NCV57085DR2G [ONSEMI]

Isolated Compact IGBT Gate Driver with Current Sense;
NCV57085DR2G
型号: NCV57085DR2G
厂家: ONSEMI    ONSEMI
描述:

Isolated Compact IGBT Gate Driver with Current Sense

栅 双极性晶体管
文件: 总23页 (文件大小:320K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ON Semiconductor  
Is Now  
To learn more about onsemi™, please visit our website at  
www.onsemi.com  
onsemi andꢀꢀꢀꢀꢀꢀꢀand other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or  
subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi  
product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without  
notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality,  
or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws,  
regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/  
or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application  
by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized  
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for  
implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and holdonsemi and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative  
Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.  
Isolated Compact IGBT  
Gate Driver with Current Sense  
NCD57085, NCV57085  
NCx57085 is a high current single channel IGBT gate driver  
with 2.5 kVrms internal galvanic isolation designed for high system  
efficiency and reliability in high power applications. The driver  
includes Current Sense function with soft turn off and fault reporting  
in a narrow body SOIC*8 package. NCx57085 accommodates wide  
range of input bias voltage and signal levels from 3.3 V to 20 V,  
and wide range of output bias voltage up to 30 V.  
www.onsemi.com  
8
1
Features  
SOIC8 NB  
CASE 75107  
High Peak Output Current (+7A/7 A)  
Low Output Impedance for Enhanced IGBT Driving  
Short Propagation Delays with Accurate Matching  
IGBT Over Current Protection  
Negative Voltage (Down to 9 V) Capability for CS Pin  
IGBT Gate Clamping during Short Circuit  
IGBT Gate Active Pull Down  
MARKING DIAGRAM  
8
57085  
ALYW  
G
Soft Turn Off During IGBT Over Current  
Tight UVLO Thresholds for Bias Flexibility  
Output Partial Pulse Avoidance During UVLO/CS (Restart)  
3.3. V, 5 V, and 15 V Logic Input  
1
57085  
A
L
Y
W
G
= Specific Device Code  
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
2.5 kVrms Galvanic Isolation  
High Transient Immunity  
High Electromagnetic Immunity  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements;  
AECQ100 Qualified and PPAP Capable  
PIN CONNECTIONS  
1
2
8
7
VDD  
V
B
This Device is PbFree, Halogen Free/BFR Free and is RoHS  
Compliant  
IN  
FLT  
HO  
CS  
3
4
6
5
Typical Applications  
Motor Control  
GND  
V
S
Automotive Applications  
Uninterruptible Power Supplies (UPS)  
Industrial Power Supplies  
HVAC  
Industrial Pumps and Fans  
PTC Heater  
NCx57085  
x = D or V  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 12 of  
this data sheet.  
© Semiconductor Components Industries, LLC, 2021  
1
Publication Order Number:  
March, 2021 Rev. 0  
NCD57085/D  
NCD57085, NCV57085  
VDD  
VB  
UVLO1  
UVLO2  
IN  
VS  
STO  
HO  
CS  
VS  
Logic  
Logic  
VCC1  
VB  
+
FLT  
V
CSTHR  
GND  
Figure 1. Simplified Block Diagram  
www.onsemi.com  
2
NCD57085, NCV57085  
V
DD  
V
B
V
B
V
DD  
IN  
HO  
CS  
FLT  
V
S
GND  
Figure 2. Simplified Application Schematics, Current Sense Using Shunt Resistor  
V
DD  
V
B
V
DD  
V
B
IN  
HO  
CS  
FLT  
V
S
GND  
Figure 3. Simplified Application Schematics, Current Sense Using IGBT Vce  
V
DD  
V
B
V
B
V
DD  
IN  
HO  
CS  
FLT  
V
S
GND  
Figure 4. Simplified Application Schematics, Current Sense Using Shunt Resistor and Negative Gate Drive  
V
DD  
V
B
V
DD  
V
B
IN  
HO  
CS  
FLT  
V
S
GND  
Figure 5. Simplified Application Schematics, Current Sense Using IGBT Vce and Negative Gate Drive  
www.onsemi.com  
3
NCD57085, NCV57085  
FUNCTION DESCRIPTION  
Pin Name  
No.  
I/O  
Description  
Input side power supply. A good quality bypassing capacitor is required from this pin to  
GND and should be placed close to the pins for best results.  
V
DD  
1
Power  
The under voltage lockout (UVLO) circuit enables the device to operate at power on when  
a typical supply voltage higher than V  
more details.  
is present. Please see Figure 7 for  
UVLO1OUTON  
IN  
2
3
I
Noninverted gate driver input. The equivalent input pull down resistance is about 100 kW  
when the input voltage is below 5.5 V. The input adapter circuitry will work once the input  
voltage is higher than 5.5 V, and will keep the input current at the level when the input volt-  
age is 5.5 V even though it is higher than that. A minimum pulse width is required at IN  
before HO responds.  
Fault output (active low) that allows communication to the main controller that the driver  
has encountered a Over Current, or UVLO1, or UVLO2 condition and has deactivated the  
output. There is an internal 50 kW pullup resistor connected to this pin. Multiple of them  
from different drivers can be “OR”ed together.  
FLT  
O
/FLT and HO will go high automatically after t  
expires along with a rising edge of IN to  
MUTE  
avoid partial output pulse on HO. This is a feature called “Restart”.  
GND  
4
5
Power  
Power  
Input side ground reference.  
V
S
Output side ground reference.  
Input for detecting over current of IGBT. The current sense threshold has to be met uninter-  
CS  
6
I/O  
ruptedly for a fixed period of t  
9 and Figure 10.  
before HO and /FLT are set low. Please refer to Figure  
FILTER  
FLT and HO will be kept low (including soft turn off time) at least for a period defined by  
t
.
MUTE  
HO  
7
8
O
Driver output that provides the appropriate drive voltage and source/sink current to the  
IGBT/FET gate. HO is actively pulled low during startup.  
Output side positive power supply. The operating range for this pin is from UVLO2 to its  
maximum allowed value. A good quality bypassing capacitor is required from this pin to V  
and should be placed close to the pins for best results.  
V
B
Power  
S
The under voltage lockout (UVLO) circuit enables the device to operate at power on when  
a typical supply voltage higher than V  
more details.  
is present. Please see Figure 8 for  
UVLO2OUTON  
www.onsemi.com  
4
NCD57085, NCV57085  
SAFETY AND INSULATION RATINGS  
Symbol  
Parameter  
Value  
IIV  
Unit  
Installation Classifications per DIN VDE 0110/1.89  
Table 1 Rated Mains Voltage  
< 150 V  
< 300 V  
< 450 V  
< 600 V  
RMS  
RMS  
RMS  
RMS  
IIV  
IIV  
IIV  
< 1000 V  
IIII  
RMS  
Climatic Classification  
40/100/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
CTI  
Comparative Tracking Index (DIN IEC 112/VDE 0303 Part 1)  
600  
V
InputtoOutput Test Voltage, Method B, V  
× 1.875 = V  
,
2250  
V
V
PR  
IORM  
PR  
PK  
100% Production Test with t = 1 s, Partial Discharge < 5 pC  
m
V
IORM  
Maximum Repetitive Peak Voltage  
Maximum Working Insulation Voltage  
Highest Allowable Over Voltage  
External Creepage  
1200  
870  
4200  
4.0  
PK  
V
IOWM  
V
RMS  
V
IOTM  
V
PK  
E
CR  
mm  
mm  
mm  
°C  
E
External Clearance  
4.0  
CL  
DTI  
Insulation Thickness  
8.65  
150  
132  
1128  
Safety Limit Values – Maximum Values in Failure; Case Temperature  
Safety Limit Values – Maximum Values in Failure; Input Power  
Safety Limit Values – Maximum Values in Failure; Output Power  
T
Case  
P
mW  
mW  
W
S,INPUT  
P
S,OUTPUT  
9
R
Insulation Resistance at TS, V = 500 V  
10  
IO  
IO  
ISOLATION CHARACTERISTICS  
Symbol  
Parameter  
Conditions  
T = 25°C, Relative Humidity < 50%, t = 1.0 minute,  
Value  
Unit  
V
InputOutput Isolation Voltage  
2500  
V
RMS  
ISO,  
INPUTOUTPUT  
A
I
< 30 mA, 50 Hz  
IO  
(Notes 1, 2, 3)  
11  
R
Isolation Resistance  
V
IO  
= 500 V (Note 1)  
10  
W
ISO  
1. Device is considered a twoterminal device: pins 1 to 4 are shorted together and pins 5 to 8 are shorted together.  
2. 2,500 VRMS for 1minute duration is equivalent to 3,000 VRMS for 1second duration.  
3. The inputoutput isolation voltage is a dielectric voltage rating per UL1577. It should not be regarded as an inputoutput continuous voltage  
rating. For the continuous working voltage rating, refer to equipmentlevel safety specification or DIN VDE V 088411 Safety and Insulation  
Ratings Table.  
www.onsemi.com  
5
 
