NCV57255DR2G [ONSEMI]

Isolated Dual-Channel IGBT Gate Driver;
NCV57255DR2G
型号: NCV57255DR2G
厂家: ONSEMI    ONSEMI
描述:

Isolated Dual-Channel IGBT Gate Driver

栅 双极性晶体管
文件: 总24页 (文件大小:837K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Isolated Dual Channel  
IGBT/MOSFET Gate Driver  
1
SOIC16  
D SUFFIX  
NCD57252, NCD57253,  
NCD57255, NCD57256,  
NCV57252, NCV57253,  
NCV57255, NCV57256  
NCx5725y are highcurrent two channel isolated IGBT/MOSFET  
SOIC16 WB  
CASE 751B05  
CASE 751G03  
MARKING DIAGRAMS  
16  
5725y  
AWLYYWWG  
5725y  
AWLYWWG  
gate drivers with 2.5 or 5 kV * internal galvanic isolation from input  
rms  
to each output and functional isolation between the two output  
channels. The device accepts 3.3 V to 20 V bias voltage and signal  
levels on the input side and up to 32 V bias voltage on the output side.  
The device accepts complementary inputs and offers separate pins for  
Disable and Dead Time control for system design convenience.  
Drivers are available in wide body SOIC16 and narrow body  
SOIC16 package.  
1
1
5725y  
= Specific Device Code  
y = 2, 3, 5 or 6  
= Assembly Location  
= Wafer Lot  
A
WL  
YY, Y  
WW  
G
= Year  
= Work Week  
= PbFree Package  
Features  
(See page 21)  
High Peak Output Current ( 6.5 A*, 3.5 A*)  
Configurable as a Dual LowSide or Dual HighSide or HalfBridge  
PIN CONNECTIONS  
Driver  
Programmable Overlap or Dead Time control  
Disable Pin to Turn Off Outputs for Power Sequencing  
INA  
INB  
V
DDA  
OUTA  
GNDA  
NC  
ANB Function to Offer Flexibility to Set up the Driver as  
Halfbridge Driver Operating with a Single Input Signal  
IGBT/MOSFET Gate Clamping during Short Circuit  
Short Propagation Delays with Accurate Matching  
V
DDI  
GND  
DIS  
DT  
NC  
V
DDB  
Tight UVLO Thresholds on all Power Supplies  
3.3 V, 5 V, and 15 V Logic Input  
ANB  
OUTB  
GNDB  
2.5 or 5 kV * Galvanic Isolation from Input to each Output  
rms  
V
DDI  
and 1.5 kV Differential Voltage between Output Channels  
rms  
NCx5725y  
x = D or V  
1200 V Working Voltage (per VDE088411 Requirements)  
High Common Mode Transient Immunity  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AECQ100  
Qualified and PPAP Capable  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 21 of  
this data sheet.  
This Device is PbFree, Halogen Free/BFR Free and is RoHS  
Compliant  
Typical Applications  
EV Chargers  
Motor Control  
Uninterruptible Power Supplies (UPS)  
Industrial Power Supplies  
Solar Inverters  
Automotive Applications  
*Depends on package variant, see Page 6, 21.  
© Semiconductor Components Industries, LLC, 2020  
1
Publication Order Number:  
June, 2023 Rev. 5  
NCD57252/D  
NCD57252, NCD57253, NCD57255, NCD57256, NCV57252, NCV57253, NCV57255,  
NCV57256  
V
V
DDI  
V
DDA  
UVLOI  
DDI  
UVLOA  
RESET  
CONTROL  
INA  
DT  
OUTA  
GNDA  
RESET  
CONTROL  
NC  
NC  
Functional Isolation  
Deadtime  
and  
Interlock  
DIS  
V
DDB  
ANB  
UVLOB  
RESET  
CONTROL  
OUTB  
GNDB  
RESET  
CONTROL  
INB  
GNDI  
Figure 1. Simplified Block Diagram  
+V2  
INA  
V
DDA  
OUTA  
INB  
V1  
V
DDI  
GNDA  
V
DDI  
GND2  
+V3  
Functional  
Isolation  
V
DDB  
GNDI  
GND1  
OUTB  
DIS  
DT  
ANB  
GNDB  
GND3  
Figure 2. Typical Application, High and Low Side IGBT Gate Drive  
*Depends on package variant, see Page 6, 21.  
www.onsemi.com  
2
 
NCD57252, NCD57253, NCD57255, NCD57256, NCV57252, NCV57253, NCV57255,  
NCV57256  
+V2  
V
DDA  
INA  
OUTA  
INB  
V1  
V
V
DDI  
GNDA  
DDI  
GND2  
+V3  
Function  
Isolation  
GNDI  
V
DDB  
GND1  
OUTB  
DIS  
DT  
ANB  
GNDB  
GND3  
Figure 3. Typical Application, Two Channels IGBT Gate Drive  
+V2  
V
INA  
INB  
DDA  
OUTA  
V1  
V
DDI  
GNDA  
V
DDI  
GND2  
+V3  
Functional  
Isolation  
V
DDB  
GNDI  
GND1  
OUTB  
DIS  
DT  
ANB  
GNDB  
GND3  
Figure 4. Typical Application, High and Low Side IGBT Gate Drive with PWM Controller  
*Depends on package variant, see Page 6, 21.  
www.onsemi.com  
3
 
NCD57252, NCD57253, NCD57255, NCD57256, NCV57252, NCV57253, NCV57255,  
NCV57256  
Table 1. FUNCTION DESCRIPTION  
Pin Name  
No.  
I/O  
Description  
INA  
1
Input  
A non-inverting gate driver input that defines OUTA. It has an equivalent pulldown resistor of 125 kW  
to ensure that output is low in the absence of an input signal.  
A positive or negative going pulse with pulse width longer than maximum value of t  
before OUTA reacts.  
is required at INA  
MIN2  
The input logic levels scale with V  
up to V  
= 5 V. With V  
above 5 V the input logic levels stay  
DDI  
DDI  
DDI  
the same as for V  
= 5 V. Maximum voltage on this pin is V  
.
DDI  
DDI  
INB  
2
Input  
A noninverting gate driver input that defines OUTB. It has an equivalent pulldown resistor of 125 kW  
to ensure that output is low in the absence of an input signal.  
A positive or negative going pulse with pulse width longer than maximum value of t  
before OUTB reacts.  
is required at INB  
MIN2  
The input logic levels scale with V  
up to V  
= 5 V. With V  
above 5 V the input logic levels stay  
DDI  
DDI  
DDI  
the same as for V  
= 5 V. Maximum voltage on this pin is V  
.
DDI  
DDI  
V
DDI  
3, 8  
Power Low voltage side power supply. A good quality bypassing capacitor is required from this pin to GNDI  
and should be placed close to the pins for best results.  
The under voltage lockout (UVLOI) circuit enables the device to operate at power on when a typical  
supply voltage higher than V  
Please see Figure 7 and 8 for more details.  
is present.  
UVLOI OUT ON  
GNDI  
DIS  
4
5
Power Low voltage side ground.  
Input  
Input  
A high level on disable pin turns both OUTA and OUTB low simultaneously regardless of the states  
of INA, INB, DT and ANB. Minimum pulse width filter and propagation delays apply. It has an equivalent  
pulldown resistor of 125 kW to ensure that OUTA and OUTB react to INA, INB, DT and ANB in the  
absence of an input signal.  
The input logic levels scale with V  
up to V  
= 5 V. With V  
above 5 V the input logic levels stay  
DDI  
DDI  
DDI  
the same as for V  
= 5 V. Maximum voltage on this pin is V  
.
DDI  
DDI  
DT  
6
7
A deadtime pin is used to configure the two outputs sequence. The deadtime (t ) and interlocking logic  
DT  
between INA and INB is defined by the value of the external resistor (R ) connected between DT pin  
DT  
and GNDI. The deadtime can be estimated as t (ns) 10 x R (kW). If DT pin is pulled up to VDDI  
DT  
DT  
for disabling the deadtime and interlocking logic the OUTA and OUTB can be high simultaneously.  
Minimum deadtime will be observed between OUTA and OUTB when DT pin is left floating.  
Allowed resistance between this pin and GNDI is in range of 5 to 500 kW.  
Maximum voltage on this pin is V  
Corresponding waveforms are on Figure 5.  
.
DDI  
ANB  
Input  
A high signal on ANB (AandB) pin enables OUTA and OUTB as complementary outputs from one  
PWM input signal on INA. INB must be connected to INA when ANB is high. ANB should be kept low  
when OUTA and OUTB are controlled individually by INA, INB. It has an equivalent pulldown resistor  
of 100 k to ensure that ANB pin will not be floating. Leaving this pin floating for proper security features  
is not recommended.  
The input logic levels scale with V  
up to V  
= 5 V. With V  
above 5 V the input logic levels stay  
DDI  
DDI  
DDI  
the same as for V  
= 5 V. Maximum voltage on this pin is V  
.
DDI  
DDI  
GNDB  
OUTB  
9
Power Ground for channel B.  
10  
Output Output of channel B on the high voltage side. It has galvanic isolation from low voltage side and from  
channel A. OUTB provides the appropriate drive voltage and source/sink current to the IGBT/MOSFET  
gate. OUTB is actively pulled low during startup, when DIS is high and under UVLOB, UVLOI condition.  
INB must be connected to INA when ANB is high.  
There is interlocking logic that prevents OUTA and OUTB cross conduction when DT pin is not connected  
to V  
.
DDI  
V
DDB  
11  
Power High voltage side power supply for channel B. A good quality bypassing capacitor is required from this pin  
to GNDB and should be placed close to the pins for best results.  
The under voltage lockout (UVLOB) circuit enables the device to operate at power on when a typical  
supply voltage higher than V  
Please see Figure 9 and 10 for more details.  
is present.  
UVLOB OUT ON  
NC  
12, 13  
14  
Not connected internally.  
GNDA  
OUTA  
Power Ground for channel A.  
15  
Output Output of channel A on the high voltage side. It has galvanic isolation from low voltage side and from  
channel B. OUTA provides the appropriate drive voltage and source/sink current to the IGBT/MOSFET  
gate. OUTA is actively pulled low during startup, when DIS is high and under UVLOA, UVLOI condition.  
There is interlocking logic that prevents OUTA and OUTB cross conduction when DT pin is not  
connected to V  
.
DDI  
www.onsemi.com  
4
 
