NCV7451MW0R2G [ONSEMI]

System Basis Chip with CAN FD, LDO Regulator and Wake-up Comparator;
NCV7451MW0R2G
型号: NCV7451MW0R2G
厂家: ONSEMI    ONSEMI
描述:

System Basis Chip with CAN FD, LDO Regulator and Wake-up Comparator

文件: 总19页 (文件大小:297K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ON Semiconductor  
Is Now  
To learn more about onsemi™, please visit our website at  
www.onsemi.com  
onsemi andꢀꢀꢀꢀꢀꢀꢀand other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or  
subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi  
product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without  
notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality,  
or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws,  
regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/  
or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application  
by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized  
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for  
implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and holdonsemi and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative  
Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.  
System Basis Chip with  
CAN FD, LDO Regulator and  
Wake-up Comparator  
NCV7451  
The system basis chip (SBC) NCV7451 integrates +5 V / 250 mA  
LDO regulator with a highspeed CAN FD transceiver and local  
wakeup comparator, directly controlled by dedicated pins.  
www.onsemi.com  
Features  
5 V 2% / 250 mA LDO  
Current Limitation with Foldback  
Output Voltage Monitoring  
1
One HighSpeed CAN FD Transceiver  
Compliant to ISO118982:2016  
CAN FD Timing Specified up to 5 Mbps  
Current Limitation, Reverse Current Protected  
TxDC Timeout  
DFNW14 4.5x3, 0.65P  
CASE 507AC  
MARKING DIAGRAM  
Local Wakeup Comparator  
NCV  
7451  
ALYW  
G
Integrated Pullup / Pulldown Current Source  
Very Low Current Quiescent Consumption  
Window Watchdog  
Direct Control  
Thermal Shutdown Protection  
AECQ100 Qualified and PPAP Capable  
Wettable Flank Package for Enhanced Optical Inspection  
This is a PbFree Device  
NCV7451  
A
L
Y
W
G
= Specific Device Code  
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
Typical Applications  
Automotive  
Industrial Networks  
PIN CONNECTIONS  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
TxDC  
GND  
CAN_EN  
CANH  
CANL  
VR1  
RxDC  
RSTN  
WD_EN  
WDI  
GND  
VS  
WAKE  
WAKE_OUT  
8
ORDERING INFORMATION  
Device  
Package  
Shipping  
NCV7451MW0R2G  
DFNW14  
(PbFree)  
5000 / Tape &  
Reel  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specifications  
Brochure, BRD8011/D.  
© Semiconductor Components Industries, LLC, 2020  
1
Publication Order Number:  
February, 2021 Rev. 0  
NCV7451/D  
NCV7451  
Battery  
Cbuf  
100n  
connection  
VS  
References,  
oscillator  
VR1  
VR1  
5 V / 250 mA  
4u7  
VDD  
RESET  
RSTN  
WD_EN  
WDI  
Watchdog  
VS  
WAKE_OUT  
WAKE  
Local  
wakeup  
3k3  
10n  
MCU  
VR1  
CAN_EN  
TxDC  
CANH  
CANL  
Termination,  
Protection  
CAN  
CAN bus  
CAN  
RxDC  
NCV7451  
GND  
GND  
GND  
Figure 1. Simplified Application Diagram  
www.onsemi.com  
2
NCV7451  
VS1  
10  
3
5
VR1  
UV  
OV  
Internal  
supply  
RSTN  
ref  
References  
LDO  
Regulator  
VR1  
Thermal  
Monitoring  
Oscillator  
6
7
Watchdog  
WD_EN  
WDI  
VR1  
9
WAKE  
8
Filt.  
WAKE_OUT  
CAN_EN  
ref  
Local  
Wakeup  
14  
VR1  
VR1  
13  
12  
1
4
Tx  
Timeout  
TxDC  
RxDC  
CANH  
CANL  
VR1  
CAN  
2
11  
GND  
GND  
Figure 2. Block Diagram  
PIN FUNCTION DESCRIPTION  
Pin  
No.  