NCD57085, NCV57085  
ABSOLUTE MAXIMUM RATINGS (Note 4) Over operating freeair temperature range unless otherwise noted.  
Symbol  
GND  
Parameter  
Supply Voltage, Input Side  
Minimum  
0.3  
Maximum  
Unit  
V
V
22  
32  
DD  
V
B
V  
Supply Voltage, Output Side  
0.3  
V
S
V
HO  
V  
Gatedriver Output Voltage  
0.3  
V + 0.3  
BS  
V
S
I
Gatedriver Output Sourcing Current  
7
A
PKSRC  
(maximum pulse width = 10 ms, maximum duty cycle = 0.2%,  
V
D
V = 15 V)  
S
I
Gatedriver Output Sinking Current  
7.5  
A
PK SNK  
(maximum pulse width = 10 ms, maximum duty cycle = 0.2%,  
V
D
V = 15 V)  
S
V
GND  
Voltage at IN, FLT  
0.3  
V
+ 0.3  
DD  
V
mA  
V
IN  
IFLT  
Output current of FLT  
10  
+ 0.3  
V
V  
Voltage at CS (Note 5)  
9  
V
CS  
S
BS  
PD  
Power Dissipation (Note 6)  
1123  
2
mW  
kV  
kV  
ESD  
ESD  
ESD Capability, Human Body Model (Note 7)  
ESD Capability, Charged Device Model (Note 7)  
Moisture Sensitivity Level  
HBM  
CDM  
2
MSL  
1
T (max)  
Maximum Junction Temperature  
Storage Temperature Range  
40  
65  
150  
150  
260  
°C  
°C  
°C  
J
TSTG  
TSLD  
Lead Temperature Soldering Reflow, PbFree (Note 8)  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
4. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
5. The minimum value is verified by characterization with a single pulse of 1.5 mA for 300 ms.  
6. The value is estimated for ambient temperature 25°C and junction temperature 150°C, 650 mm2, 1 oz copper, 2 surface layers and 2 internal  
power plane layers. Power dissipation is affected by the PCB design and ambient temperature.  
7. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AECQ100002 (EIA/JESD22A114).  
ESD Charged Device Model tested per AECQ100011 (EIA/JESD22C101).  
Latchup Current Maximum Rating: 100 mA per JEDEC standard: JESD78, 125°C.  
8. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.  
THERMAL CHARACTERISTICS  
Symbol  
Parameter  
Conditions  
Value  
179  
Unit  
R
Thermal Resistance, JunctiontoAir  
100 mm2, 1 oz Copper, 1 Surface Layer  
°C/W  
θ
JA  
100 mm2, 1 oz Copper, 2 Surface Layers and 2  
Internal Power Plane Layers  
110  
9. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
10.Values based on copper area of 100 mm2 (or 0.16 in2) of 1 oz copper thickness and FR4 PCB substrate.  
OPERATING RANGES (Note 11)  
Symbol  
GND  
Parameter  
Supply Voltage, Input Side  
Min  
UVLO1  
UVLO2  
GND  
Max  
20  
Unit  
V
V
DD  
V V  
Supply Voltage, Output Side  
Logic Input Voltage at IN  
30  
V
B
S
V
IN  
V
DD  
V
|dV /dt|  
Common Mode Transient Immunity  
Ambient Temperature  
100  
kV/ms  
°C  
ISO  
T
A
40  
125  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
11. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
www.onsemi.com  
6
 