NCD57252, NCD57253, NCD57255, NCD57256, NCV57252, NCV57253, NCV57255,  
NCV57256  
Table 1. FUNCTION DESCRIPTION (continued)  
Pin Name  
No.  
I/O  
Description  
V
DDA  
16  
Power High voltage side power supply for channel A. A good quality bypassing capacitor is required from this pin  
to GNDA and should be placed close to the pins for best results.  
The under voltage lockout (UVLOA) circuit enables the device to operate at power on when a typical  
supply voltage higher than V  
Please see Figure 9 and 10 for more details.  
is present.  
UVLOA OUT ON  
Table 2. SAFETY AND INSULATION RATINGS  
Symbol  
Parameter  
Min  
Typ  
IIV  
IIV  
IIV  
IIV  
IIII  
Max  
Unit  
Installation Classifications per DIN VDE 0110/1.89  
Table 1 Rated Mains Voltage  
< 150 V  
RMS  
RMS  
RMS  
RMS  
< 300 V  
< 450 V  
< 600 V  
< 1000 V  
RMS  
CTI  
Comparative Tracking Index (DIN IEC 112/VDE 0303 Part 1)  
Climatic Classification  
600  
40/100/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
V
InputtoOutput Test Voltage, Method b, V  
× 1.875 = V , 100%  
2250  
V
V
PR  
IORM  
PR  
PK  
Production Test with t = 1 s, Partial Discharge < 5 pC  
m
V
IORM  
Maximum Repetitive Peak Voltage  
Maximum Working Insulation Voltage  
1200  
870  
PK  
V
IOWM  
V
RMS  
V
IOTM  
Highest Allowable Over Voltage  
SOIC16 (NCx 57255, NCx 57256)  
SOIC16WB (NCx 57252, NCx 57253)  
V
PK  
4200  
8400  
E
External Creepage  
SOIC16 (NCx 57255, NCx 57256)  
SOIC16WB (NCx 57252, NCx 57253)  
mm  
mm  
mm  
CR  
4.0  
8.0  
E
External Clearance  
SOIC16 (NCx 57255, NCx 57256)  
SOIC16WB (NCx 57252, NCx 57253)  
CL  
4.0  
8.0  
DTI  
Insulation Thickness  
SOIC16 (NCx 57255, NCx 57256)  
SOIC16WB (NCx 57252, NCx 57253)  
8.65  
17.3  
Safety Limit Values – Maximum Values in Failure; Case Temperature  
Safety Limit Values – Maximum Values in Failure; Input Power  
150  
264  
°C  
T
Case  
P
mW  
mW  
S,INPUT  
P
Safety Limit Values – Maximum Values in Failure; Output Power  
SOIC16 (NCx 57255, NCx 57256)  
SOIC16WB (NCx 57252, NCx 57253)  
S,OUTPUT  
796  
1136  
9
R
Insulation Resistance at TS, V = 500 V  
W
IO  
IO  
10  
www.onsemi.com  
5
NCD57252, NCD57253, NCD57255, NCD57256, NCV57252, NCV57253, NCV57255,  
NCV57256  
Table 3. ABSOLUTE MAXIMUM RATINGS (Note 1) Over operating freeair temperature range unless otherwise noted  
Symbol  
Parameter  
Supply voltage, low voltage side  
Minimum  
0.3  
Maximum  
Unit  
V
V
GNDI  
GNDA  
GNDB  
22  
36  
36  
DDI  
V
Supply voltage, high voltage side, channel A  
Supply voltage, high voltage side, channel B  
Gate driver output voltage, channel A  
Gate driver output voltage, channel B  
0.3  
V
DDA  
DDB  
V
0.3  
V
V
GNDA 0.3  
GNDB 0.3  
V
DDA  
V
DDB  
+ 0.3  
+ 0.3  
V
OUTA  
OUTB  
V
V
I
Gatedriver output sourcing current  
A
PKSRC  
(maximum pulse width = 10 ms, minimum period = 5 ms,  
V
– GNDA = V  
(NCx57252, NCx57253)  
(NCx57255, NCx57256)  
– GNDB = 15 V)  
DDA  
DDB  
6.5  
3.5  
I
Gatedriver output sinking current  
A
PKSNK  
(maximum pulse width = 10 ms, minimum period = 5 ms,  
V
DDA  
– GNDA = V  
– GNDB = 15 V )  
DDB  
(NCx57252, NCx57253)  
(NCx57255, NCx57256)  
6.5  
3.5  
t
Maximum Short Circuit Clamping Time  
(I = I = 500 mA)  
10  
ms  
CLP  
OUTA_CLAMP  
OUTB_CLAMP  
V
LIM  
GNDI  
Voltage at INA, INB, DIS, DT, ANB  
0.3  
V
DDI  
+ 0.3  
V
PD  
Power Dissipation (Note 3)  
SOIC16 (NCx 57255, NCx 57256)  
SOIC16WB (NCx 57252, NCx 57253)  
mW  
1400  
1060  
T (max)  
Maximum Junction Temperature  
40  
65  
150  
150  
4
°C  
°C  
kV  
kV  
J
T
STG  
Storage Temperature Range  
ESDHBM  
ESDCDM  
MSL  
ESD Capability, Human Body Model (Note 4)  
ESD Capability, Charged Device Model (Note 4)  
Moisture Sensitivity Level  
2
1
T
SLD  
Lead Temperature Soldering Reflow, PbFree Versions  
(Note 5)  
260  
°C  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
2. The minimum value is verified by characterization with a single pulse of 100 mA for 100 ms.  
2
3. The value is estimated for ambient temperature 25°C and junction temperature 150°C, 650 mm , 1 oz copper, 2 surface layers and 2 internal  
power plane layers. Power dissipation is affected by the PCB design and ambient temperature.  
4. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AECQ100002 (EIA/JESD22A114).  
ESD Charged Device Model tested per AECQ100011 (EIA/JESD22C101).  
Latchup Current Maximum Rating: 100 mA per JEDEC standard: JESD78, 25°C.  
5. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.  
Table 4. THERMAL CHARACTERISTICS  
Parameter  
Conditions  
Symbol  
Value  
164  
Unit  
2
Thermal Resistance, JunctiontoAir  
SOIC16 (NCx 57255, NCx 57256)  
R
°C/W  
100 mm , 2 oz Copper, 1 Surface Layer  
q
JA  
2
118  
100 mm , 2 oz Copper, 2 Surface Layers  
and 2 Internal Power Plane Layers  
2
Thermal Resistance, JunctiontoAir  
SOIC16WB (NCx 57252, NCx 57253)  
R
°C/W  
81  
57  
100 mm , 2 oz Copper, 1 Surface Layer  
q
JA  
2
100 mm , 2 oz Copper, 2 Surface Layers  
and 2 Internal Power Plane Layers  
www.onsemi.com  
6
 
