NCV4299D1 [ONSEMI]

150 mA Low−Dropout Voltage Regulator; 150毫安低压差稳压器
NCV4299D1
型号: NCV4299D1
厂家: ONSEMI    ONSEMI
描述:

150 mA Low−Dropout Voltage Regulator
150毫安低压差稳压器

线性稳压器IC 调节器 电源电路 光电二极管 输出元件
文件: 总23页 (文件大小:160K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV4299  
150 mA Low−Dropout  
Voltage Regulator  
The NCV4299 is a family of precision micropower voltage regulators  
with an output current capability of 150 mA. It is available in 5.0 V or  
3.3 V output voltage, and is housed in an 8−lead SON and in a 14−lead  
SON (fused) package.  
The output voltage is accurate within "2% with a maximum  
dropout voltage of 0.5 V at 100 mA. Low Quiescent current is a  
feature drawing only 90 mA with a 1 mA load. This part is ideal for any  
and all battery operated microprocessor equipment.  
The device features microprocessor interfaces including an  
adjustable reset output and adjustable system monitor to provide  
shutdown early warning. An inhibit function is available on the  
14−lead part. With inhibit active, the regulator turns off and the device  
consumes less than 1.0 mA of quiescent current.  
http://onsemi.com  
MARKING  
DIAGRAMS  
8
SO−8  
D SUFFIX  
CASE 751  
4299  
ALYW  
G
8
1
1
14  
The part can withstand load dump transients making it suitable for  
use in automotive environments.  
NCV4299G  
AWLYWW  
Features  
SO−14  
1
5.0 V, 3.3 V "2%, 150 mA  
14  
D SUFFIX  
CASE 751A  
14  
Extremely Low Current Consumption  
90 mA (Typ) in the ON Mode  
t1.0 mA in the Off Mode  
Early Warning  
1
V4299xxG  
AWLYWW  
1
Reset Output Low Down to V = 1.0 V  
Q
xx  
= 33 (3.3 V Version)  
= 50 (5.0 V Version)  
= Assembly Location  
L, WL = Wafer Lot  
= Year  
W, WW = Work Week  
= Pb−Free Package  
= Pb−Free Package  
(Note: Microdot may be in either location)  
Adjustable Reset Threshold  
Wide Temperature Range  
A
Fault Protection  
Y
60 V Peak Transient Voltage  
−40 V Reverse Voltage  
Short Circuit  
G
G
Thermal Overload  
Internally Fused Leads in the SO−14 Package  
Inhibit Function with mA Current Consumption in the Off Mode  
NCV Prefix for Automotive and Other Applications Requiring Site  
and Change Control  
PIN CONNECTIONS  
1
8
I
Q
SI  
RADJ  
D
SO  
Pb−Free Packages are Available  
RO  
GND  
1
14  
RADJ  
D
SI  
I
GND  
GND  
GND  
INH  
RO  
GND  
GND  
GND  
Q
SO  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 21 of this data sheet.  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
April, 2006 − Rev. 16  
NCV4299/D  
NCV4299  
Q
I
Current Limit and  
Saturation Sense  
Bandgap  
Reference  
+
R
SO  
R
RO  
SO  
RO  
1.36 V  
+
SI  
8 mA  
+
+
+
RADJ  
1.85 V  
D
GND  
Figure 1. SO−8 Simplified Block Diagram  
PIN FUNCTION DESCRIPTION − SO−8 PACKAGE  
Pin  
1
Symbol  
Description  
Input. Battery Supply Input Voltage. Bypass directly to GND with ceramic capacitor.  
I
2
SI  
Sense Input. Can provide an early warning signal of an impending reset condition when used with SO.  
Connect to Q if not used.  
3
4
5
6
RADJ  
D
Reset Adjust. Use resistor divider to Q to adjust reset threshold lower. Connect to GND if not used.  
Reset Delay. Connect external capacitor to ground to set delay time.  
Ground.  
GND  
RO  
Reset Output. NPN collector output with internal 20 kW pullup to Q. Notifies user of out of regulation condi-  