Pin Type  
(LV = Low Voltage; HV = High Voltage)  
LV digital input; internal pullup  
Ground connection  
Pin Name  
TxDC  
Description  
1
2
CAN transmitter data input  
GND  
Ground supply (all GND pins have to be connected externally)  
Output of the 5 V / 250 mA lowdrop regulator  
CAN receiver data output  
3
VR1  
LV supply output  
4
RxDC  
RSTN  
WD_EN  
WDI  
LV digital output; pushpull  
LV digital output; open drain; internal pullup  
LV digital input; internal pullup current  
LV digital input; internal pulldown  
LV digital output  
5
Reset signal to the MCU  
6
Watchdog enable input  
7
Watchdog trigger input  
8
WAKE_OUT  
WAKE  
VS  
WAKE pin output (inverted WAKE level)  
WAKE pin  
9
HV input; pullup/down current  
HV supply input  
10  
11  
12  
13  
14  
Main supply input  
GND  
Ground connection  
Ground supply (all GND pins have to be connected externally)  
CANL line of the CAN bus  
CANL  
CANH  
CAN_EN  
EP  
CAN bus interface  
CAN bus interface  
CANH line of the CAN bus  
LV digital input; internal pulldown  
Exposed pad  
CAN transceiver enable input  
Substrate (has to be connected to all GND pins externally)  
www.onsemi.com  
3
NCV7451  
MAXIMUM RATINGS  
Symbol  
Rating  
Min  
Max  
Unit  
V
VS  
DC Power Supply Voltage (Note 1)  
LDO Supply pin output voltage  
*0.3  
*0.3  
+40  
VR1  
6 or VS+0.3  
(whichever  
is lower)  
V
VdigIO  
DC voltage on digital pins (CAN_EN, WD_EN, WDI, RSTN, RxDC, TxDC,  
WAKE_OUT)  
*0.3  
VR1+0.3  
V
WAKE  
CANH, CANL  
Vdiff  
DC WAKE pin Input Voltage  
*40  
*40  
*40  
*8  
+40  
+40  
+40  
+8  
V
V
DC voltage on pin CANH and CANL  
Differential DC voltage between any two pins (incl. CANH and CANL)  
V
V_ESD  
ESD capability, Device HBM, according to  
AECQ100002 (EIA/JESD22A114); (Note 2)  
Pins VS, CANH,  
CANL, WAKE  
kV  
HBM  
Other pins  
*4  
200  
+4  
V_ESD  
V_ESD  
ESD capability; MM, according to AECQ100003 (EIA/JESD22A115);  
+200  
V
V
MM  
all pins  
ESD capability; CDM, according to AECQ100011 (EIA/JESD22C101);  
*750  
6  
+750  
+6  
CDM  
all pins  
V_ESD  
ESD capability; System HBM, according to IEC6100042;  
pins VS, CANH, CANL, WAKE; (Note 3)  
kV  
IEC  
V_SCHAF  
Voltage transients, Test pulses According to  
ISO7637*2, Class D;  
Test pulse 1  
Test pulse 2a  
Test pulse 3a  
Test pulse 3b  
*100  
V
V
+75  
pins VS, CANH, CANL, WAKE  
*150  
V
+100  
+150  
+150  
260  
V
Tj  
Junction Temperature Range  
Storage Temperature Range  
Peak Soldering Temperature (Note 4)  
Moisture Sensitivity Level  
*40  
*55  
°C  
°C  
°C  
Tstg  
Tsld  
MSL  
1
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe  
Operating parameters.  
2. Equivalent to discharging a 100 pF capacitor through a 1.5 kW resistor  
3. Equivalent to discharging a 150 pF capacitor through a 330 W resistor; WAKE pin stressed through an external series resistor of 3.3 kW and  
with 10 nF capacitor on the module input, VS pin decoupled with 100 nF.  
4. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D  
THERMAL CHARACTERISTICS  
Symbol  
Rating  
Value  
Unit  
R
Thermal Characteristics,  
°C/W  
θJA  
Thermal Resistance, JunctiontoAir (Note 5)  
Thermal Reference, JunctiontoAir (Note 6)  
77  
52  
R
Thermal Characteristics,  
Thermal Resistance, JunctiontoCase  
°C/W  
ψJC  
7
5. Value based on test board according to JESD513 standard, signal layer with 10% trace coverage.  
6. Value based on test board according to JESD517 standard, signal layers with 20% trace coverage, inner planes with 90% coverage.  