NCD57252, NCD57253, NCD57255, NCD57256, NCV57252, NCV57253, NCV57255,  
NCV57256  
Table 5. RECOMMENDED OPERATING RANGES (Note 6)  
Symbol  
Parameter  
Supply voltage, low voltage side  
Minimum  
UVLOI  
UVLOA  
UVLOB  
GNDI  
Maximum  
Unit  
V
V
GNDI  
GNDA  
GNDB  
20  
32  
32  
DDI  
V
Supply voltage, high voltage side, channel A  
Supply voltage, high voltage side, channel B  
Logic Input Voltage at INA, INB, DIS, DT, ANB  
ꢀCommon Mode Transient Immunity (CMTI)  
Ambient Temperature  
V
DDA  
DDB  
V
V
V
IN  
V
DDI  
V
| dV /dt |  
ISO  
100  
kV/ms  
°C  
T
A
40  
125  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
6. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
Table 6. ISOLATION CHARACTERISTICS  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
InputOutput Isolation  
Voltage  
T = 25°C, Relative Humidity < 50%,  
V
RMS  
ISO, IINPUT  
A
t = 1.0 minute, I  
10 A, 50 Hz  
IO  
TO OUTPUT  
(Notes 7, 8, 9)  
SOIC16 (NCx 57255, NCx 57256)  
2500  
5000  
SOIC16WB (NCx 57252, NCx 57253)  
V
OutputOutput Isolation  
Voltage  
T = 25°C, Relative Humidity < 50%,  
V
RMS  
ISO, OUTPUT  
TO OUTPUT  
A
t = 1.0 minute, I  
10 A, 50 Hz  
IO  
(Notes 7, 8, 9)  
SOIC16 (NCx 57255, NCx 57256)  
1500  
1500  
SOIC16WB (NCx 57252, NCx 57253)  
11  
R
Isolation Resistance  
V
IO  
= 500 V (Note 7)  
10  
W
ISO  
7. Device is considered a twoterminal device: pins 1 to 8 are shorted together and pins 9 to 16 are shorted together.  
8. 5,000 V for 1minute duration is equivalent to 6,000 V for 1second duration.  
RMS  
RMS  
2,500 VRMS for 1minute duration is equivalent to 3,000 VRMS for 1second duration.  
9. The inputoutput isolation voltage is a dielectric voltage rating per UL1577. It should not be regarded as an inputoutput continuous voltage  
rating. For the continuous working voltage rating, refer to equipmentlevel safety specification or DIN VDE V 088411 Safety and Insulation  
Ratings Table.  
Table 7. ELECTRICAL CHARACTERISTICS  
V
DDI  
= 5V, V  
= V  
= 15 V  
DDA  
DDB  
For typical values T = 25°C, for min/max values, T is the operating ambient temperature range that applies, unless otherwise noted.  
A
A
Symbol  
VOLTAGE SUPPLY  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
V
V
Supply Under Voltage Output  
3.1  
V
V
V
UVLOIOUTON  
DDI  
Enabled  
V
V
DDI  
Supply Under Voltage Output  
2.4  
0.1  
UVLOIOUTOFF  
Disabled  
V
V
DDI  
Supply Voltage Output  
UVLOIHYST  
Enabled/Disabled Hysteresis  
V
V
V
/V Supply Under Voltage  
NCx57252/NCx57255  
12.4  
8.6  
12.9  
9.1  
12  
13.4  
9.6  
V
V
V
V
V
UVLOAOUTON  
DDA DDB  
Output Enabled  
UVLOBOUTON  
NCx57253/NCx57256  
NCx57252/NCx57255  
NCx57253/NCx57256  
V
V
V
/V Supply Under Voltage  
11.5  
7.6  
12.5  
8.6  
UVLOAOUTOFF  
DDA DDB  
Output Disabled  
UVLOBOUTOFF  
8.1  
1.0  
V
V
/V  
Supply Voltage Output  
0.8  
UVLOA/BHYST  
DDA DDB  
Enabled/Disabled Hysteresis  
I
Low Voltage Side Quiescent Current  
V
= V = 0 V  
INB  
2
4
mA  
mA  
QDDI0  
INA  
I
Low Voltage Side Operating Current  
at 50% Duty Cycle  
INA PWM, INB Low (or INA Low,  
INB PWM), f = 200 kHz  
QDDI50  
I
Low Voltage Side Operating Current  
at 100% Duty Cycle  
INA or INB High  
6
mA  
QDDI100  
www.onsemi.com  
7
 