tion. Leave open if not used.  
7
8
SO  
Q
Sense Output. NPN collector output with internal 20 kW pullup to Q. Can be used to provide early warning  
of an impending reset condition. Leave open if not used.  
5.0 V, 3.3 V, "2%, 150 mA output. Use 22 mF, ESR t 5.0 W to ground.  
http://onsemi.com  
2
NCV4299  
Q
I
Current Limit and  
Saturation Sense  
Bandgap  
Reference  
+
R
SO  
R
RO  
INH  
SO  
RO  
1.36 V  
+
SI  
8 mA  
+
+
+
RADJ  
1.85 V  
D
GND  
Figure 2. SO−14 Simplified Block Diagram  
PIN FUNCTION DESCRIPTION − SO−14 PACKAGE  
Pin  
1
Symbol  
RADJ  
D
Description  
Reset Adjust. Use resistor divider to Q to adjust reset threshold lower. Connect to GND if not used.  
2
Reset Delay. Connect external capacitor to ground to set delay time.  
3
GND  
GND  
GND  
INH  
Ground.  
4
Ground.  
5
Ground.  
6
Inhibit. Connect to I if not needed. A high turns the regulator on.  
7
RO  
Reset Output. NPN collector output with internal 20 kW pullup to Q. Notifies user of out of regulation condi-  
tion.  
8
SO  
Sense Output. NPN collector output with internal 20 kW pullup to Q. Can be used to provide early warning  
of an impending reset condition.  
9
Q
GND  
GND  
GND  
I
5.0 V, 3.3 V, "2%, 150 mA output. Use 22 mF, ESR t 5.0 W to ground.  
10  
11  
12  
13  
14  
Ground.  
Ground.  
Ground.  
Input. Battery Supply Input Voltage.  
SI  
Sense Input. Can provide an early warning signal of an impending reset condition when used with SO.  
http://onsemi.com  
3
NCV4299  
MAXIMUM RATINGS  
Rating  
Symbol  
Min  
−40  
Max  
45  
60  
45  
45  
1.0  
7.0  
10  
7.0  
7.0  
7.0  
16  
Unit  
V
Input Voltage to Regulator (DC)  
Input Peak Transient Voltage to Regulator wrt GND  
Inhibit (INH) (Note 1)  
V
I
V
V
−40  
−0.3  
−1.0  
−0.3  
−10  
−0.3  
−0.3  
−0.3  
−0.3  
−5.0  
2.0  
V
INH  
Sense Input (SI)  
V
V
SI  
Sense Input (SI)  
I
mA  
V
SI  
Reset Threshold (RADJ)  
Reset Threshold (RADJ)  
Reset Delay (D)  
V
RE  
RE  
I
mA  
V
V
D
Reset Output (RO)  
V
V
RO  
SO  
Sense Output (SO)  
V
V
Output (Q)  
V
V
Q
Output (Q)  
I
mA  
kV  
V
Q
ESD Capability, Human Body Model (Note 5)  
ESD Capability, Machine Model (Note 5)  
ESD Capability, Charged Device Model (Note 5)  
Junction Temperature  
ESD  
HB  
MM  
CDM  
J
ESD  
200  
1.0  
ESD  
T
kV  
°C  
°C  
150  
150  
Storage Temperature  
T
stg  
−50  
OPERATING RANGE  
Input Voltage  
5.0 V Version  
3.3 V Version  
V
T
V
I
4.5  
4.4  
45  
45  
Junction Temperature  
−40  
150  
°C  
J
LEAD TEMPERATURE SOLDERING REFLOW (Note 3)  
Lead Temperature Soldering (Note 5)  
Reflow (SMD styles only), leaded  
60−150 sec above 183, 30 sec max at peak  
T
T
°C  
°C  
SLD  
SLD  
240 Pk  
265 Pk  
Reflow (SMD styles only), lead free  
60s−150 sec above 217, 40 sec max at peak  
Moisture Sensitivity Level  
MSL  
Level 1  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. 14 pin package only.  
2. Preliminary numbers.  
3. Per IPC / JEDEC J−STD−020C.  
4. Measured to Pin 4. All ground pins connected to ground.  
5. This device series incorporates ESD protection and is tested by the following methods:  
ESD HBM tested per AEC−Q100−002 (EIA/JESD22−A114)  
ESD MM tested per AEC−Q100−003 (EIA/JESD22−A115)  
ESD CDM tested per EIA/JES D22/C101, Field Induced Charge Model.  
http://onsemi.com  
4
 
