  
D
LD  
the reset output voltage V is brought low to reset the  
processor.  
The reset output RO is an open collector NPN transistor,  
controlled by a low voltage detection circuit. The circuit is  
functionally independent of the rest of the IC, thereby  
RO  
SETTING THE DELAY TIME  
The delay time is set by the delay capacitor C and the  
D
charge current I . The time is measured by the delay  
D
capacitor voltage charging from the low level of V  
to  
DSAT  
the higher level V . The time delay follows the equation:  
UD  
guaranteeing that RO is valid for V as low as 1.0 V.  
Q
(eq. 2)  
t
d
+ [C (V  
* V )]ńI  
D, SAT D  
D
UD  
RESET ADJUST (RADJ  
)
Example:  
Using C = 100 nF.  
Use the typical value for V  
Use the typical value for V = 1.8 V.  
Use the typical value for Delay Charge Current I = 6.5 mA.  
The reset threshold V can be decreased from a typical  
RT  
D
value of 4.65 V to as low as 3.5 V by using an external  
voltage divider connected from the Q lead to the pin RADJ,  
as shown in Figure 21. The resistor divider keeps the voltage  
= 0.1 V.  
D,SAT  
UD  
D
above the V  
(typical 1.35 V) for the desired input  
RADJ,TH  
voltages, and overrides the internal threshold detector.  
Adjust the voltage divider according to the following  
relationship:  
(eq. 3)  
t
d
+ [100 nF(1.8 * 0.1 V)]ń6.5 mA + 26.2 ms  
V
RT  
+ V  
@ (R  
) R  
)ńR  
ADJ2 ADJ2  
(eq. 1)  
RADJ, TH  
ADJ1  
V
BAT  
I
Q
V
DD  
R
R
ADJ1  
ADJ2  
C *  
0.1 mF  
I
C **  
10 mF  
(2.2 mF)  
Q
R
ADJ  
NCV4279C  
R
R
SI1  
D
R
RO  
SI  
R
SO  
SI2  
C
D
RO  
I/O  
SO  
I/O  
GND  
*C required if regulator is located far from the power supply filter.  
I
** C − minimum cap required for stability is 2.2 mF while higher over/under−shoots may be ex-  
Q
pected. Cap must operate at required temperature range.  
Figure 21. Application Diagram  
www.onsemi.com  
10  
 
NCV4279C  
SENSE INPUT (SI) / SENSE OUTPUT (SO) VOLTAGE  
MONITOR  
solution, but, if the circuit operates at low temperatures  
(−25°C to −40°C), both the value and ESR of the capacitor  
will vary considerably. The capacitor manufacturer’s data  
sheet usually provides this information.  
An on−chip comparator is available to provide early  
warning to the microprocessor of a possible reset signal. The  
output is from an open collector driver. The reset signal  
typically turns the microprocessor off instantaneously. This  
can cause unpredictable results with the microprocessor.  
The signal received from the SO pin will allow the  
microprocessor time to complete its present task before  
shutting down. This function is performed by a comparator  
referenced to the band gap voltage. The actual trip point can  
be programmed externally using a resistor divider to the  
The 10 mF output capacitor C shown in Figure 21 should  
Q
work for most applications; however, it is not necessarily the  
optimized solution. Stability is guaranteed at C is min  
Q
2.2 mF and max ESR is 2.5 W. There is no min ESR limit  
which was proved with MURATA’s ceramic caps  
GRM31MR71A225KA01 (2.2 mF, 10 V, X7R, 1206) and  
GRM31CR71A106KA01 (10 mF, 10 V, X7R, 1206) directly  
soldered between output and ground pins.  
input monitor SI (Figure 21). The values for R and R  
SI1  
SI2  
CALCULATING POWER DISSIPATION IN A SINGLE  
OUTPUT LINEAR REGULATOR  
are selected for a typical threshold of 1.20 V on the SI Pin.  
SIGNAL OUTPUT  
Figure 22 shows the SO Monitor timing waveforms as a  
result of the circuit depicted in Figure 21. As the output  
The maximum power dissipation for a single output  
regulator (Figure 21) is:  
P
+ [V  
I(max)  
* V  
]I  
) V  
I
(eq. 4)  
D(max)  
Q(min) Q(max)  
I(max) q  
voltage (V ) falls, the monitor threshold (V  
), is  
SILOW  
Q
where:  
crossed. This causes the voltage on the SO output to go low  
sending a warning signal to the microprocessor that a reset  
V
I(max)  
is the maximum input voltage,  
V
Q(min)  
is the minimum output voltage,  
signal may occur in a short period of time. T  
is the  
WARNING  
I
is the maximum output current for the application,  
time the microprocessor has to complete the function it is  
currently working on and get ready for the reset  
shutdown signal. When the voltage on the SO goes low and  
the RO stays high the current consumption is typically  
560 mA at 1 mA load current.  
Q(max)  
and I is the quiescent current the regulator consumes at  
I
q
.
Q(max)  
Once the value of P  
is known, the maximum  
D(max)  
permissible value of R  
can be calculated:  
qJA  
= (150°C – T ) / P  
D
R
(eq. 5)  
q
JA  
A
V
Q
The value of R  
can then be compared with those in the  
qJA  
package section of the data sheet. Those packages with R ’s  
qJA  
less than the calculated value in equation 2 will keep the die  
temperature below 150°C. In some cases, none of the packages  
will be sufficient to dissipate the heat generated by the IC, and  
an external heatsink will be required. The current flow and  
voltages are shown in the Measurement Circuit Diagram.  
SI  
V
SI,Low  
V
RO  
HEATSINKS  
A heatsink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
SO  
Each material in the heat flow path between the IC and the  
outside environment will have a thermal resistance. Like  
series electrical resistances, these resistances are summed to  
T
WARNING  
determine the value of R  
:
qJA  
Figure 22. SO Warning Waveform Time Diagram  
R
+ R  
) R  
) R  
qCS qSA  
(eq. 6)  
qJA  
qJC  
STABILITY CONSIDERATIONS  
where:  
The input capacitor C in Figure 21 is necessary for  
I
R
qJC  
R
qCS  
R
qSA  
= the junction−to−case thermal resistance,  
= the case−to−heat sink thermal resistance, and  
= the heat sink−to−ambient thermal resistance.  
compensating input line reactance. Possible oscillations  
caused by input inductance and input capacitance can be  
damped by using a resistor of approximately 1.0 W in series  
R
qJC  
appears in the package section of the data sheet. Like  
with C  
I.  
R
qJA  
, it too is a function of package type. R  
and R  
are  
qCS  
qSA  
The output or compensation capacitor helps determine  
three main characteristics of a linear regulator: startup delay,  
load transient response and loop stability.  
The capacitor value and type should be based on cost,  
availability, size and temperature constraints. The  
aluminum electrolytic capacitor is the least expensive  
functions of the package type, heatsink and the interface  
between them. These values appear in data sheets of  
heatsink manufacturers. Thermal, mounting, and  
heatsinking considerations are discussed in the  
ON Semiconductor application note AN1040/D, available  
on the ON Semiconductor website.  
www.onsemi.com  
11  
 