NCD57252, NCD57253, NCD57255, NCD57256, NCV57252, NCV57253, NCV57255,  
NCV57256  
Table 7. ELECTRICAL CHARACTERISTICS (continued) V  
= 5V, V  
= V  
= 15 V  
DDI  
DDA  
DDB  
For typical values T = 25°C, for min/max values, T is the operating ambient temperature range that applies, unless otherwise noted.  
A
A
Symbol  
VOLTAGE SUPPLY  
, I  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
I
High Voltage Side Quiescent  
Current  
V
INA  
= V = 0 V,  
INB  
Current per Channel  
2
mA  
QDDA0 QDDB0  
I
,
High Voltage Side Operating  
Current at 50% Duty Cycle  
Current per Channel,  
2
2
mA  
mA  
QDDA50  
I
f = 200 kHz, C = 1 nF  
QDDB50  
G
I
,
High Voltage Side Operating  
Current at 100% Duty Cycle  
Current per Channel  
QDDA100  
I
QDDB100  
LOGIC INPUT  
V
V
, V  
,
Low Level Input Voltage  
High Level Input Voltage  
Input Hysteresis  
Level scale for V = 3.3 to 5 V  
DDI  
0.3 ×  
V
DDI  
V
V
V
INAL  
INBL  
for V  
> 5 V is the same  
DDI  
, V  
DISL ANBL  
as for V  
= 5 V  
DDI  
V
V
, V  
INBH  
,
Level scale for V = 3.3 to 5 V  
DDI  
0.7 ×  
V
DDI  
INAH  
for V  
> 5 V is the same  
DDI  
DDI  
, V  
DISH ANBH  
as for V  
= 5 V  
V
V
V
,
,
,
Level scale for V  
= 3.3 to 5 V  
0.15 ×  
V
DDI  
INAHYS  
INBHYS  
DISHYS  
DDI  
for V  
> 5 V is the same  
DDI  
as for V  
= 5 V  
DDI  
V
ANBHYS  
V
V
, V  
,
Negative Input Transient  
50 ns  
5  
V
INAN  
INBN  
, V  
DISN ANBN  
(Note 10)  
I
I
, I  
,
Logic “1” Input Bias Current  
Logic “1” Input Bias Current  
Logic “0” Input Bias Current  
V
V
= V  
= V  
= V  
= V  
= V  
= V  
= V  
=
50  
50  
1
mA  
mA  
mA  
INAH INBH  
INA  
DDI  
INB  
DIS  
DIS  
DIS  
ANB  
ANB  
ANB  
= 3.3 V  
, I  
DISH ANBH  
I
I
, I  
, I  
,
V
INA  
V
DDI  
= V  
=
INAH INBH  
INB  
= 20 V  
DISH ANBH  
I
, I  
,
V
INA  
= V  
= 0 V  
INAL INBL  
INB  
I
, I  
DISL ANBL  
DRIVER OUTPUT  
V
V
, V  
, V  
Output Low State  
Output High State  
I
I
= 200 mA, T = 25°C  
0.1  
0.22  
0.5  
V
V
A
OUTAL1  
OUTBL1  
SINK  
A
= 200 mA, T = 40°C to 125°C  
OUTAL2  
OUTBL2  
SINK  
A
V
V
, V  
, V  
I
I
= 200 mA, T = 25°C  
14.7  
14.8  
OUTAH1  
OUTBH1  
SRC  
A
= 200 mA, T = 40°C to 125°C 14.2  
OUTAH2  
OUTBH2  
SRC  
A
I
I
Peak Driver Current, Sink (Note 10)  
SOIC16 (NCx 57255, NCx 57256)  
SOIC16WB (NCx 57252, NCx 57253)  
PKSNK1  
3.5  
6.5  
Peak Miller Plateau Current, Sink  
(Note 10)  
SOIC16 (NCx 57255, NCx 57256)  
SOIC16WB (NCx 57252, NCx 57253)  
V
= V  
= 6 V  
A
PKSNK2  
OUTA  
OUTB  
(near IGBT Miller Plateau)  
3
6
I
I
Peak Driver Current, Source (Note 10)  
SOIC16 (NCx 57255, NCx 57256)  
SOIC16WB (NCx 57252, NCx 57253)  
A
A
PKSRC1  
3.5  
6.5  
Peak Miller Plateau Current, Source  
(Note 7)  
SOIC16 (NCx 57255, NCx 57256)  
SOIC16WB (NCx 57252, NCx 57253)  
V
= V  
= 9 V  
PKSRC2  
OUTA  
OUTB  
(near IGBT Miller Plateau)  
3
6
IGBT SHORT CIRCUIT CLAMPING  
Clamping Voltage  
V
,
I
= I = 500 mA  
OUTB  
0.4  
0.6  
V
CLAMPOUTA  
OUTA  
V
(V  
(V  
V  
V  
),  
(pulse test, t  
= 10 ms)  
CLAMPOUTB  
CLAMPOUTA  
CLAMPOUTB  
DDA  
DDB  
CLPmax  
)
www.onsemi.com  
8
NCD57252, NCD57253, NCD57255, NCD57256, NCV57252, NCV57253, NCV57255,  
NCV57256  
Table 7. ELECTRICAL CHARACTERISTICS (continued) V  
= 5V, V  
= V  
= 15 V  
DDI  
DDA  
DDB  
For typical values T = 25°C, for min/max values, T is the operating ambient temperature range that applies, unless otherwise noted.  
A
A
Symbol  
DYNAMIC CHARACTERISTIC  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
t
OUTA High Propagation Delay  
OUTA Low Propagation Delay  
Propagation Delay Distortion  
C
= 10 nF, V to 10%  
INAH  
40  
40  
60  
60  
0
80  
80  
20  
80  
80  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PDONA  
LOAD  
of Output Change for PW > 150 ns  
C = 10 nF, V to 90%  
LOAD  
t
PDOFFA  
INAL  
of Output Change for PW > 150 ns  
t
PW >150 ns  
20  
40  
DISTORTA  
(Channel A) (t  
t  
)
)
PDONA  
PDOFFA  
t
OUTB High Propagation Delay  
OUTB Low Propagation Delay  
Propagation Delay Distortion  
C
= 10 nF, V to 10%  
INBH  
60  
60  
0
PDONB  
LOAD  
of Output Change for PW > 150 ns  
t
C
= 10 nF, V to 90%  
40  
PDOFFB  
DISTORTB  
LOAD  
INBL  
of Output Change for PW > 150 ns  
t
PW >150 ns  
20  
20  
20  
(Channel B) (t  
t  
PDOFFB  
PDONB  
t
Rising Edge Propagation Delay  
Distortion (t t  
PW >150 ns  
PW >150 ns  
0
DISTORTON  
)
PDONA  
PDONB  
t
Falling Edge Propagation Delay  
0
DISTORTOFF  
Distortion (t  
t  
PDOFFB  
)
PDOFFA  
t
t
Rise Time for Both Channel A and B  
Fall Time for Both Channel A and B  
Deadtime between channels  
C
= 1 nF, 10% to 90%  
LOAD  
12  
10  
RISE  
FALL  
of Output Change  
C
= 1 nF, 90% to 10%  
LOAD  
of Output Change  
t
DT  
DT pin Float  
<20  
5
ns  
ms  
ns  
ns  
R
R
= 500 kW  
= 20 kW  
DT  
DT  
200  
60  
t
Disable Delay  
DIS  
Positive pulse (LHL), T = 25°C  
10  
10  
ns  
ns  
ns  
ns  
t
Input Pulse Width for no output  
A
MIN1  
Negative pulse (HLH), T = 25°C  
A
Positive pulse (LHL), T = 25°C  
40  
40  
t
Input Pulse Width for guaranteed  
output  
A
MIN2  
Negative pulse (HLH), T = 25°C  
A
t
UVLOI/UVLOA/UVLOB Fall Delay  
UVLOI/UVLOA/UVLOB Rise Delay  
(Note 10)  
(Note 10)  
1.5  
20  
ms  
ms  
UVF  
t
10  
UVR  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
10.Values based on design and/or characterization.  
11. PW = Pulse Width  
Modes of Operation  
the driver generates deadtime which is adjustable by DT  
pin.  
The typical application schematics are on Figure 2 and 3.  
The NCx5725y can operate in 3 distinct modes:  
1. The lowside, highside halfbridge driver with two  
inputs and programmable deadtime.  
2. The lowside, highside halfbridge driver with  
one input and programmable deadtime.  
3. The two independent (potentially overlapping)  
channels with two inputs.  
ANB pin has to be connected to GNDI in this mode.  
The deadtime is set by resistor R connected between  
DT  
DT pin and GNDI. Adjusting deadtime is described in  
the section Deadtime (DT).  
nd  
2
mode – halfbridge driver with one input and  
st  
1
mode – halfbridge driver with two inputs and  
st  
adjustable deadtime is very similar to 1 mode but just  
highside PWM is needed. The lowside PWM is internally  
generated by the driver. Interlock and deadtime generator  
adjustable deadtime is for applications where you have  
highside and lowside PWM available. The driver  
provides interlock function to prevent activation of  
highside and lowside outputs at the same time. In addition  
st  
works the same as in 1 mode.  
www.onsemi.com  
9
 
NCD57252, NCD57253, NCD57255, NCD57256, NCV57252, NCV57253, NCV57255,  
NCV57256  
enabled. The deadtime can be adjusted in range from  
Both INA and INB have to be connected together.  
200 ns (R 20 kW) to 5 ms (R 500 kW). Deadtime  
DT  
DT  
ANB pin has to be connected to V . This enables the  
DDI  
can be estimated by the equation t (ns) 10 x R (kW).  
DT  
DT  
internal complementary lowside PWM generator.  
With high R values the potential noise pickup on high  
DT  
The deadtime is set by resistor R connected between  
DT  
impedance of R should be considered. R should be  
DT  
DT  
DT pin and GNDI. Adjusting deadtime is described in  
the section Deadtime (DT).  
as close to driver pins as possible and the loop should be  
minimized.  
rd  
3 mode – driver with two independent channels and two  
If R is below 20 kW the DT is not closely following the  
DT  
inputs is different from previous two modes because it  
allows for completely independent and even overlapping  
PWMs to drive the outputs individually.  
equation but deadtimes lower than 200 ns could be  
achieved. The lowest allowed value of R = 5 kW which  
DT  
reduces the deadtime to about 70 ns.  
The ANB pin has to be connected to GNDI.  
The Figures 2 and 3 illustrate the behavior of the  
NCx5725y in 1 mode (highside, lowside halfbridge  
driver with two inputs). The outputs for various input PWM  
combinations are shown in Figure 5.  
The deadtime is a time from lowside output going low  
to highside output going high or from highside output  
going low to low side output going high. The overlap is  
a situation where both signals are high at the same time.  
Overlap causes cross conduction in the halfbridge and must  
be avoided.  
DT pin has to be connected to V . This disables the  
DDI  
st  
interlock function and deadtime generator and allows  
the overlapping PWMs. So the channel A and B can be  
driven completely independently.  
DeadTime (DT)  
The deadtime pin is controlling the integrated interlock  
and deadtime generator.  
If DT pin is connected to V  
the interlock and  
deadtime generator are disabled. The channels A and B  
DDI  
In the “Nonoverlap and Deadtime are met” column in  
Fig. 5, the channel A PWM, INA (highside), and channel  
B PWM, INB (lowside), are not overlapping and have  
sufficient deadtime. Therefore, the driver does not apply  
corrections to the signals and passes them as they are to their  
respective output.  
are completely independent.  
If DT pin is floating the interlock is enabled but deadtime  
generator is disabled. There is a minimal deadtime  
shorter than 20 ns.  
If there is a resistor R connected between the DT pin  
DT  
and GNDI the interlock and deadtime generator are both  
Figure 5. Deadtime, Interlock and Output Minimum Pulse Width  
In the “Deadtime corrected” column, the highside and  
lowside signals are not overlapping but the deadtime  
value is less than the value set through the DT pin.  
Consequently, the driver increases the deadtime value to  
the value set by the DT pin.  
In the “Overlap and Deadtime corrected” column, the  
highside and lowside input signals are high at the same  
time (overlapping). This condition could cause  
crossconduction in the halfbridge. Therefore, the driver’s  
interlock function trims signal OUTB which is going low  
www.onsemi.com  
10  
 