NCV4299  
THERMAL CHARACTERISTICS  
Characteristic  
Test Conditions (Typical Value)  
Unit  
Note 6  
Note 7  
Note 8  
SO−8  
°C/W  
Junction−to−Tab (y , q  
)
54  
52  
48  
JLx JLx  
172  
144  
118  
Junction−to−Ambient (R , q  
)
)
θ
JA JA  
SO−14  
°C/W  
Junction−to−Tab (y , q  
)
19  
112  
21  
89  
20  
67  
JLx JLx  
Junction−to−Ambient (R , q  
θ
JA JA  
6. 2 oz Copper, 50 mm sq Copper area, 1.5 mm thick FR4  
7. 2 oz Copper, 150 mm sq Copper area, 1.5 mm thick FR4  
8. 2 oz Copper, 500 mm sq Copper area, 1.5 mm thick FR4  
ELECTRICAL CHARACTERISTICS (−40°C < T < 150°C; V = 13.5 V unless otherwise noted.)  
J
I
Characteristic  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Output Q  
Output Voltage (5.0 V Version)  
Output Voltage (3.3 V Version)  
Current Limit  
V
V
1.0 mA < I < 150 mA, 6.0 V < V < 16 V  
4.9  
3.23  
250  
5.0  
3.3  
400  
86  
5.1  
3.37  
500  
100  
105  
500  
2.0  
1.0  
0.50  
30  
V
Q
Q
Q
I
1.0 mA < I < 150 mA, 5.5 V < V < 16 V  
V
Q
I
I
mA  
mA  
mA  
mA  
mA  
mA  
V
Q
Quiescent Current (I = I – I )  
I
INH ON, I < 1.0 mA, T = 25°C  
Q J  
q
I
Q
q
q
q
q
q
Quiescent Current (I = I – I )  
I
I
I
I
INH ON, I < 1.0 mA  
90  
q
I
Q
Q
Quiescent Current (I = I – I )  
INH ON, I = 10 mA  
170  
0.7  
q
I
Q
Q
Quiescent Current (I = I – I )  
INH ON, I = 50 mA  
q
I
Q
Q
Quiescent Current (I = I – I )  
INH = 0 V, T = 25°C  
q
I
Q
J
Dropout Voltage (Note 9)  
Load Regulation  
V
I
I
= 100 mA  
0.22  
5.0  
10  
dr  
Q
Q
DV  
DV  
= 1.0 mA to 100 mA  
mV  
mV  
dB  
Q
Q
Line Regulation  
V = 6.0 V to 28 V, I = 1.0 mA  
25  
I
Q
Power Supply Ripple Rejection  
Inhibit (INH) (14 Pin Package Only)  
Inhibit Off Voltage  
P
ƒr = 100 Hz, Vr = 1.0 Vpp, I = 100 mA  
66  
SRR  
Q
V
V
< 1.0 V  
0.8  
V
V
INHOFF  
Q
Inhibit On Voltage  
5.0 V Version  
V
INHON  
V
V
> 4.85 V  
> 3.2 V  
3.5  
3.5  
Q
Q
3.3 V Version  
Input Current  
I
INH ON  
3.0  
0.5  
10  
mA  
INHON  
I
INH = 0 V  
2.0  
INHOFF  
Reset (RO)  
Switching Threshold  
5.0 V Version  
V
V
rt  
4.50  
2.96  
4.60  
3.06  
4.80  
3.16  
3.3 V Version  
Output Resistance  
R
V
10  
20  
40  
kW  
RO  
Reset Output Low Voltage  
5.0 V Version  
V
RO  
Q < 4.5 V, Internal R , I = −1.0 mA  
0.17  
0.17  
0.40  
0.40  
RO RO  
3.3 V Version  
Q < 2.96 V, Internal R , I = −1.0 mA  
RO RO  
Allowable External Reset Pullup Resistor  
Delay Upper Threshold  
V
External Resistor to Q  
5.6  
1.5  
0.4  
kW  
V
ROext  
V
1.85  
0.5  
2.2  
0.6  
UD  
Delay Lower Threshold  
V
V
LD  
9. Measured when the output voltage V has dropped 100 mV from the nominal value obtained at V = 13.5 V.  
Q
I
http://onsemi.com  
5
 