NCD57085, NCV57085  
ELECTRICAL CHARACTERISTICS V = 5 V, V = 15 V.  
DD  
BS  
For typical values T = 25°C, for min/max values, T is the operating ambient temperature range that applies, unless otherwise noted.  
A
A
Symbol  
VOLTAGE SUPPLY  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
V
UVLO1 Output Enabled  
UVLO1 Output Disabled  
UVLO1 Hysteresis  
2.4  
0.1  
12.4  
11.5  
0.7  
3.1  
V
V
UVLO1OUTON  
V
UVLO1OUTOFF  
V
V
UVLO1HYST  
V
UVLO2 Output Enabled  
UVLO2 Output Disabled  
UVLO2 Hysteresis  
12.9  
12  
1
13.4  
12.5  
V
UVLO2OUTON  
UVLO2OUTOFF  
V
V
V
V
UVLO2HYST  
Input Supply Quiescent Current  
Output Supply Quiescent Current  
I
IN = Low, V = 3.3 V, FLT = High  
2
mA  
mA  
mA  
mA  
mA  
mA  
DD03.3  
DD  
I
IN = Low, V = 5 V, FLT = High  
2
DD05  
DD  
I
IN = Low, V = 15 V, FLT = High  
2
DD015  
DD  
I
IN = High, V = 5 V, FLT = High  
6
DD1005  
DD  
I
IN = Low, no load  
IN = High, no load  
4
BS0  
I
6
BS100  
LOGIC INPUT AND OUTPUT  
V
Low Input Voltage (Note 12)  
High Input Voltage (Note 12)  
1.65  
2.1  
V
V
V
IL  
V
IH  
0.7 x V  
DD  
V
Input Hysteresis Voltage  
(Note 12)  
0.15 x V  
INHYST  
DD  
I
Input Current  
V
V
= V  
DD  
50  
mA  
mA  
IN  
IN  
I
FLT Pullup Current  
= Low  
100  
FLTL  
FLT  
(50 kW pullup resistor)  
V
t
FLT Low Level Output Voltage  
I
= 5 mA  
0.3  
10  
V
FLTL  
FLT  
Input Pulse Width of IN for No Re-  
sponse at Output  
ns  
MIN1  
t
Input Pulse Width of IN for  
40  
ns  
MIN2  
Guaranteed Response at Output  
DRIVER OUTPUT  
Output Low State  
V
V
V
I
I
I
I
= 200 mA  
0.1  
0.4  
0.2  
0.6  
7.5  
0.22  
1
HOL1  
HOL2  
HOH1  
HOH2  
SNK  
SNK  
SRC  
SRC  
(V – V )  
HO  
S
V
= 1.0 A, T = 25°C  
A
Output High State  
(V – V  
V
V
= 200 mA  
0.35  
1.7  
)
HO  
B
= 1.0 A, T = 25°C  
A
I
I
Peak Driver Current, Sink  
(Note 13)  
A
A
A
A
PKSNK1  
PKSNK2  
PKSRC1  
PKSRC2  
Peak Driver Current, Sink  
(Note 13)  
V
= 9 V  
7
7
5
HO  
(near IGBT Miller Plateau)  
I
I
Peak Driver Current, Source  
(Note 13)  
Peak Driver Current, Source  
(Note 13)  
V
= 9 V  
HO  
(near IGBT Miller Plateau)  
OVER CURRENT PROTECTION  
V
CS Threshold Voltage  
CS Negative Voltage  
0.2  
0.25  
0.3  
V
V
CSTHR  
CSNEG  
V
I
= 1.5 mA  
8  
CS  
www.onsemi.com  
7
NCD57085, NCV57085  
ELECTRICAL CHARACTERISTICS V = 5 V, V = 15 V.  
DD  
BS  
For typical values T = 25°C, for min/max values, T is the operating ambient temperature range that applies, unless otherwise noted.  
A
A
Symbol  
IGBT SHORT CIRCUIT CLAMPING  
IGBT Short Circuit Clamping (V  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
V
IN = High, I = 500 mA,  
0.7  
1.5  
V
CLPHO  
HO  
HO  
V )  
t
= 10 ms  
B
CLP  
DYNAMIC CHARACTERISTICS  
t
IN to HO High Propagation  
Delay  
C
IH  
= 10 Nf  
LOAD  
40  
40  
60  
60  
90  
90  
ns  
ns  
ns  
PDON  
V
to 10% of HO Change  
for PW > 150 ns  
C = 10 nF  
LOAD  
t
IN to HO Low Propagation Delay  
PDOFF  
V
IL  
to 90% of HO Change  
for PW > 150 ns  
T = 25°C, PW > 150 ns  
A
0
0
t
Propagation Delay Distortion  
DISTORT  
(= t  
t  
PDOFF  
)
PDON  
T = 40°C to 125°C, PW > 150 ns  
A
25  
30  
25  
30  
t
Prop Delay Distortion between  
Parts  
PW > 150 ns  
ns  
ns  
ns  
ns  
ns  
ms  
DISTORT_TOT  
t
t
Rise Time (see Figure 6)  
(Note 13)  
C
= 1 nF, 10% to 90%  
LOAD  
10  
15  
RISE  
of HO Change  
C = 1 nF, 90% to 10%  
LOAD  
Fall Time (see Figure 6)  
(Note 13)  
FALL  
of HO Change  
t
CS Leading Edge Blanking Time  
(See Figure 9 and Figure 10)  
200  
450  
600  
1.8  
700  
700  