NCD57252, NCD57253, NCD57255, NCD57256, NCV57252, NCV57253, NCV57255,  
NCV57256  
Edge Triggered Inputs  
when INA goes high, and not when INB goes low. The driver  
also inserts the deadtime set through DT pin, thus the  
output pulses are not overlapping and crossconduction in  
the halfbridge is avoided.  
In the “Overlap, Deadtime corrected and Short pulses  
filtered out” column, the highside and low side signals are  
overlapping and could cause crossconduction in the  
halfbridge. Therefore, the driver’s interlock function trims  
the output signals and a short spike remains on each output  
signal. If the spike is shorter than tMIN1 (Minimum pulse  
width filtering time), it will be suppressed and no output is  
generated.  
The INA, INB and DIS inputs are activated by a signal  
edge (edge triggered), not with signal level. This means that  
after power cycling the driver, a rising edge has to occur on  
INA, INB for OUTA and OUTB to go high, respectively.  
The same conditions apply if the output signals are disabled  
through the DIS pin. Therefore, after DIS signal goes low,  
a rising edge has to occur on INA, INB for OUTA and OUTB  
to go high, respectively.  
Under Voltage Lockout UVLOI, UVLOA, UVLOB  
UVLOA and UVLOB ensures correct driving of the gates  
of the IGBTs (NCx57252, NCx57255) or MOSFETs  
(NCx57253, NCx57256). Driving the IGBT/MOSETS with  
low gate voltage causes it to switch outside the saturation  
region (in the linear region) which significantly increases  
the power losses and there is a danger of damage.  
In the “Overlap corrected” column the deadtime is met  
but the signals are overlapping so just the nonoverlapping  
parts pass to the output.  
Inputs INA, INB, DIS, ANB  
UVLOI ensures correct transmission of the signals from  
the primary side to the secondary side of the driver.  
NCx5725y is equipped by edge triggered inputs in order  
to prevent output pulse trimming. Therefore, after returning  
from safe state to active state, a rising edge has to occur on  
INA, INB in order to set OUTA and OUTB high,  
respectively (see Figures 7, 8 and Figures 9, 10).  
Unused inputs should be tied to GNDI.  
Input Voltage Levels  
The NCx5725y has a two modes for high and low levels  
on all input pins:  
1. For V  
from 3.3 to 5 V the high and low input  
DDI  
levels are scaling with the V  
as stated in the  
DDI  
Electrical characteristics table. Low input level is  
0.3 × V , high input level is 0.7 × V  
As a side effect of this feature is that the t  
time is  
UVR  
.
DDI  
DDI  
always prolonged by a t  
. The t  
is the  
UVRspread  
UVRspread  
2. For V  
above 5 V the high and low input levels  
DDI  
delay caused by the time before next rising edge of PWM  
signal comes.  
clamp at the same value as for V  
means the low input level is 0.3 × 5 = 1.5 V and the  
high input level is 0.7 × 5 = 3.5 V.  
= 5 V. That  
DDI  
Another note for the t  
is that it is valid if the V  
rises  
UVR  
DD2  
from just below V  
to V  
. The  
UVLOOUTOFF  
UVLOOUTON  
coldstart time from V  
= 0 V to PWM at the output  
DDA(B)  
VDDI  
is t  
+ startup time of the internal bias circuits. The whole  
UVR  
time is about 20 ms and the internal bias circuit startup time  
is about 10 ms.  
Clamping  
Circuit  
INA  
(INB)  
Figure 6. Input Pin Structure  
www.onsemi.com  
11  
NCD57252, NCD57253, NCD57255, NCD57256, NCV57252, NCV57253, NCV57255,  
NCV57256  
V
DDA  
V
DDB  
V
UVLOI-HYST  
V
V
UVLOI-OUT-ON  
UVLOI-OUT-OFF  
V
DDI  
t
t
t
t
t
UVF  
UVF  
UVR  
UVR  
UVR  
t
UVR-spread  
INA/INB  
OUTA/OUTB  
Figure 7. Output Rampup and Rampdown Times during UVLOI  
V
DDA  
V
DDB  
V
V
UVLOI-OUT-ON  
UVLOI-OUT-OFF  
V
DDI  
t
t
UVF  
t
t
t
UVR  
UVR  
UVF  
UVR  
t
UVR-spread  
INA/INB  
OUTA/OUTB  
Figure 8. VDDI Glitch Filtering  
www.onsemi.com  
12  
NCD57252, NCD57253, NCD57255, NCD57256, NCV57252, NCV57253, NCV57255,  
NCV57256  
V
V
DDI  
V
UVLOA,B-HYST  
UVLOA,B-OUT-ON  
UVLOA,B-OUT-OFF  
V
V
/V  
DDA DDB  
t
t
t
UVR  
t
t
UVR  
UVF  
UVR  
UVF  
t
UVR-spread  
INA/INB  
OUTA/OUTB  
Figure 9. Output Rampup and Rampdown Times during UVLOA, UVLOB  
V
DDI  
V
V
UVLOA,B-OUT-ON  
UVLOA,B-OUT-OFF  
V
/V  
DDA DDB  
t
t
t
UVR  
t
t
UVF  
UVF  
UVR  
UVR  
t
UVR-spread  
INA/INB  
OUTA/OUTB  
Figure 10. VDDA/VDDB Glitch Filtering  
Power Supply  
switching frequencies. They have to be connected to GNDA  
and GNDB (See Figure 14 and 15).  
Decoupling (VDDI, VDDA, VDDB)  
Suitable external power capacitors are required for  
reliable driving of IGBT/MOSFET gate with high current.  
Parallel combination of 100 nF + 4,7 mF low ESR ceramic  
capacitors is optimal for a wide range of applications using  
IGBT/MOSFET. For reliable driving of IGBT modules  
(containing several parallel IGBT’s) with a gate capacitance  
over 10 nF a higher decoupling capacity is required  
(typically 100 nF + 10 mF). Capacitors should be as close as  
possible to the driver’s power pins. The recommended  
layout is provided in the Figure 14.  
Output Current on GNDA/GNDB  
The NCx5725y has a high current, lowdrop MOSFET  
output stage. It is capable of driving IGBTs with gate  
capacitance CG of up to 100 nF. For optimal  
IGBT/MOSFET driving a few conditions have to be met:  
Low inductance (wide and short) traces from OUTA  
(OUTB) to R and to IGBT/MOSFET gate and from  
G
emitter (source) to GNDA (GNDB).  
Sufficient power rating of gate resistors RG.  
Reasonable combination of switching frequency f and  
Cooling Polygons on GNDA/GNDB  
It is important to provide cooling polygons if driving  
IGBTs with higher gate capacitance values and using higher  
gate capacitance C of the IGBT/MOSFET.  
G
Good V  
and V  
decoupling (discussed above).  
DDA  
DDB  
Sufficient cooling pads (discussed above).  
www.onsemi.com  
13  
NCD57252, NCD57253, NCD57255, NCD57256, NCV57252, NCV57253, NCV57255,  
NCV57256  
Low Inductance Traces  
All the traces have to be as low inductance as possible due  
to the high current path from the driver output to  