NCV4299  
ELECTRICAL CHARACTERISTICS (continued) (−40°C < T < 150°C; V = 13.5 V unless otherwise noted.)  
J
I
Characteristic  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Reset (RO)  
Delay Output Low Voltage  
5.0 V Version  
V
V
D
Q < 4.5 V, Internal R  
Q < 2.96 V, Internal R  
0.1  
0.1  
RO  
RO  
3.3 V Version  
0.017  
Delay Charge Current  
5.0 V Version  
I
mA  
D
Q < 4.5 V, Internal R , V = 1.0 V  
4.0  
7.1  
12  
RO  
D
3.3 V Version  
Q < 2.96 V, Internal R , V = 1.0 V  
RO D  
Power On Reset Delay Time  
Reset Reaction Time  
t
C
C
= 100 nF  
= 100 nF  
17  
28  
35  
ms  
ms  
V
d
D
t
0.5  
2.2  
4.0  
rr  
D
Reset Adjust Switching Threshold  
5.0 V Version  
V
RADJ,TH  
Q > 3.5 V  
Q > 2.3 V  
1.26  
1.36  
1.44  
3.3 V Version  
Input Voltage Sense (SI and SO)  
Sense Input Threshold High  
Sense Input Threshold Low  
Sense Input Hysteresis  
V
1.34  
1.26  
50  
1.45  
1.36  
90  
1.54  
1.44  
130  
V
V
SI,HIGH  
V
SI,LOW  
(Sense Threshold High) −  
(Sense Threshold Low)  
mV  
Sense Input Current  
I
R
V
−1.0  
10  
0.1  
20  
0.1  
1.0  
40  
0.4  
mA  
kW  
V
SI  
Sense Output Resistance  
Sense Output Low Voltage  
SO  
SO  
V
< 1.20 V, V > 4.2 V, I = 0 mA  
SI  
I
SO  
Allowable External Sense Out  
Pullup Resistor  
R
SOext  
5.6  
kW  
SI High to SO High Reaction Time  
SI Low to SO Low Reaction Time  
t
t
4.4  
3.8  
8.0  
5.0  
ms  
ms  
pdSOLH  
pdSOHL  
I
I
Q
I
V
V
I
Q
Q
I
I
INH  
V
INH  
D
INH  
(14−Pin Part Only)  
I
D
V
RO  
SO  
RO  
C
D
I
D
100 nF  
I
RADJ  
V
RADJ  
SI  
RADJ  
V
I
SO  
SI  
V
SI  
GND  
I
q
Figure 3. Measurement Circuit  
http://onsemi.com  
6
NCV4299  
TYPICAL PERFORMANCE CHARACTERISTICS − 5.0 V OPTION  
5.1  
6
V = 13.5 V  
I
R = 1 kW  
L
5
4
3
5.0  
4.9  
2
1
0
R = 50 W  
L
−40 −20  
0
20 40  
60 80 100 120 140 160  
0
5
10  
15  
TEMPERATURE C  
INPUT VOLTAGE, VI VOLTS  
Figure 5. Output Voltage VQ vs. Input Voltage  
Figure 4. Output Voltage VQ vs. Temperature TJ  
8.0  
500  
V = 13.5 V  
I
V
= 1 V  
D
125°C  
400  
R = 5 kW  
L
25°C  
300  
200  
100  
0
7.0  
6.0  
−40°C  
−40 −20  
0
20 40  
60 80 100 120 140 160  
0
50  
100  
150  
TEMPERATURE C  
OUTPUT CURRENT IQ, mA  
Figure 6. Charge Current ld, c vs. Temperature TJ  
Figure 7. Drop Voltage Vdr vs. Output Current IQ  
3.2  
1.5  
2.8  
2.4  
1.4  
1.3  
V
UD  
2.0  
1.6  
1.2  
1.2  
1.1  
1.0  
0.9  
0.8  
0.4  
0.0  
V
V = 13.5V  
I
LD,  
−40  
0
40  
80  
120  
160  
−40  
0
40  
80  
120  
160  
TEMPERATURE, C  
TEMPERATURE TJ, C  
Figure 8. Switching Voltage VUD and VLD vs.  
Temperature TJ  
Figure 9. Reset Adjust Switching Threshold  
VRADJTH vs. Temperature TJ  
http://onsemi.com  
7
NCV4299  
1.6  
1.5  
1.4  
350  
300  
VSIU  
VSIL  
T = 25°C  
J
250  
200  
T = 125°C  
J
1.3  
1.2  
150  
100  
50  
1.1  
1.0  
V
= 0 V  
Q
0
−40  
0
40  
80  
120  
160  
0
10  
20  
30  
40  
TEMPERATURE, C  
INPUT VOLTAGE, VI, V  
Figure 11. Output Current Limit IQ vs. Input  
Voltage, VI  
Figure 10. Sense Threshold VSI vs. Temperature TJ  
2.0  
1.5  
1.0  
8.0  
6.0  
4.0  
0.5  
0.0  
2.0  
0.0  
0
10  
20  
30  
40  
50  
60  
0
40  
80  
120  
160  
OUTPUT CURRENT IQ, mA  
OUTPUT CURRENT IQ, mA  
Figure 12. Current Consumption Iq vs. Output  
Current IQ  
Figure 13. Current Consumption Iq vs. Output  
Current IQ  
16.0  
14.0  
40  
30  
V = 13.5V  
R = 5 kW  
L
I
12.0  
10.0  
R 200W R 100W  
R 50W  
L
R 33W  
L
L
L
8.0  
6.0  
20  
10  
4.0  
2.0  
0.0  
−40  
0
40  
80  
120  
160  
0
10  
20  
INPUT VOLTAGE VI, V  
30  
40  
TEMPERATURE C  
Figure 14. RRO, RSO Resistance vs. Temperature  
Figure 15. Current Consumption Iq vs. Input  
Voltage VI  
http://onsemi.com  
8
NCV4299  
90  
85  
80  
75  
70  
65  
60  
6
5
4
3
2
1
0
IQ 100mA  
IQ 100 mA  
IQ 50mA  
IQ 10mA  
6
8
10  
12 14 16  
18 20 22  
24 26  
6
8
10  
12 14 16  
18 20 22  
24 26  
INPUT VOLTAGE VI, V  
INPUT VOLTAGE VI, V  
Figure 17. Current Consumption Iq vs. Input  
Voltage VI  
Figure 16. Current Consumption Iq vs. Input  
Voltage VI  
45  
40  
V = 13.5V  
T = 25°C  
A
I
Unstable  
Region  
35  
30  
25  
20  
1 mF to 100 mF  
0.1 mF  
15  
10  
5
Stable  
Region  
Unstable Region  
0.1 mF Only  
0
0
20  
40  
60  
80  
100 120  
140 160  
OUTPUT CURRENT, mA  
Figure 18. Stability vs. Output Capacitor ESR  
http://onsemi.com  
9
NCV4299  
TYPICAL PERFORMANCE CHARACTERISTICS − 3.3 V OPTION  
1000  
100  
10  
12  
10  
V = 13.5 V  
I
8
I
= 1 mA  
Q
T = 25°C  
J
6
4
T = 150°C  
J
T = −40°C  
J
1
2
0