3
LEB  
t
CS Threshold Filtering Time  
(see Figure 9 and Figure 10)  
FILTER  
t
Soft Turn Off Time  
(see Figure 9 and Figure 10)  
C
= 10 nF, R = 10 W  
1.2  
STO  
LOAD  
G
t
Delay after t  
to FLT Low  
100  
450  
1.5  
700  
ns  
ns  
FLT  
FILTER  
t
Delay from V  
Triggered to FLT Low  
FLT1  
UVLO1OUTOFF  
t
Delay from t  
to FLT Low  
2.4  
ms  
ms  
FLT2  
UV2F  
t
IN Mute Time after t  
UVLO1, UVLO2 Triggered  
, or  
FILTER  
20  
MUTE  
t
Delay from V  
Triggered to HO High  
(see Figure 7)  
(Note 13)  
(Note 13)  
(Note 13)  
(Note 13)  
770  
ns  
ns  
ns  
ns  
UVR1  
UVLO1OUTON  
t
Delay from V  
1500  
1000  
1000  
UVF1  
UVLO1OUTOFF  
Triggered to HO Low  
(see Figure 7)  
t
Delay from V  
UVLO2OUTON  
Triggered to HO High  
(see Figure 8)  
UVR2  
t
Delay from V  
UVLO2OUTOFF  
UVF2  
Triggered to HO Low  
(see Figure 8)  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
12.Table values are valid for 3.3 V and 5 V V , for higher V voltages, the threshold values are maintained at the 5 V V levels.  
DD  
DD  
DD  
13.Values based on design and/or characterization.  
www.onsemi.com  
8
NCD57085, NCV57085  
VIH  
VIL  
IN  
tRISE  
tFALL  
tMIN1  
tMIN2  
90%  
tPDON  
tMIN1  
tPDOFF  
10%  
HO  
Figure 6. Propagation Delay, Rise and Fall Time  
VBS  
VUVLO1OUTON  
VUVLO1OUTOFF  
tMUTE  
tUVF1  
tMUTE  
tUVF1  
VDD  
tUVR1  
tUVR1  
tUVR1  
IN  
HO  
tFLT1  
tFLT1  
FLT  
Figure 7. UVLO1 Waveform  
www.onsemi.com  
9
NCD57085, NCV57085  
VDD  
VUVLO2OUTON  
VUVLO2OUTOFF  
tMUTE  
tUVF2  
tMUTE  
VBS  
tUVR2  
tUVF2  
tUVR2  
tUVR2  
IN  
HO  
tFLT2  
tFLT2  
FLT  
Figure 8. UVLO2 Waveform  
IN  
t
t
MUTE  
MUTE  
t
PDON  
t
t
PDON  
PDON  
90% HO  
10% HO  
HO  
t
t
t
FILTER  
STO  
STO  
t
FILTER  
t
LEB  
t
LEB  
V
CSTHR  
CS  
t
t
FLT  
FLT  
FLT  
Figure 9. CS Response Waveform Using IGBT Vce  
www.onsemi.com  
10  
NCD57085, NCV57085  
IN  
t
t
MUTE  
MUTE  
t
PDON  
t
t
PDON  
PDON  
90% HO  
HO  
10% HO  
t
t
STO  
t
STO  
FILTER  
t
FILTER  
t
LEB  
CS  
t
t
FLT  
FLT  
FLT  
Figure 10. CS Response Waveform Using Shunt Resistor  
www.onsemi.com  
11  
NCD57085, NCV57085  
TRUTH TABLE  
IN  
H
H
L
UVLO1  
UVLO2  
Inactive  
Inactive  
Inactive  
Inactive  
Inactive  
Inactive  
Inactive  
Active  
CS  
L
HO  
L
FLT  
L
Notes  
Inactive  
Inactive  
Inactive  
Inactive  
Inactive  
Active  
Initial condition after power up V and V  
DD  
BS  
L
H
L
H
Initial condition IN First Rising edge  
Normal Operation Output High  
Normal Operation Turn off Output  
Normal Operation Output Low  
L
L
H
L
H
X
X
L
L
L
UVLO1 Activated FLT Low (t  
), Output Low  
FLT1  
X
Inactive  
Inactive  
Inactive  
Inactive  
Inactive  
L
L
FLT reset, UVLO1 conditions disappear  
UVLO2 Activated FLT Low (t ), Output Low  
X
L
FLT1  
H
Inactive  
Inactive  
Inactive  
L
L
FLT reset, UVLO2 conditions disappear  
CS Activated FLT Low (tFLT), Output Low  
FLT reset, CS conditions disappear  
H (>t  
)
FILTER  
L
ORDERING INFORMATION  
Device  
Package  
Shipping  
NCD57085DR2G  
NCV57085DR2G  
2500 / Tape & Reel  
SOIC8 Narrow Body, (PbFree)  
SOIC8 Narrow Body, (PbFree)  
2500 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
VDD  
Clamping  
Circuit  
IN  
Figure 11. Input Pin Structure  
www.onsemi.com  
12  
NCD57085, NCV57085  
TYPICAL CHARACTERISTICS  
5
4
3
2
1
5
(3)  
4
(3)  
3
2
(2)  
(2)  
1
(1)  
(1)  
0
0
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
, I = 0 V  
DD05 N  
(1) I  
, I = 0 V  
(1) I  
DD03.3  
N
(2) I  
(3) I  
, I = 3.3 V/1 MHz/50%,  