Highspeed  
signals  
10 mils  
0.25 mm  
10 mils  
0.25 mm  
IGBT/MOSFET gate. In practice that means wide tracks  
which are as short as possible. Tracks also have to be routed  
in order to not create big loops. The driving path (driver  
output, RG, IGBT/MOSFET gate) and return path (IGBT  
emitter/MOSFET source, GNDA or GNDB pin) have to be  
routed as a pair and not enclosing other components.  
Ground plane  
Keep this space free  
from traces, pads  
and vias  
40 mils  
1 mm  
40 mils  
1 mm  
Power plane  
10 mils  
0.25 mm  
10 mils  
0.25 mm  
Lowspeed  
signals  
314 mils  
(8 mm)  
Disable (DIS) Pin  
DIS (disable) pin allows to deactivate both outputs  
independently of inputs INA, INB, DT, ANB.  
If the pin is set high both OUTA and OUTB are set low  
immediately.  
If DIS is set low, the outputs OUTA/OUTB are restored  
after rising edge is detected on the INA/INB respectively.  
It has an internal pulldown resistor of 125 kW to ensure  
that OUTA and OUTB react to INA, INB, DT and ANB in  
the absence of an external signal. External pulldown  
resistor 1047 kW is recommended to prevent unwanted  
DIS activation by external interference. Direct connection to  
GNDI is recommended if the pin is not used.  
Figure 12. SOIC16WB Recommended Layer Stack  
High-speed  
signals  
10 mils  
10 mils  
0.25 mm  
0.25 mm  
Ground plane  
Keep this  
space free  
from traces,  
pads and vias  
40 mils  
1 mm  
40 mils  
1 mm  
Power plane  
10 mils  
0.25 mm  
10 mils  
0.25 mm  
Low-speed  
signals  
157 mils  
(4 mm)  
DISABLE  
Figure 13. SOIC16 Recommended Layer Stack  
t
DIS  
OUTX  
Figure 11. Disable Function  
NOTE: Purple – Recommended isolation gap.  
Figure 14. Recommended Layout  
(NCx57252, NCx57253)  
Figure 15. Recommended Layout  
(NCx57255, NCx57256)  
www.onsemi.com  
14  
NCD57252, NCD57253, NCD57255, NCD57256, NCV57252, NCV57253, NCV57255,  
NCV57256  
TYPICAL CHARACTERISTICS  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
(6)  
(3)  
(6)  
(3)  
(5)  
(5)  
(2)  
(4)  
(2)  
(4)  
(1)  
(1)  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(1) I  
(2) I  
(3) I  
(4) I  
(5) I  
(6) I  
0, I = 0 V, I = 0 V, D = 5 V  
NA NB T  
QDDI  
(1) I  
, I = 0 V, I = 0 V, D = 5 V  
NB T  
QDDI0 NA  
, I = 5 V/200 kHz/50%, I = 0 V, D = 5 V  
(2) I  
(3) I  
(4) I  
(5) I  
(6) I  
, I = 5 V/200 kHz/50%, I = 0 V, D = 5 V  
QDDI50 NA  
NB  
T
QDDI50 NA  
NB  
T
, I = 5 V, I = 0 V, D = 5 V  
, I = 5 V, I = 0 V, D = 5 V  
QDDI100 NA  
NB  
T
QDDI100 NA  
NB  
T
, I = 0 V, I = 0 V, D = 5 k  
, I = 0 V, I = 0 V, D = 5 k  
QDDI0 NA  
NB  
T
QDDI0 NA  
NB  
T
, I = 5 V/200 kHz/50%, I = 0 V, D = 5 k  
, I = 5 V/200 kHz/50%, I = 0 V, D = 5 k  
QDDI50 NA  
NB  
T
QDDI50 NA  
NB  
T
, I = 5 V, I = 0 V, D = 5 k  
, I = 5 V, I = 0 V, D = 5 k  
QDDI100 NA  
NB  
T
QDDI100 NA  
NB  
T
(Note: V  
DDI  
= 5 V, V  
DDA  
= 15 V, V  
= 15 V)  
(Note: V  
= 3.3 V, V  
DDA  
= 15 V, V  
= 15 V)  
DDB  
DDI  
DDB  
Figure 17. IQDDI Supply Current, VDDI = 5 V  
Figure 16. IQDDI Supply Current, VDDI = 3.3 V  
8
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
(5)  
(6)  
(3)  
(5)  
(2)  
(6)  
(2)  
(4)  
(1)  
(3)  
(4)  
(1)  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(1) I  
(2) I  
(3) I  
(4) I  
(5) I  
(6) I  
, V  
, V  
, V  
= 15 V, I = 0 V, I = 0 V, D = 5 V  
(1) I  
(2) I  
(3) I  
(4) I  
(5) I  
(6) I  
, I = 0 V, I = 0 V, D = 5 V  
QDDA0 DDA NA NB T  
QDDI0 NA  
NB  
T
= 15 V, I = 5 V/200 kHz/50%, I = 0 V, D = 5 V  
NA NB T  
, I = 5 V/200 kHz/50%, I = 0 V, D = 5 V  
QDDA50 DDA  
QDDI50 NA  
NB  
T
= 15 V, I = 5 V, I = 0 V, D = 5 V  
NA NB T  
, I = 5 V, I = 0 V, D = 5 V  
QDDA100 DDA  
QDDI100 NA  
NB  
T
, V  
= 32 V, I = 0 V, I = 0 V, D = 5 V  
NA NB T  
, I = 0 V, I = 0 V, D = 5 k  
QDDA0 DDA  
QDDI0 NA  
NB  
T
, V  
, V  
= 32 V, I = 5 V/200 kHz/50%, I = 0 V, DT = 5 V  
NA NB  
, I = 5 V/200 kHz/50%, I = 0 V, D = 5 k  
QDDA50 DDA  
QDDI50 NA  
NB  
T
, I = 5 V, I = 0 V, D = 5 k  
= 32 V, I = 5 V, I = 0 V, D = 5 V  
QDDA100 DDA NA NB T  
QDDI100 NA  
NB  
T
(Note: V  
= 5 V, V  
= 15 V)  
(Note: V  
= 20 V, V  
DDA  
= 15 V, V  
= 15 V)  
DDI  
DDB  
DDI  
DDB  
Figure 19. IQDDA Supply Current  
Figure 18. IQDDI Supply Current, VDDI = 20 V  
www.onsemi.com  
15  
NCD57252, NCD57253, NCD57255, NCD57256, NCV57252, NCV57253, NCV57255,  
NCV57256  
TYPICAL CHARACTERISTICS  
20  
15  
10  
5
8
7
6
5
4
3
2
1
0
(5)  
(1)  
(3)  
(2)  
(2)  
(6)  
(3)  
(4)  
(1)  
0
40 20  
0
20  
40  
60  
80  
100 120  
1
10  
100  
1000  
Temperature (5C)  
Frequency (kHz)  
(1) I  
, V  
= 15 V, I = 0 V, I = 0 V, D = 5 V  
QDDB0 DDB NA NB T  
(2) I  
(3) I  
(4) I  
(5) I  
(6) I  
, V  
= 15 V, I = 0 V, I  
= 15 V, I = 0 V, I = 5 V, D = 5 V  
NA NB T  
= 32 V, I = 0 V, I = 0 V, D = 5 V  
NA NB T  
5 V/200 kHz/50%, D = 5 V  
(1) C = 1 nF  
(2) C = 10 nF  
G
(3) C = 100 nF  
G
QDDB50 DDB  
NA  
NB = T  
G
, V  
QDDB100 DDB  
, V  
QDDB0 DDB  
, V  
= 32 V, I = 0 V, I = 5 V/200 kHz/50%, D = 5 V  
QDDB50 DDB  
NA  
NB  
T
(Note: V  
= 5 V, V  
= 15 V, V = 15 V, I = 5 V/50%, I = 0 V,  
DDB NA NB  
DDI  
DDA  
, V  
= 32 V, I = 0 V, I = 5 V, D = 5 V  
NA NB T  
QDDB100 DDB  
D = V , ANB = GNDI, DIS = GNDI, R = 0 Ω)  
T DDI G  
(Note: V  
= 5 V, V  
= 15 V)  
DDI  
DDA  
Figure 21. IQDDA (IQDDB) Supply Current  
vs. Switching Frequency  
Figure 20. IQDDB Supply Current  
0.1  
0.2  
0.3  
0.4  
0.5  
28  
27  
26  
25  
24  
23  
22  
21  
(3)  
(4)  
(3)  
(4)  
(2)  
(1)  
(2)  
(1)  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(3) I  
(2) I  
(4) I  
(2) I  
(3) I  
(4) I  
(1) I  
INAL  
(1) I  
DISL  
INBL  
ANBL  
INBH  
DISH  
ANBH  
INAH  
(Note: V  
= 3.3 V, V  
= V  
INB  
= V  
DIS  
= V  
ANB  
= GNDI, V  
= V  
DDB  
= 15 V)  
(Note: V  
= V  
INA  
= V  
INB  
= V  
DIS  
= V  
ANB  
= 3.3 V, V  
= V  
DDB  
= 15 V)  
DDI  
INA  
DDA  
DDI  
DDA  
Figure 23. Input Bias Current Logic “0”  
Figure 22. Input Bias Current Logic “1”  
www.onsemi.com  
16  
Temperature (5  
                                            