0.1  
−40 −20  
0
20 40 60 80 100 120 140  
0
20 40  
60  
80 100 120 140 160 180  
T , JUNCTION TEMPERATURE (°C)  
J
I , OUTPUT CURRENT (mA)  
Q
Figure 19. Current Consumption vs. Junction  
Temperature  
Figure 20. Current Consumption vs. Output  
Current  
5
4
3.5  
3.4  
T = 25°C  
J
V = 13.5V  
R = 1 kW  
L
I
3.3  
3.2  
3.1  
3
2
R = 33 W  
L
R = 50 W  
L
1
0
3.0  
2.9  
R = 100 W  
L
200  
50  
0
10  
20  
30  
40  
−40  
0
40  
80  
120  
160  
V , INPUT VOLTAGE (V)  
I
T , JUNCTION TEMPERATURE (°C)  
J
Figure 21. Current Consumption vs. Input  
Voltage  
Figure 22. Output Voltage vs. Junction  
Temperature  
0
−50  
350  
V = 0 V  
I
300  
250  
200  
T = 25°C  
J
T = 125°C  
J
T = 125°C  
J
−100  
−150  
−200  
150  
100  
T = 25°C  
J
T = −40°C  
J
−250  
−300  
50  
0
V
= 0 V  
Q
0
10  
20  
30  
40  
50  
0
25  
V , INPUT VOLTAGE (V)  
50  
V , OUTPUT VOLTAGE (V)  
Q
I
Figure 23. Reverse Output Current vs. Output  
Voltage  
Figure 24. Maximum Output Current vs. Input  
Voltage  
http://onsemi.com  
10  
NCV4299  
6
5
4
3
2
1000  
100  
10  
T = 25°C  
J
Max ESR for V = 6 V  
in  
R = 50 W  
L
Max ESR for V = 25 V  
in  
1
Stable Region  
0.1  
1
0
C
Q
= 22 mF  
T = 150°C  
J
0.01  
5
0
0
0
1
2
3
4
0
10  
40  
70  
100  
130  
V , INPUT VOLTAGE (V)  
I , OUTPUT CURRENT (mA)  
I
Q
Figure 25. Output Voltage at Input Voltage  
Extremes  
Figure 26. 3.3 V Output Stability with Output  
Capacitor ESR  
1000  
100  
10  
0.02  
0.01  
0
INH = OFF  
T = −40°C  
J
Max ESR for V = 6 V  
in  
T = 25°C  
J
Max ESR for V = 25 V  
T = 125°C  
J
in  
−0.01  
−0.02  
−0.03  
1
Stable Region  
0.1  
−0.04  
−0.05  
C
= 22 mF  
T = 150°C  
J
Q
T = −40°C  
J
0.01  
10  
40  
70  
100  
130  
0
10  
20  
30  
40  
I , OUTPUT CURRENT (mA)  
V , INPUT VOLTAGE (V)  
I
Q
Figure 27. 3.3 V Output Stability with Output  
Capacitor ESR  
Figure 28. Inhibit Input Current at Input  
Voltage Extremes  
6
5
4
3
2
3.25  
3.20  
V = 13.5 V  
I
T = −40°C  
J
T = 25°C  
J
3.15  
3.10  
3.05  
T = 125°C  
J
Reset  
1
0
3.00  
2.95  
10  
V
20  
30  
40  
−40 −20  
0
20 40 60 80 100 120 140  
, INHIBIT INPUT VOLTAGE (V)  
T , JUNCTION TEMPERATURE (°C)  
INH  
J
Figure 29. Inhibit Input Current at Inhibit Input  
Voltage Extremes  
Figure 30. Reset Trigger Threshold vs.  
Junction Temperature  
http://onsemi.com  
11  
NCV4299  
35  
30  
25  
20  
1.50  
1.45  
1.40  
V = 13.5 V  
I
V = 13.5 V  
I
C
D
= 100 nF  
V
V
SI High  
1.35  
1.30  
SI Low  
15  
10  
−40 −20  
0
20 40 60 80 100 120 140  
−40 −20  
0
20 40 60 80 100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 31. Reset Delay Time vs. Junction  
Temperature  
Figure 32. Sense Threshold vs. Junction  
Temperature  
8
7
6
5
4
3
2
1.15  
1.14  
1.13  
T = 125°C  
J
1.12  
1.11  
1.10  
1.09  
1.08  
1.07  
T = −40°C  
J
T = 25°C  
J
V = 13.5 V  
I
1
0
1.06  
1.05  
V
= V  
− V  
Imin Q  
V
= 1 V  
DR  
D
−40 −20  
0
20  
40 60  
80 100 120 140  
0
40  
80  
120  
160  
T , JUNCTION TEMPERATURE (°C)  
J
I , OUTPUT CURRENT (mA)  
Q
Figure 33. Delay Capacitor Charge Current vs.  
Junction Temperature  
Figure 34. Drop Voltage vs. Output Current  
3.0  
2.5  
2.0  
1.5  
1.4  
1.3  
1.2  
1.1  
V = 13.5 V  
I
V
UD  
1.5  
1.0  
V
LD  
0.5  
0
1.0  
0.9  
−40  
0
40  
80  
120  
160  
−40  
0
40  
80  
120  
160  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 35. Switching Voltage VUD and VLD vs.  
Junction Temperature  
Figure 36. Reset Adjust Switching Threshold  
vs. Junction Temperature  
http://onsemi.com  
12  
NCV4299  
1.5  
1.0  
40  
35  
30  
25  
20  
T = 25°C  
J
0.5  
0
I
= 10 mA  
I
= 1 mA  
Q
Q
15  
10  
0
10  
20  
30  
40  
−40  
0
40  
80  
120  
160  
V , INPUT VOLTAGE (V)  
I
T , JUNCTION TEMPERATURE (°C)  
J
Figure 37. Current Consumption vs. Input  
Voltage  
Figure 38. RRO, RSO Resistance vs. Junction  
Temperature  
http://onsemi.com  
13  
NCV4299  
APPLICATION DESCRIPTION  
NCV4299  
Other features of the regulator include an undervoltage  
reset function and a sense circuit. The reset function has an  
adjustable time delay and an adjustable threshold level. The  
sense circuit trip level is adjustable and can be used as an  
early warning signal to the controller. An inhibit function  
that turns off the regulator and reduces the current  
consumption to less than 1.0 mA is a feature available in the  
14 pin package.  
The NCV4299 is a family of precision micropower  
voltage regulators with an output current capability of  