NCV4279C  
ORDERING INFORMATION  
Device  
Output Voltage  
Package  
Shipping  
NCV4279C50D1R2G  
SO−8  
(Pb−Free)  
2500 / Tape & Reel  
2500 / Tape & Reel  
5.0 V  
NCV4279CD250R2G  
SO−14  
(Pb−Free)  
†For information on tape and reel specifications,including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
12  
NCV4279C  
PACKAGE DIMENSIONS  
SOIC−8 NB  
CASE 751−07  
ISSUE AK  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
−X−  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW  
STANDARD IS 751−07.  
S
M
M
B
0.25 (0.010)  
Y
1
K
−Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
0.050 BSC  
−Z−  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
0.10 (0.004)  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
13  
NCV4279C  
PACKAGE DIMENSIONS  
SOIC−14 NB  
CASE 751A−03  
ISSUE K  
NOTES:  
D
A
B
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE PROTRUSION  
SHALL BE 0.13 TOTAL IN EXCESS OF AT  
MAXIMUM MATERIAL CONDITION.  
4. DIMENSIONS D AND E DO NOT INCLUDE  
MOLD PROTRUSIONS.  
14  
8
7
A3  
E
H
5. MAXIMUM MOLD PROTRUSION 0.15 PER  
SIDE.  
L
DETAIL A  
1
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
13X b  
M
M
B
0.25  
A
A1  
A3  
b
D
E
1.35  
0.10  
0.19  
0.35  
8.55  
3.80  
1.75 0.054 0.068  
0.25 0.004 0.010  
0.25 0.008 0.010  
0.49 0.014 0.019  
8.75 0.337 0.344  
4.00 0.150 0.157  
M
S
S
0.25  
C A  
B
DETAIL A  
h
A
X 45  
_
e
H
h
L
1.27 BSC  
0.050 BSC  
6.20 0.228 0.244  
0.50 0.010 0.019  
1.25 0.016 0.049  
5.80  
0.25  
0.40  
0
M
A1  
e
M
7
0
7
_
_
_
_
SEATING  
PLANE  
C
SOLDERING FOOTPRINT*  
6.50  
14X  
1.18  
1
1.27  
PITCH  
14X  
0.58  
DIMENSIONS: MILLIMETERS  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and the  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.  
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed  
at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation  
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets  
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each  
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,  
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which  
the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable  
copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCV4279C/D  

相关型号:

NCV4279C50D1R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET and Sense Output
ONSEMI

NCV4279CD1G

5V FIXED POSITIVE LDO REGULATOR, 0.6V DROPOUT, PDSO8, SO-8
ONSEMI

NCV4279CD2

5V FIXED POSITIVE LDO REGULATOR, 0.6V DROPOUT, PDSO14, SO-14
ONSEMI

NCV4279CD250R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET and Sense Output
ONSEMI

NCV4279CD2G

暂无描述
ONSEMI

NCV4279CD2R2

5V FIXED POSITIVE LDO REGULATOR, 0.6V DROPOUT, PDSO14, SO-14
ONSEMI

NCV4279CD2R2G

5V FIXED POSITIVE LDO REGULATOR, 0.6V DROPOUT, PDSO14, SO-14
ONSEMI

NCV4279D1

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4279D1G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4279D1R2

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4279D1R2G

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI

NCV4279D2

5.0 V Micropower 150 mA LDO Linear Regulator with DELAY, Adjustable RESET, and Sense Output
ONSEMI