, I = 3.3 V  
N
(2) I  
(3) I  
, I = 5 V/1 MHz/50%,  
N
, I = 5 V  
N
DD503.3  
DD1003.3  
N
DD505  
DD10005  
(Note: V = 3.3 V, V = 15 V  
(Note: V = 5 V, V = 15 V)  
DD B  
DD  
B
Figure 12. IDD Supply Current, VDD = 3.3 V  
Figure 13. IDD Supply Current, VBS = 5 V  
5
4
3
2
1
0
5
4
3
2
1
0
(3)  
(3)  
(2)  
(1)  
(2)  
(1)  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
, I = 0 V  
DD020 N  
(1) I  
, I = 0 V  
(1) I  
DD015  
N
(2) I  
(3) I  
, I = 5 V/1 MHz/50%,  
, I = 5 V  
N
(2) I  
(3) I  
, I = 5 V/1 MHz/50%,  
N
, I = 5 V  
N
DD5015  
DD10015  
N
DD5020  
DD10020  
(Note: V = 15 V, V = 15 V)  
(Note: V = 20 V, V = 15 V)  
DD B  
DD  
B
Figure 14. IDD Supply Current, VDD = 15 V  
Figure 15. IDD Supply Current, VDD = 20 V  
3.0  
2.8  
2.6  
2.4  
7
6
5
4
3
(4)  
(4)  
(3)  
(2)  
(3)  
(2)  
(1)  
(1)  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(2) I  
(4) I  
, V = 20 V  
, V = 30 V  
B
(2) I  
(4) I  
, V = 20 V  
, V = 30 V  
B
(1) I  
(3) I  
, V = 15 V  
(1) I  
(3) I  
, V = 15 V  
B
BS020  
B
BS10020  
BS10030  
B
BS015  
BS025  
B
BS10015  
BS10025  
, V = 25 V  
B
, V = 25 V  
B
BS030  
(Note: V = 5 V, I = LOW, FLT = HIGH)  
(Note: V = 5 V, I = HIGH, FLT = HIGH)  
DD N  
DD  
N
Figure 16. IBS Supply Current, VDD = 5 V  
Figure 17. IBS Supply Current, VDD = 5 V  
www.onsemi.com  
13  
NCD57085, NCV57085  
TYPICAL CHARACTERISTICS (continued)  
55  
50  
40  
30  
20  
(4)  
(1)  
45  
(2)  
(3)  
35  
(1)  
25  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(2) I  
(4) I  
(1) I  
IN15  
IN20  
IN5  
(3) I  
(1) I  
IN3.3  
FLTL  
(Note: V = V , V = 15 V)  
(Note: FLT = LOW, V = 5 V)  
DD  
IN  
DD BS  
Figure 18. Input Current Logic “1”  
Figure 19. FLT = Pullup Current  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
(4)  
(4)  
(3)  
(3)  
(1)  
(2)  
(1)  
(2)  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(2) V  
(4) V  
(2) V  
(4) V  
(1) V  
(1) V  
IH5  
(3) V  
IH15  
IL15  
IL20  
IH3.3  
IH20  
IL5  
(3) V  
IL3.3  
(Note: V = 15 V)  
(Note: V = 15 V)  
BS  
BS  
Figure 20. Low Input Voltage  
Figure 21. High Input Voltage  
1.0  
0.8  
0.6  
0.4  
0.26  
0.24  
0.22  
0.20  
0.18  
(4)  
(3)  
(1)  
(1)  
(2)  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(2) V  
(4) V  
(1) V  
(3) V  
INHYST3.3  
INHYST20  
INHYST5  
(1) V  
INHYST15  
FLTL  
(Note: V = 15 V)  
(Note: I  
= 5 mA)  
BS  
FLT  
Figure 22. Input Hysteresis Voltage  
Figure 23. FLT Low Level Output Voltage  
www.onsemi.com  
14  
NCD57085, NCV57085  
TYPICAL CHARACTERISTICS (continued)  
20  
1.4  
1.2  
1
(4)  
(3)  
(2)  
(1)  
15  
10  
5
0.8  
0.6  
0.4  
0.2  
0
(2)  
(3)  
(1)  
0
40 20  
0
20  
40  
60  
80  
100 120  
1
10  
100  
1000  
Temperature (5C)  
Frequency (kHz)  
(2) V  
(4) V  
(2) CG = 10 nF  
(1) V  
(3) V  
(1) CG = 1 nF  
HOL2  
HOH2  
HOL1  
HOH1  
(3) CG = 100 nF  
(Note: V = 5 V, V = 15 V)  
DD  
BS  
Figure 24. Output Voltage  
Figure 25. IBS vs Switching Frequency  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
13.0  
12.8  
12.6  
12.4  
12.2  
12.0  
11.8  
(1)  
(1)  
(2)  
(2)  
40 20  
40 20  
0
20  
40  
60  
80  
100 120  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(1) V  
UVLO2OUTON  
(2) V  
(2) V  
(1) V  
UVLO1OUTOFF  
UVLO2OUTOFF  
UVLO1OUTON  
Figure 26. UVLO1 Threshold Voltage  
Figure 27. UVLO2 Threshold Voltage  
0.250  
7.90  
8.00  
(1)  
(1)  
0.245  
0.240  
8.10  
8.20  
8.30  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(1) V  
CSNEG  
(1) V  