150 mA at 5.0 V and 3.3 V.  
The output voltage is accurate within "2% with a  
maximum dropout voltage of 0.5 V at 100 mA. Low  
quiescent current is a feature drawing only 90 mA with a  
100 mA load. This part is ideal for any and all battery  
operated microprocessor equipment.  
Output Regulator  
Microprocessor control logic includes an active reset  
output RO (with delay), and a SI/SO monitor which can be  
used to provide an early warning signal to the  
microprocessor of a potential impending reset signal. The  
use of the SI/SO monitor allows the microprocessor to finish  
any signal processing before the reset shuts the  
microprocessor down. Internal output resistors on the RO  
and SO pins pulling up to the output pin Q reduce external  
component count. An inhibit function is available on the  
14−lead part. With inhibit active, the regulator turns off and  
the device consumes less that 1.0 mA of quiescent current.  
The active reset circuit operates correctly at an output  
voltage as low as 1.0 V. The reset function is activated  
during the powerup sequence or during normal operation if  
the output voltage drops outside the regulation limits.  
The reset threshold voltage can be decreased by the  
connection of an external resistor divider to the RADJ lead.  
The regulator is protected against reverse battery, short  
circuit, and thermal overload conditions. The device can  
withstand load dump transients making it suitable for use in  
automotive environments.  
The output is controlled by a precision trimmed reference.  
The PNP output has saturation control for regulation while  
the input voltage is low, preventing oversaturation. Current  
limit and voltage monitors complement the regulator design  
to give safe operating signals to the processor and control  
circuits.  
Stability Considerations  
The input capacitor C is necessary for compensating  
I
input line reactance. Possible oscillations caused by input  
inductance and input capacitance can be damped by using a  
resistor of approximately 1.0 W in series with C .  
I
The output or compensation capacitor helps determine  
three main characteristics of a linear regulator: startup delay,  
load transient response and loop stability.  
The capacitor value and type should be based on cost,  
availability, size and temperature constraints. A tantalum or  
aluminum electrolytic capacitor is best, since a film or  
ceramic capacitor with almost zero ESR can cause  
instability. The aluminum electrolytic capacitor is the least  
expensive solution, but, if the circuit operates at low  
temperatures (−25°C to −40°C), both the value and ESR of  
the capacitor will vary considerably. The capacitor  
manufacturer’s data sheet usually provides this information.  
NCV4299 Circuit Description  
The low dropout regulator in the NCV4299 uses a PNP  
pass transistor to give the lowest possible dropout voltage  
capability. The current is internally monitored to prevent  
oversaturation of the device and to limit current during over  
current conditions. Additional circuitry is provided to  
protect the device during overtemperature operation.  
The regulator provides an output regulated to 2%.  
The value for the output capacitor C shown in Figures 39  
Q
and 40 should work for most applications, however, it is not  
necessarily the optimized solution. Stability is guaranteed at  
values C w 22 mF and an ESR v 5.0 W within the  
Q
operating temperature range. Actual limits are shown in a  
graph in the typical performance characteristics section.  
http://onsemi.com  
14  
NCV4299  
V
I
Q
V
DD  
BAT  
C *  
I
R
R
C **  
RADJ1  
Q
0.1 mF  
22 mF  
RADJ  
RADJ2  
D
R
S11  
C
D
SI  
R
S12  
I/O  
SO  
RO  
GND  
I/O  
*C required if regulator is located far from the power supply filter.  
I
**C required for stability. Cap must operate at minimum temperature expected.  
Q
Figure 39. Test and Application Circuit Showing all Compensation and Sense  
Elements for the 8 Pin Package Part  
V
I
Q
V
DD  
BAT  
C *  
I
R
R
C **  
RADJ1  
Q
0.1 mF  
22 mF  
RADJ  
RADJ2  
D
R
S11  
C
D
SI  
R
S12  
INH  
INH  
SO  
I/O  
RO  
GND  
I/O  
*C required if regulator is located far from the power supply filter.  
I
**C required for stability. Cap must operate at minimum temperature expected.  
Q
Figure 40. Test and Application Circuit Showing all Compensation and Sense  
Elements for the 14 Pin Package Part with Inhibit Function  
http://onsemi.com  
15  
 