Temperature (5C)  
NCD57252, NCD57253, NCD57255, NCD57256, NCV57252, NCV57253, NCV57255,  
NCV57256  
TYPICAL CHARACTERISTICS  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
0.1  
0.2  
0.3  
0.4  
0.5  
(3)  
(4)  
(2)  
(3)  
(4)  
(1)  
(2)  
(1)  
40 20  
0
20  
40  
60  
C)  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
(2) I  
(3) I  
(4) I  
(3) I  
DISL  
(1) I  
(2) I  
(4) I  
ANBL  
(1) I  
INBH  
DISH  
ANBH  
INAH  
INBL  
INAL  
(Note: V  
= V  
INA  
= V  
INB  
= V  
DIS  
= V  
ANB  
= 5 V, V  
= V  
DDB  
= 15 V)  
(Note: V  
= 5 V, V  
= V  
INB  
= V  
DIS  
= V  
ANB  
= GNDI, V  
= V  
DDB  
= 15 V)  
DDI  
DDA  
DDI  
INA  
DDA  
Figure 24. Input Bias Current Logic “1”  
Figure 25. Input Bias Current Logic “0”  
0.1  
0.2  
0.3  
0.4  
0.5  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
(3)  
(4)  
(2)  
(3)  
(4)  
(1)  
(2)  
(1)  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(3) I  
(2) I  
(4) I  
DDA  
(2) I  
(3) I  
(4) I  
(1) I  
INAL  
(1) I  
DISL  
INBL  
ANBL  
INBH  
DISH  
ANBH  
INAH  
(Note: V  
= 20 V, V  
= V  
= V  
DIS  
= V  
ANB  
= GNDI, V  
= V  
DDB  
= 15 V  
(Note: V  
= V  
= V  
INB  
= V  
DIS  
= V  
= 20 V, V  
= V  
DDB  
= 15 V)  
DDI  
INA  
INB  
DDI  
INA  
ANB  
DDA  
Figure 26. Input Bias Current Logic “1”  
Figure 27. Input Bias Current Logic “0”  
www.onsemi.com  
17  
NCD57252, NCD57253, NCD57255, NCD57256, NCV57252, NCV57253, NCV57255,  
NCV57256  
TYPICAL CHARACTERISTICS  
9,1  
8,9  
8,7  
8,5  
8,3  
8,1  
7,9  
13  
12.9  
12.8  
12.7  
12.6  
12.5  
12.4  
12.3  
12.2  
12.1  
12  
(1)  
(3)  
(1)  
(3)  
(2)  
(2)  
(4)  
(4)  
11.9  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(2) V  
(4) V  
(1) V  
UVLOAOUTOFF  
UVLOAOUTON  
(2) V  
(4) V  
(1) V  
UVLOAOUTOFF  
UVLOAOUTON  
(3) V  
UVLOBOUTON  
UVLOBOUTOFF  
(3) V  
UVLOBOUTON  
UVLOBOUTOFF  
Figure 28. NCx57252 UVLOA and UVLOB  
Threshold Voltage  
Figure 29. NCx57253 UVLOA and UVLOB  
Threshold Voltage  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2.9  
2.8  
2.7  
2.6  
2.5  
(3)  
(2)  
(1)  
(1)  
(2)  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(2) V  
(1) V  
UVLOIOUTOFF  
UVLOIOUTON  
(1) V  
(2) V  
(3) V  
UVLOBHYST  
UVLOIHYST  
UVLOAHYST  
Figure 31. UVLOx Enable/Disable Voltage  
Hysteresis  
Figure 30. UVLOI Threshold Voltage  
www.onsemi.com  
18  
NCD57252, NCD57253, NCD57255, NCD57256, NCV57252, NCV57253, NCV57255,  
NCV57256  
TYPICAL CHARACTERISTICS  
140  
1.5  
1.4  
1.3  
(1)  
130  
120  
110  
100  
90  
(1)  
(2)  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(2) t  
(1) t  
(1) t  
UVFB  
UVFA  
UVFI  
Figure 32. UVLOI Fall Delay  
Figure 33. UVLOA and UVLOB Fall Delay  
1.1  
84  
82  
80  
78  
76  
74  
72  
70  
1.05  
1
(1)  
(1)  
(2)  
(5)  
(6)  
(2)  
(3)  
0.95  
0.9  
0.85  
0.8  
(4)  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(1) V  
(2) V  
CLAMPOUTB  
CLAMPOUTA  
(1) t  
(3) t  
(5) t  
, V  
= 3.3 V  
= 5 V  
= 20 V  
(2) t  
(4) t  
(6) t  
, V  
= 3.3 V  
, V = 5 V  
PDONB DD1  
PDONA DD1  
PDONB DD1  
, V  
PDONA DD1  
, V  
, V = 20 V  
PDONB DD1  
PDONA DD1  
Figure 34. IGBT Short Circuit Clamping Voltage  
Figure 35. Propagation Delay Turnon  
www.onsemi.com  
19  
NCD57252, NCD57253, NCD57255, NCD57256, NCV57252, NCV57253, NCV57255,  
NCV57256  
TYPICAL CHARACTERISTICS  
80  
78  
76  
74  
72  
70  
16.5  
16  
(1)  
(2)  
(4)  
(1)  
15.5  
15  
(3)  
(2)  
14.5  
14  
(5)  
(6)  
13.5  
13  
12.5  
12  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(1) t  
(3) t  
(5) t  
, V  
= 3.3 V  
= 5 V  
= 20 V  
(2) t  
, V = 3.3 V  
, V = 5 V  
(1) t  
(2) t  
FALL  
PDOFFA DD1  
PDOFFB DD1  
RISE  
, V  
(4) t  
PDOFFA DD1  
PDOFFB DD1  
, V  
(6) t , V = 20 V  
PDOFFB DD1  
PDOFFA DD1  
Figure 36. Propagation Delay Turnoff  
Figure 37. Rise Time / Fall Time  
76  
74  
72  
70  
68  
18  
16  
14  
12  
10  
8
(1)  
(1)  
(3)  
(3)  
(2)  
6
4
2
(2)  
0
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(2) t , V  
= 5 V  
(3) t , V  
= 20 V  
(1) t , V  
= 3.3 V  
DT DDI  
DT DDI  
DT DDI  
(3) t , V  
= 20 V  
(1) t , V  
= 3.3 V  
(2) t , V  
= 5 V  
DIS DD1  
DIS DD1  
DIS DD1  
(Note: V  
is inverted from V , V  
= V  
DDB  
= 15 V)  
INA  
INB DDA  
Figure 38. Disable Delay Time  
Figure 39. Deadtime, DT pin FLOAT  
www.onsemi.com  
20  
NCD57252, NCD57253, NCD57255, NCD57256, NCV57252, NCV57253, NCV57255,  
NCV57256  
TYPICAL CHARACTERISTICS  
80  
78  
76  
74  
72  
70  
5.5  
5.3  
5.1  
4.9  
4.7  
4.5  
(1)  
(2)  
(3)  
(1)  
(2)  
(3)  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature (5C)  
Temperature (5C)  
(2) t , V  
= 5 V  
(1) t , V  
= 3.3 V  
(3) t , V  
= 20 V  
DT DDI  
DT DDI  
DT DDI  
(2) t , V  
= 5 V  
(3) t , V  
= 20 V  
(1) t , V  
= 3.3 V  
DT DDI  
DT DDI  
DT DDI  
(Note: V  
is inverted from V , V  
= V  
DDB  
= 15 V)  
INA  
INB DDA  
(Note: V  
is inverted from V , V  
= V  
DDB  
= 15 V)  
INA  
INB DDA  
Figure 41. Deadtime, DT pin 500 kW to GNDI  
Figure 40. Deadtime, DT pin 5 kW to GNDI  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NCD57252DWR2G  
NCV57252DWR2G*  
NCD57253DWR2G  
NCV57253DWR2G*  
NCD57255DR2G  
NCV57255DR2G*  
NCD57256DR2G  
NCV57256DR2G*  
SOIC16 Wide Body (PbFree)  
SOIC16 Wide Body (PbFree)  
SOIC16 Wide Body (PbFree)  
SOIC16 Wide Body (PbFree)  
SOIC16 Narrow body (PbFree)  
SOIC16 Narrow body (PbFree)  
SOIC16 Narrow body (PbFree)  
SOIC16 Narrow body (PbFree)  
1,000 / Tape & Reel  
1,000 / Tape & Reel  
1,000 / Tape & Reel  
1,000 / Tape & Reel  
2,500 / Tape & Reel  
2,500 / Tape & Reel  
2,500 / Tape & Reel  
2,500 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AECQ100 Qualified and PPAP  
Capable.  
www.onsemi.com  
21  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC16  
CASE 751B05  
ISSUE K  
DATE 29 DEC 2006  
SCALE 1:1  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
A−  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION  
SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
16  
9
8
B−  
P 8 PL  
M
S
B
0.25 (0.010)  
1
MILLIMETERS  
INCHES  
MIN  
0.386  
DIM MIN  
MAX  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
A
B
C
D
F
9.80  
3.80  
1.35  
0.35  
0.40  
10.00  
G
4.00 0.150  
1.75 0.054  
0.49 0.014  
1.25 0.016  
F
R X 45  
K
_
G
J
1.27 BSC  
0.050 BSC  
0.19  
0.10  
0
0.25 0.008  
0.25 0.004  
0.009  
0.009  
7
K
M
P
R
C
7
0
_
_
_
_
T−  
SEATING  
PLANE  
5.80  
0.25  
6.20 0.229  
0.50 0.010  
0.244  
0.019  
J
M
D
16 PL  
M
S
S
A
0.25 (0.010)  
T B  
STYLE 1:  
STYLE 2:  
STYLE 3:  
STYLE 4:  
PIN 1. COLLECTOR  
2. BASE  
3. EMITTER  
4. NO CONNECTION  
5. EMITTER  
6. BASE  
7. COLLECTOR  
8. COLLECTOR  
9. BASE  
10. EMITTER  
11. NO CONNECTION  
12. EMITTER  
13. BASE  
PIN 1. CATHODE  
2. ANODE  
3. NO CONNECTION  
4. CATHODE  
5. CATHODE  
6. NO CONNECTION  
7. ANODE  
8. CATHODE  
9. CATHODE  
10. ANODE  
11. NO CONNECTION  
12. CATHODE  
13. CATHODE  
14. NO CONNECTION  
15. ANODE  
PIN 1. COLLECTOR, DYE #1  
2. BASE, #1  
3. EMITTER, #1  
4. COLLECTOR, #1  
5. COLLECTOR, #2  
6. BASE, #2  
PIN 1. COLLECTOR, DYE #1  
2. COLLECTOR, #1  
3. COLLECTOR, #2  
4. COLLECTOR, #2  
5. COLLECTOR, #3  
6. COLLECTOR, #3  
7. COLLECTOR, #4  
8. COLLECTOR, #4  
9. BASE, #4  
10. EMITTER, #4  
11. BASE, #3  
12. EMITTER, #3  
13. BASE, #2  
7. EMITTER, #2  
8. COLLECTOR, #2  
9. COLLECTOR, #3  
10. BASE, #3  
11. EMITTER, #3  
12. COLLECTOR, #3  
13. COLLECTOR, #4  
14. BASE, #4  
SOLDERING FOOTPRINT  
14. COLLECTOR  
15. EMITTER  
16. COLLECTOR  
14. EMITTER, #2  
15. BASE, #1  
16. EMITTER, #1  
15. EMITTER, #4  
16. COLLECTOR, #4  
8X  
6.40  
16. CATHODE  
16X  
1.12  
STYLE 5:  
STYLE 6:  
STYLE 7:  
PIN 1. SOURCE N‐CH  
PIN 1. DRAIN, DYE #1  
2. DRAIN, #1  
3. DRAIN, #2  
4. DRAIN, #2  
5. DRAIN, #3  
6. DRAIN, #3  
7. DRAIN, #4  
8. DRAIN, #4  
9. GATE, #4  
PIN 1. CATHODE  
2. CATHODE  
3. CATHODE  
4. CATHODE  
5. CATHODE  
6. CATHODE  
7. CATHODE  
8. CATHODE  
9. ANODE  
2. COMMON DRAIN (OUTPUT)  
3. COMMON DRAIN (OUTPUT)  
4. GATE P‐CH  
5. COMMON DRAIN (OUTPUT)  
6. COMMON DRAIN (OUTPUT)  
7. COMMON DRAIN (OUTPUT)  
8. SOURCE P‐CH  
1
16  
16X  
0.58  
9. SOURCE P‐CH  
10. SOURCE, #4  
11. GATE, #3  
12. SOURCE, #3  
13. GATE, #2  
14. SOURCE, #2  
15. GATE, #1  
16. SOURCE, #1  
10. ANODE  
11. ANODE  
12. ANODE  
13. ANODE  
14. ANODE  
15. ANODE  
16. ANODE  
10. COMMON DRAIN (OUTPUT)  
11. COMMON DRAIN (OUTPUT)  
12. COMMON DRAIN (OUTPUT)  
13. GATE N‐CH  
14. COMMON DRAIN (OUTPUT)  
15. COMMON DRAIN (OUTPUT)  
16. SOURCE N‐CH  
1.27  
PITCH  
8
9
DIMENSIONS: MILLIMETERS  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42566B  
SOIC16  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC16 WB  
CASE 751G  
ISSUE E  
DATE 08 OCT 2021  
1
SCALE 1:1  
GENERIC  
MARKING DIAGRAM*  
16  
XXXXXXXXXXX  
XXXXXXXXXXX  
AWLYYWWG  
1
XXXXX = Specific Device Code  
A
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
WL  
YY  
WW  
G
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42567B  
SOIC16 WB  
PAGE 1 OF 1  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NCV57302