www.onsemi.com  
4
 
NCV7451  
RECOMMENDED OPERATING RANGES  
Symbol  
Rating  
Min  
5.0  
6.0  
4.9  
0
Max  
28  
Unit  
V
VS  
Functional supply voltage  
Supply voltage for valid parameter specification  
VR1 regulator output voltage  
18  
V
VR1  
I(VR1)  
5.1  
250  
VR1  
VS  
V
VR1 regulator output current (including CAN transceiver consumption)  
Digital inputs/outputs voltage  
mA  
V
VdigIO  
0
WAKE  
WAKE input voltage  
0
V
CANH, CANL  
CAN bus pins voltage  
40  
40  
40  
40  
V
T
J
Junction Temperature  
150  
125  
°C  
°C  
T
A
Ambient Temperature  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
6 V v VS v 18 V; 40°C v Tj v 150°C; 4.75 V v VR1 v 5.25 V; R = 60 W, C = 100 pF, C not used, unless otherwise specified.  
LT  
LT  
ST  
Symbol  
VS SUPPLY  
VS_PORH  
VS_PORL  
Is_off  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VS POR threshold  
VS rising  
VS falling  
3.4  
2.0  
4.1  
3.5  
35  
V
V
VS POR threshold  
VS consumption, lowpower  
VS = 14 V, VR1 on (not loaded), WAKE float-  
ing, CAN bus recessive,  
28  
mA  
CAN_EN = Low, WD_EN = Low, Tj v 85°C  
Is_act  
VS consumption, active  
VS = 14 V, VR1 on (loaded by 100 mA, not  
included in Is_act), WAKE floating, CAN bus  
recessive,  
3.7  
5.0  
mA  
CAN_EN = High, WD_EN = High, TxDC = High  
VR1 VOLTAGE REGULATOR  
V_VR1  
Regulator output voltage  
0 mA v I(VR1) v 250 mA (including internal  
CAN consumption), 6 V v VS v 28 V  
Maximum VR1 overload current,  
VR1 > RES_VR1  
4.9  
250  
125  
5.0  
5.1  
650  
325  
V
Ilim_VR1  
Regulator current limitation  
Regulator short current  
Dropout Voltage  
mA  
mA  
V
Ishort_VR1  
Vdrop_VR1  
Maximum VR1 short current, VR1 < RES_VR1  
1/2 x  
Ilim_VR1  
I(VR1) = 100 mA, VS = 5 V  
I(VR1) = 100 mA, VS = 4.5 V  
I(VR1) = 50 mA, VS = 4.5 V  
1 mA v I(VR1) v 100 mA  
I(VR1) v 100 mA  
0.2  
0.2  
0.1  
0.4  
0.5  
0.4  
50  
40  
Loadreg_VR1  
Linereg_VR1  
Cload_VR1  
Load Regulation  
Line Regulation  
VR1 load capacity  
50  
40  
1.0  
mV  
mV  
mF  
ESR < 200 mW, ceramic capacitor recommend-  
ed  
4.7  
RES_VR1  
RES_hyst_VR1  
tfilt_RES_VR1  
OV_VR1  
VR1 Reset threshold  
VR1 voltage decreasing  
4.3  
0.05  
4.5  
0.1  
15  
4.7  
0.2  
V
V
VR1 Reset threshold hysteresis  
VR1 undervoltage filter time  
VR1 overvoltage threshold  
ms  
V
VR1 voltage increasing / decreasing  
5.5  
6.0  
OV_hyst_VR1  
VR1 overvoltage threshold  
hysteresis  
0.06  
V
tfilt_OV_VR1  
toff_VR1  
VR1 overvoltage filter time  
VR1 off time after TSD  
15  
ms  
1.0  
s
www.onsemi.com  
5
NCV7451  
ELECTRICAL CHARACTERISTICS (continued)  