NCV4299  
Reset Output (RO)  
the delay timer (V ) drops below the lower threshold  
D
A reset signal, Reset Output (RO, low voltage) is  
voltage V , the reset output voltage V is brought low to  
LD  
RO  
generated as the IC powers up. After the output voltage V  
reset the processor.  
Q
increases above the reset threshold voltage V , the delay  
The reset output RO is an open collector NPN transistor,  
controlled by a low voltage detection circuit. The circuit is  
functionally independent of the rest of the IC, thereby  
RT  
timer D is started. When the voltage on the delay timer V  
D
passes V , the reset signal RO goes high. A discharge of  
UD  
the delay timer (V ) is started when V drops and stays  
guaranteeing that RO is valid for V as low as 1.0 V.  
D
Q
Q
below the reset threshold voltage V . When the voltage of  
RT  
V
I
t
< t  
RR  
V
Q
V
RT  
t
t
t
I
C
dV  
dt  
D
D
+
V
D
V
UD  
V
LD  
t
RR  
t
d
V
RO  
V
,
RO SAT  
Power−on−Reset  
Thermal  
Shutdown  
Voltage Dip  
at Input  
Undervoltage  
Secondary  
Spike  
Overload  
at Output  
Figure 41. Reset Timing Diagram  
Reset Delay (D)  
Reset Adjust (RADJ)  
The reset threshold V can be decreased from a typical  
The reset delay circuit provides a delay (programmable by  
capacitor C ) on the reset output RO lead. The delay lead D  
RT  
value of 4.65 V to as low as 3.5 V by using an external  
voltage divider connected from the Q lead to the pin RADJ,  
as shown in Figures 39 and 40. The resistor divider keeps the  
D
provides charge current I (typically 8.0 mA) to the external  
D
delay capacitor C during the following times:  
D
voltage above the V  
, (typ. 1.35 V), for the desired  
1. During Powerup (once the regulation threshold has  
been exceeded).  
2. After a reset event has occurred and the device  
is back in regulation. The delay capacitor is  
RADJ,TH  
input voltages and overrides the internal threshold detector.  
Adjust the voltage divider according to the following  
relationship:  
set to discharge when the regulation (V , reset  
threshold voltage) has been violated. When  
RT  
V
+ V  
RADJ, TH  
· (R  
ADJ1  
) R  
)ńR  
ADJ2  
THRES  
ADJ2  
(eq. 1)  
the delay capacitor discharges to down to V  
the reset signal RO pulls low.  
,
LD  
If the reset adjust option is not needed, the RADJ−pin  
should be connected to GND causing the reset threshold to  
go to its default value (typ. 4.65 V).  
http://onsemi.com  
16  
NCV4299  
Setting the Delay Time  
The delay time is set by the delay capacitor C and the  
Sense Input (SI)/Sense Output (SO) Voltage Monitor  
An on−chip comparator is available to provide early  
warning to the microprocessor of a possible reset signal. The  
reset signal typically turns the microprocessor off  
instantaneously. This can cause unpredictable results with  
the microprocessor. The signal received from the SO pin will  
allow the microprocessor time to complete its present task  
before shutting down. This function is performed by a  
comparator referenced to the band gap voltage. The actual  
trip point can be programmed externally using a resistor  
divider to the input monitor (SI) (Figures 39 and 40). The  
typical threshold is 1.35 V on the SI Pin.  
D
charge current I . The time is measured by the delay  
D
capacitor voltage charging from the low level of V  
to the  
D,sat  
higher level V . The time delay follows the equation:  
UD  
(eq. 2)  
t
+ [C (V −V )]ńI  
UD D, sat D  
d
D
Example:  
Using C = 100 nF.  
D
Use the typical value for V  
Use the typical value for V = 1.8 V.  
Use the typical value for Delay Charge Current I = 6.5 mA.  
= 0.1 V.  
D,sat  
UD  
D
(eq. 3)  
t
+ [100 nF(1.8−0.1 V)]ń6.5 mA + 26.2 ms  
d
Signal Output  
When the output voltage V drops below the reset  
Q
Figure 42 shows the SO Monitor waveforms as a result of  
the circuits depicted in Figures 39 and 40. As the output  
threshold voltage V , the voltage on the delay capacitor V  
RT  
D
starts to drop. The time it takes to drop below the lower  
threshold voltage of V is the reset reaction time, t . This  
time is typically 1.0 ms for a delay capacitor of 0.1 mF. The  
voltage V falls, the monitor threshold V  
This causes the voltage on the SO output to go low sending  
a warning signal to the microprocessor that a reset signal may  
is crossed.  
Q
SI,LOW  
LD  
RR  
reset reaction time can be estimated from the following  
occur in a short period of time. T  
is the time the  
WARNING  
relationship:  
microprocessor has to complete the function it is currently  
working on and get ready for the reset shutdown signal.  
(eq. 4)  
t
+ 10 nsńnF   C  
D
RR  
Sense  
Input  
Voltage  
V
V
SL, High  
Q
V
SL, Low  
S
I
V
SI,LOW  
t
Sense  
Output  
V
RO  
t
t
PD SO HL  
PD SO LH  
High  
S
O
Low  
T
WARNING  
t
Figure 42. SO Warning Timing Waveform  
Figure 43. Sense Timing Diagram  
Calculating Power Dissipation in a Single Output  
Linear Regulator  
The maximum power dissipation for a single output  
regulator is:  
I is the quiescent current the regulator consumes at I  
.
q
Q(max)  
Once the value of P  
is known, the maximum  
D(max)  
permissible value of R  
can be calculated:  
qJA  
(eq. 6)  
R
+ (150°C−T )ńP  
qJA  
A
D
P
+ [V  
−V  
] I  
) V Iq  
I(max)  
D(max)  
I(max) Q(min) Q(max)  
The value of R  
can then be compared with those in the  
qJA  
(eq. 5)  
package section of the data sheet. Those packages with  
’s less than the calculated value in Equation 6 will keep  
where:  
R
qJA  
V
V
I
is the maximum input voltage,  
is the minimum output voltage,  
is the maximum output current for the application,  
I(max)  
Q(min)  
Q(max)  
the die temperature below 150°C. In some cases, none of the  
packages will be sufficient to dissipate the heat generated by  
the IC, and an external heatsink will be required.  
and  
http://onsemi.com  
17  
 