CSTHR  
Figure 29. CS Negative Voltage  
Figure 28. CS Threshold Voltage  
www.onsemi.com  
15  
NCD57085, NCV57085  
TYPICAL CHARACTERISTICS (continued)  
1
0.95  
0.9  
(1)  
0.85  
0.8  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
(1) V  
CLPHO  
Figure 30. IGBT Short Circuit Clamping Voltage  
70  
68  
66  
64  
62  
70  
(2)  
(1)  
(4)  
68  
66  
64  
62  
60  
(3)  
(1)  
(4)  
(2)  
(3)  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
PDOFF3.3  
PDOFF15  
(2) t  
(4) t  
(2) t  
(4) t  
(1) t  
(3) t  
(1) t  
(3) t  
PDOFF5  
PDOFF20  
PDON5  
PDON3.3  
PDON15  
PDON20  
(Note: C  
= 10 nF, V = 15 V)  
BS  
LOAD  
(Note: C  
= 10 nF, V = 15 V)  
BS  
LOAD  
Figure 31. High Propagation Delay  
Figure 32. Low Propagation Delay  
2
1
0
16  
(2)  
15.5  
15  
(3) (4)  
(1)  
1  
(1)  
14.5  
14  
2  
3  
4  
5  
(2)  
13.5  
13  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(2) t  
(4) t  
(1) t  
(3) t  
DISTORT5  
DISTORT20  
DISTORT3.3  
DISTORT15  
(2) t  
(1) t  
FALL  
RISE  
(Note: V = 15 V)  
(Note: C 1 nF, V = 15 V)  
LOAD = BS  
BS  
Figure 33. Propagation Delay Distortion  
Figure 34. Rise / Fall Time  
www.onsemi.com  
16  
NCD57085, NCV57085  
TYPICAL CHARACTERISTICS (continued)  
2.4  
620  
580  
(2)  
(1)  
2.2  
2.0  
540  
500  
460  
420  
380  
(1)  
1.8  
340  
300  
1.6  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(1) t  
STO  
(2) t  
(1) t  
FILTER  
LEB  
(Note: V = 5 V, V = 15 V)  
DD  
BS  
(Note: V = 5 V, V = 15 V)  
DD  
BS  
Figure 36. Soft Turn Off Time  
Figure 35. CS Threshold Filtering Time,  
CS Leading Edge Blanking Time  
460  
440  
420  
400  
380  
1.6  
1.5  
1.4  
1.3  
(1)  
(1)  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(1) t  
FLT  
(1) t  
UV2F  
(Note: V = 5 V, V = 15 V)  
(Note: V = 5 V, V falls from HI to LOW)  
DD BS  
DD  
BS  
Figure 37. FLT Delay Time  
Figure 38. UVLO2 Fall Delay  
www.onsemi.com  
17  
NCD57085, NCV57085  
Under Voltage Lockout (UVLO)  
UVLO ensures correct switching of IGBT connected to the driver output.  
The IGBT is turnedoff and the output is disabled, if the supply V drops below V  
or V drops  
DD  
UVLO1OUTOFF  
BS  
below V  
.
UVLO2OUTOFF  
The driver output does not follow the input signal on V until the V / V rises above the V  
and  
IN  
DD  
BS  
UVLOXOUTON  
the input signal rising edge is applied to the V .  
IN  
With high loading gate capacitances over 10 nF it is important to follow the decoupling capacitor routing guidelines as shown  
on Figure 41. The decoupling capacitor value should be at least 10 mF. Also gate resistor of minimal value of 2 W has to be  
used in order to avoid interference of the high di/dt with internal circuitry (e.g. UVLO2).  
After the poweron of the driver there has to be a rising edge applied to the IN in order for the output to start following the  
inputs. This serves as a protection against producing partial pulses at the output if the V or V is applied in the middle of  
DD  
B
the input PWM pulse.  
Power Supply (VDD, VBS  
)
NCx57085 is designed to support unipolar power supply.  
For reliable high output current the suitable external power capacitors required. Parallel combination of 100 nF + 4,7 mF  
ceramic capacitors is optimal for a wide range of applications using IGBT. For reliable driving IGBT modules (containing  
several parallel IGBT’s) a higher capacity required (typically 100 nF + 10 mF). Capacitors should be as close as possible to  
the driver’s power pins.  
VDD  
IN  
VB  