3.0 A, Very Low-Dropout (VLDO) Fast Transient Response Regulator
ONSEMI

NCV57302DSADJR4G

3.0 A, Very Low-Dropout (VLDO) Fast Transient Response Regulator
ONSEMI

NCV57530DWKR2G

Isolated Dual-Channel IGBT Gate Driver with >8mm Creepage and Clearance
ONSEMI

NCV57540DWKR2G

Isolated Dual-Channel IGBT Gate Driver with >8mm Creepage and Clearance
ONSEMI

NCV59150

1.5 A, Very Low-Dropout (VLDO) Fast Transient Response Regulator Series
ONSEMI

NCV59150DS18R4G

1.5 A, Very Low-Dropout (VLDO) Fast Transient Response Regulator Series
ONSEMI

NCV59150DS25R4G

1.5 A, Very Low-Dropout (VLDO) Fast Transient Response Regulator Series
ONSEMI

NCV59150DS28R4G

1.5 A, Very Low-Dropout (VLDO) Fast Transient Response Regulator Series
ONSEMI

NCV59150DS30R4G

1.5 A, Very Low-Dropout (VLDO) Fast Transient Response Regulator Series
ONSEMI

NCV59150DS33R4G

1.5 A, Very Low-Dropout (VLDO) Fast Transient Response Regulator Series
ONSEMI

NCV59150DS50R4G

1.5 A, Very Low-Dropout (VLDO) Fast Transient Response Regulator Series
ONSEMI

NCV59151DS18R4G

1.5 A, Very Low-Dropout (VLDO) Fast Transient Response Regulator Series
ONSEMI