NCV4299  
Heatsinks  
where:  
A heatsink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
Each material in the heat flow path between the IC and the  
outside environment will have a thermal resistance. Like  
series electrical resistances, these resistances are summed to  
R
R
R
= the junction−to−case thermal resistance,  
= the case−to−heatsink thermal resistance, and  
= the heatsink−to−ambient thermal resistance.  
qJC  
qCS  
qSA  
R
appears in the package section of the data sheet. Like  
qJC  
R
qJA  
, it too is a function of package type. R  
and R  
are  
qCS  
qSA  
functions of the package type, heatsink and the interface  
between them. These values appear in heatsink data sheets  
of heatsink manufacturers. Thermal, mounting, and  
heatsinking are discussed in the ON Semiconductor  
application note AN1040/D, available on the  
ON Semiconductor website.  
determine the value of R  
:
qJA  
(eq. 7)  
R
qJA  
+ R  
qJC  
) R ) R  
qCS qSA  
http://onsemi.com  
18  
NCV4299  
SOIC 8 LEAD  
1000  
100  
10  
2
Cu Area = 10 mm , 1.0 oz  
2
25 mm , 1.0 oz  
2
100 mm , 1.0 oz  
2
250 mm , 1.0 oz  
2
500 mm , 1.0 oz  
1
0.1  
0.000001 0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
Time (sec)  
Figure 44. Transient Thermal Response Simulation to a Single Pulse 1 oz (Log−Log)  
1000  
100  
10  
50% Duty Cycle  
20%  
10%  
5%  
2%  
1%  
1
0.1  
Single Pulse (SOIC−8)  
0.01  
Psi LA (SOIC−8)  
0.01  
0.001  
0.000001 0.00001  
0.0001  
0.001  
0.1  
1
10  
100  
1000  
Pulse Time (sec)  
Figure 45. Transient Thermal Response Simulation to a Single Pulse with Duty Cycles Applied (Log−Log)  
(PCB = 50 mm2 1 oz)  
1000  
50% Duty Cycle  
20%  
10%  
100  
10  
1
5%  
2%  
1%  
0.1  
Single Pulse (SOIC−8)  
0.01  
Psi LA (SOIC−8)  
0.01  
0.001  
0.000001 0.00001  
0.0001  
0.001  
0.1  
1
10  
100  
1000  
Pulse Time (sec)  
Figure 46. Transient Thermal Response Simulation to a Single Pulse with Duty Cycles Applied (Log−Log)  
(PCB = 250 mm2 1 oz)  
http://onsemi.com  
19  
NCV4299  
SOIC 14 LEAD  
1000  
100  
10  
2
Cu Area = 10 mm , 1.0 oz  
2
25 mm , 1.0 oz  
2
100 mm , 1.0 oz  
2
250 mm , 1.0 oz  
2
500 mm , 1.0 oz  
1
0.1  
0.000001 0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
Time (sec)  
Figure 47. Transient Thermal Response Simulation to a Single Pulse 1 oz (Log−Log)  
1000  
100  
10  
50% Duty Cycle  
20%  
10%  
5%  
2%  
1
1%  
0.1  
Single Pulse (SOIC−14)  
0.01  
Psi LA (SOIC−14)  
0.001  
0.000001 0.00001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
1000  
Pulse Time (sec)  
Figure 48. Transient Thermal Response Simulation to a Single Pulse with Duty Cycles Applied (Log−Log)  
(PCB = 50 mm2 1 oz)  
100  
50% Duty Cycle  
20%  
10%  
5%  
2%  
1%  
10  
1
0.1  
Single Pulse (SOIC−14)  
0.01  
Psi LA (SOIC−14)  
0.01  
0.001  
0.000001 0.00001  
0.0001  
0.001  
0.1  
1
10  
100  
1000  
Pulse Time (sec)  
Figure 49. Transient Thermal Response Simulation to a Single Pulse with Duty Cycles Applied (Log−Log)  
(PCB = 250 mm2 1 oz)  
http://onsemi.com  
20  
NCV4299  
ORDERING INFORMATION  
Device  
NCV4299D1  
Package  
Shipping  
SO−8  
98 Units/Rail  
98 Units/Rail  
NCV4299D1G  
SO−8  
(Pb−Free)  
NCV4299D1R2  
SO−8  
2500 Tape & Reel  
2500 Tape & Reel  
NCV4299D1R2G  
SO−8  
(Pb−Free)  
NCV4299D2  
SO−14  
55 Units/Rail  
55 Units/Rail  
NCV4299D2G  
SO−14  
(Pb−Free)  
NCV4299D2R2  
SO−14  
2500 Tape & Reel  
2500 Tape & Reel  
NCV4299D2R2G  
SO−14  
(Pb−Free)  
NCV4299D233G  
SO−14  
(Pb−Free)  
55 Units/Rail  
NCV4299D233R2G  
SO−14  
(Pb−Free)  
2500 Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
21  
NCV4299  
PACKAGE DIMENSIONS  
SOIC−8 NB  
CASE 751−07  
ISSUE AH  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
−X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW  
STANDARD IS 751−07.  
S
M
M
B
0.25 (0.010)  
Y
1
K
−Y−  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
−Z−  
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
22  
NCV4299  
PACKAGE DIMENSIONS  
SO−14  
D SUFFIX  
CASE 751A−03  
ISSUE G  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
−A−  
14  
8
7
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
−B−  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
P 7 PL  
M
M
B
0.25 (0.010)  
1
MILLIMETERS  
INCHES  
MIN  
G
DIM MIN  
MAX  
8.75  
4.00  
1.75  
0.49  
1.25  
MAX  
0.344  
0.157  
0.068  
0.019  
0.049  
F
R X 45  
_
C
A
B
C
D
F
8.55  
3.80  
1.35  
0.35  
0.40  
0.337  
0.150  
0.054  
0.014  
0.016  
−T−  
SEATING  
PLANE  
J
M
G
J
1.27 BSC  
0.050 BSC  
K
D 14 PL  
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
M
S
S
0.25 (0.010)  
T B  
A
K
M
P
R
_
_
_
_
5.80  
0.25  
6.20  
0.50  
0.228  
0.010  
0.244  
0.019  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NCV4299/D  

相关型号:

NCV4299D1G

150 mA Low−Dropout Voltage Regulator
ONSEMI

NCV4299D1R2

150 mA Low−Dropout Voltage Regulator
ONSEMI

NCV4299D1R2G

150 mA Low−Dropout Voltage Regulator
ONSEMI

NCV4299D2

150 mA Low−Dropout Voltage Regulator
ONSEMI

NCV4299D233G

150 mA Low−Dropout Voltage Regulator
ONSEMI

NCV4299D233R2G

150 mA Low−Dropout Voltage Regulator
ONSEMI

NCV4299D2G

150 mA Low−Dropout Voltage Regulator
ONSEMI

NCV4299D2R2

150 mA Low−Dropout Voltage Regulator
ONSEMI

NCV4299D2R2G

150 mA Low−Dropout Voltage Regulator
ONSEMI

NCV431

Low Voltage Precision Adjustable Shunt Regulator
ONSEMI

NCV431AIDMR2

PROGRAMMABLE PRECISION REFERENCES
ONSEMI

NCV431AIDMR2G

Programmable Precision References
ONSEMI