HO  
CS  
VS  
10 mF  
100 nF  
V
DD  
V
BS  
+
+
FLT  
GND  
10 mF  
100 nF  
Figure 39. Power Supply  
Current Sense (CS)  
Current sense protection ensures the protection of IGBT at over current. When the V  
or V  
voltage goes up and  
CESAT  
SHUTN  
reaches the set limit, the output is driven low and FLT output is activated. To avoid false CS triggering , all CS circuit parts  
should be placed as close as possible to CS pin and wires from detecting circuit (V  
and without approaching the power paths.  
or R  
) should be routed directly  
CESAT  
SHUNT  
www.onsemi.com  
18  
NCD57085, NCV57085  
FLOATING  
10 μF  
+
VB  
OUT  
CS  
VDD  
IN  
5V  
+
S1  
OUT must remain stable  
FLT  
GND  
VS  
15 V  
+
10 μF  
HV PULSE  
(Test Conditions: HV Pulse 1500 V, dV/dt = 1100 V/ns, VDD = 5 V, VBS = 15 V)  
Figure 40. CMTI Test Setup  
Figure 41. Recommended Layout  
Highspeed signals  
10 mil s  
0.25 mm  
10 mil s  
0.25 mm  
Ground plane  
Keep this space free  
40 mil s  
1 mm  
40 mil s  
1 mm  
from traces, pads  
and vias  
Power plane  
10 mil s  
0.25 mm  
10 mil s  
0.25 mm  
Lowspeed signals  
157 mils  
(4 mm)  
Figure 42. Recommended Layer Stack  
www.onsemi.com  
19  
NCD57085, NCV57085  
PACKAGE DIMENSIONS  
SOIC8 NB  
CASE 75107  
ISSUE AK  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
B
0.25 (0.010)  
Y
1
K
Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
0.050 BSC  
Z−  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
0.10 (0.004)  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
GENERIC  
MARKING DIAGRAM*  
SOLDERING FOOTPRINT*  
8
1
8
1
8
8
XXXXX  
ALYWX  
XXXXXX  
AYWW  
G
XXXXX  
ALYWX  
XXXXXX  
AYWW  
1.52  
0.060  
G
1
1
Discrete  
Discrete  
(PbFree)  
IC  
IC  
(PbFree)  
7.0  
0.275  
4.0  
0.155  
XXXXX = Specific Device Code  
XXXXXX = Specific Device Code  
A
L
= Assembly Location  
= Wafer Lot  
A
= Assembly Location  
= Year  
Y
Y
W
G
= Year  
= Work Week  
= PbFree Package  
WW  
G
= Work Week  
= PbFree Package  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
STYLES ON PAGE 2  
www.onsemi.com  
20  
NCD57085, NCV57085  
SOIC8 NB  
CASE 75107  
ISSUE AK  
DATE 16 FEB 2011  
STYLE 1:  
STYLE 2:  
STYLE 3:  
PIN 1. DRAIN, DIE #1  
2. DRAIN, #1  
STYLE 4:  
PIN 1. EMITTER  
2. COLLECTOR  
3. COLLECTOR  
4. EMITTER  
5. EMITTER  
6. BASE  
PIN 1. COLLECTOR, DIE, #1  
2. COLLECTOR, #1  
3. COLLECTOR, #2  
4. COLLECTOR, #2  
5. BASE, #2  
PIN 1. ANODE  
2. ANODE  
3. ANODE  
4. ANODE  
5. ANODE  
6. ANODE  
7. ANODE  
3. DRAIN, #2  
4. DRAIN, #2  
5. GATE, #2  
6. SOURCE, #2  
7. GATE, #1  
6. EMITTER, #2  
7. BASE, #1  
7. BASE  
8. EMITTER  
8. EMITTER, #1  
8. SOURCE, #1  
8. COMMON CATHODE  
STYLE 5:  
STYLE 6:  
PIN 1. SOURCE  
2. DRAIN  
STYLE 7:  
STYLE 8:  
PIN 1. COLLECTOR, DIE #1  
2. BASE, #1  
PIN 1. DRAIN  
2. DRAIN  
3. DRAIN  
4. DRAIN  
5. GATE  
PIN 1. INPUT  
2. EXTERNAL BYPASS  
3. THIRD STAGE SOURCE  
4. GROUND  
5. DRAIN  
6. GATE 3  
7. SECOND STAGE Vd  
8. FIRST STAGE Vd  
3. DRAIN  
3. BASE, #2  
4. SOURCE  
5. SOURCE  
6. GATE  
7. GATE  
8. SOURCE  
4. COLLECTOR, #2  
5. COLLECTOR, #2  
6. EMITTER, #2  
7. EMITTER, #1  
8. COLLECTOR, #1  
6. GATE  
7. SOURCE  
8. SOURCE  
STYLE 9:  
STYLE 10:  
PIN 1. GROUND  
2. BIAS 1  
STYLE 11:  
PIN 1. SOURCE 1  
2. GATE 1  
STYLE 12:  
PIN 1. EMITTER, COMMON  
2. COLLECTOR, DIE #1  
3. COLLECTOR, DIE #2  
4. EMITTER, COMMON  
5. EMITTER, COMMON  
6. BASE, DIE #2  
PIN 1. SOURCE  
2. SOURCE  
3. SOURCE  
4. GATE  
3. OUTPUT  
4. GROUND  
5. GROUND  
6. BIAS 2  
7. INPUT  
8. GROUND  
3. SOURCE 2  
4. GATE 2  
5. DRAIN 2  
6. DRAIN 2  
7. DRAIN 1  
8. DRAIN 1  
5. DRAIN  
6. DRAIN  
7. DRAIN  
8. DRAIN  
7. BASE, DIE #1  
8. EMITTER, COMMON  
STYLE 13:  
PIN 1. N.C.  
2. SOURCE  
3. SOURCE  
4. GATE  
STYLE 14:  
PIN 1. NSOURCE  
2. NGATE  
STYLE 15:  
PIN 1. ANODE 1  
2. ANODE 1  
STYLE 16:  
PIN 1. EMITTER, DIE #1  
2. BASE, DIE #1  
3. PSOURCE  
4. PGATE  
5. PDRAIN  
6. PDRAIN  
7. NDRAIN  
8. NDRAIN  
3. ANODE 1  
4. ANODE 1  
5. CATHODE, COMMON  
6. CATHODE, COMMON  
7. CATHODE, COMMON  
8. CATHODE, COMMON  
3. EMITTER, DIE #2  
4. BASE, DIE #2  
5. COLLECTOR, DIE #2  
6. COLLECTOR, DIE #2  
7. COLLECTOR, DIE #1  
8. COLLECTOR, DIE #1  
5. DRAIN  
6. DRAIN  
7. DRAIN  
8. DRAIN  
STYLE 17:  
PIN 1. VCC  
2. V2OUT  
3. V1OUT  
4. TXE  
STYLE 18:  
STYLE 19:  
PIN 1. SOURCE 1  
2. GATE 1  
STYLE 20:  
PIN 1. ANODE  
2. ANODE  
3. SOURCE  
4. GATE  
PIN 1. SOURCE (N)  
2. GATE (N)  
3. SOURCE (P)  
4. GATE (P)  
5. DRAIN  
3. SOURCE 2  
4. GATE 2  
5. DRAIN 2  
6. MIRROR 2  
7. DRAIN 1  
8. MIRROR 1  
5. RXE  
6. VEE  
7. GND  
8. ACC  
5. DRAIN  
6. DRAIN  
7. CATHODE  
8. CATHODE  
6. DRAIN  
7. DRAIN  
8. DRAIN  
STYLE 21:  
STYLE 22:  
STYLE 23:  
STYLE 24:  
PIN 1. CATHODE 1  
2. CATHODE 2  
3. CATHODE 3  
4. CATHODE 4  
5. CATHODE 5  
6. COMMON ANODE  
7. COMMON ANODE  
8. CATHODE 6  
PIN 1. I/O LINE 1  
PIN 1. LINE 1 IN  
PIN 1. BASE  
2. COMMON CATHODE/VCC  
3. COMMON CATHODE/VCC  
4. I/O LINE 3  
5. COMMON ANODE/GND  
6. I/O LINE 4  
7. I/O LINE 5  
8. COMMON ANODE/GND  
2. COMMON ANODE/GND  
3. COMMON ANODE/GND  
4. LINE 2 IN  
2. EMITTER  
3. COLLECTOR/ANODE  
4. COLLECTOR/ANODE  
5. CATHODE  
6. CATHODE  
7. COLLECTOR/ANODE  
8. COLLECTOR/ANODE  
5. LINE 2 OUT  
6. COMMON ANODE/GND  
7. COMMON ANODE/GND  
8. LINE 1 OUT  
STYLE 25:  
PIN 1. VIN  
2. N/C  
STYLE 26:  
PIN 1. GND  
2. dv/dt  
STYLE 27:  
PIN 1. ILIMIT  
2. OVLO  
STYLE 28:  
PIN 1. SW_TO_GND  
2. DASIC_OFF  
3. DASIC_SW_DET  
4. GND  
3. REXT  
4. GND  
5. IOUT  
6. IOUT  
7. IOUT  
8. IOUT  
3. ENABLE  
4. ILIMIT  
5. SOURCE  
6. SOURCE  
7. SOURCE  
8. VCC  
3. UVLO  
4. INPUT+  
5. SOURCE  
6. SOURCE  
7. SOURCE  
8. DRAIN  
5. V_MON  
6. VBULK  
7. VBULK  
8. VIN  
STYLE 30:  
PIN 1. DRAIN 1  
2. DRAIN 1  
STYLE 29:  
PIN 1. BASE, DIE #1  
2. EMITTER, #1  
3. BASE, #2  
3. GATE 2  
4. SOURCE 2  
5. SOURCE 1/DRAIN 2  
6. SOURCE 1/DRAIN 2  
7. SOURCE 1/DRAIN 2  
8. GATE 1  
4. EMITTER, #2  
5. COLLECTOR, #2  
6. COLLECTOR, #2  
7. COLLECTOR, #1  
8. COLLECTOR, #1  
www.onsemi.com  
21  
NCD57085, NCV57085  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
ON Semiconductor Website: www.onsemi.com  
www.onsemi.com  

相关型号:

NCV57090A

Isolated High Current IGBT/MOSFET Gate Driver
ONSEMI

NCV57090ADWR2G

Isolated High Current IGBT/MOSFET Gate Driver
ONSEMI

NCV57090B

Isolated High Current IGBT/MOSFET Gate Driver
ONSEMI

NCV57090BDWR2G

Isolated High Current IGBT/MOSFET Gate Driver
ONSEMI

NCV57090C

Isolated High Current IGBT/MOSFET Gate Driver
ONSEMI

NCV57090CDWR2G

Isolated High Current IGBT/MOSFET Gate Driver
ONSEMI

NCV57090D

Isolated High Current IGBT/MOSFET Gate Driver
ONSEMI

NCV57090DDWR2G

Isolated High Current IGBT/MOSFET Gate Driver
ONSEMI

NCV57090E

Isolated High Current IGBT/MOSFET Gate Driver
ONSEMI

NCV57090EDWR2G

Isolated High Current IGBT/MOSFET Gate Driver
ONSEMI

NCV57090F

Isolated High Current IGBT/MOSFET Gate Driver
ONSEMI

NCV57090FDWR2G

Isolated High Current IGBT/MOSFET Gate Driver
ONSEMI