6 V v VS v 18 V; 40°C v Tj v 150°C; 4.75 V v VR1 v 5.25 V; R = 60 W, C = 100 pF, C not used, unless otherwise specified.  
LT  
LT  
ST  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VR1 VOLTAGE REGULATOR  
Is_add_VR1  
VS consumption adder of VR1 (Note 7)  
0.01 x  
I(VR1)  
A
CAN BUS LINES (Pins CANH and CANL)  
I
Recessive output current at  
pins CANH and CANL  
CAN enabled;  
27 V < V  
5.0  
5.0  
2.0  
0
5.0  
5.0  
3.0  
3.0  
0.1  
0.1  
0.2  
mA  
mA  
V
o(rec)  
, V  
< 32 V  
CANH  
CANL  
I
LI  
Input leakage current  
0 W v R(VR1 to GND) < 1 MW;  
V
CANH  
= V  
= 5 V  
CANH  
V
Recessive output voltage at  
pin CANH  
CAN enabled; TxDC = High; no load  
CAN enabled; TxDC = High; no load  
CAN disabled; no load  
2.5  
2.5  
0
o(rec)(CANH)  
V
Recessive output voltage at  
pin CANL  
2.0  
V
o(rec)(CANL)  
V
Recessive output voltage at  
pin CANH  
0.1  
0.1  
0.2  
V
o(off)(CANH)  
V
Recessive output voltage at  
pin CANL  
CAN disabled; no load  
0
V
o(off)(CANL)  
V
Differential bus output volt-  
age in off mode  
CAN disabled; no load  
0
V
o(off)(diff)  
(V  
CANH  
V  
)
CANL  
V
Dominant output voltage at  
pin CANH  
CAN enabled; 50 Ω v R v 65 Ω;  
2.75  
0.5  
0.9  
1.5  
1.5  
3.5  
1.5  
4.5  
2.25  
1.1  
V
V
o(dom)(CANH)  
LT  
TxDC = Low; t < t  
dom(TxDC)  
V
Dominant output voltage at  
pin CANL  
CAN enabled; 50 Ω v R v 65 Ω;  
o(dom)(CANL)  
LT  
TxDC = Low; t < t  
dom(TxDC)  
V
o(sym)  
Driver output voltage  
CAN enabled; C = 4.7 nF; TxDC driven by  
VR1  
V
ST  
symmetry (V  
+ V  
)
square wave up to 1 MHz  
CANH  
CANL  
V
Differential bus output  
voltage (V V  
CAN enabled; 45 Ω v R v 65 Ω;  
2.25  
3.0  
o(dom)(diff)  
LT  
)
CANL  
TxDC = Low; dominant  
CANH  
V
Differential bus output  
voltage during arbitration  
(V V  
CAN enabled; R = 2240 Ω;  
5.0  
V
o(dom)(diff)_arb  
LT  
TxDC = Low; dominant; (Note 7)  
)
CANL  
CANH  
V
Differential bus output  
voltage (V V  
CAN enabled; no load;  
TxDC  
50  
0
50  
mV  
mA  
o(rec)(diff)  
)
V
= High; recessive  
CANH  
CANL  
I
Short circuit output current at  
pin CANH  
CAN enabled; TxDC = Low;  
= 3 V  
o(sc)(CANH)  
V
CANH  
100  
100  
70  
40  
2.0  
3 V v V  
v 18 V  
CANH  
I
Short circuit output current at  
pin CANL  
CAN enabled; TxDC = Low;  
mA  
o(sc)(CANL)  
V
CANL  
= 36 V  
40  
1.5  
70  
100  
100  
3 V v V  
v 18 V  
CANL  
V
Differential input voltage  
range  
recessive state  
CAN enabled; no load;  
3.0  
3.0  
0.9  
0.5  
0.4  
8.0  
8.0  
0.9  
1.05  
V
V
V
V
V
V
i(rec)(diff)_NM  
12 V v V  
, V  
CANL  
v 12 V  
v 12 V  
v 12 V  
v 12 V  
v 12 V  
CANH  
V
CAN disabled; no load;  
i(rec)(diff)_LP  
12 V v V  
, V  
CANL  
CANH  
V
Differential input voltage  
range  
dominant state  
CAN enabled; no load;  
i(dom)(diff)_NM  
12 V v V  
, V  
CANL  
CANH  
V
CAN disabled; no load;  
1.05  
0.5  
i(dom)(diff)_ LP  
12 V v V  
, V  
CANL  
CANH  
V
Differential receiver threshold  
voltage in normal mode  
CAN enabled;  
i(diff)(th)_NM  
12 V v V  
, V  
CANH  
CANL  
V
Differential receiver threshold  
voltage in wakeupdetec-  
tion mode  
CAN disabled;  
0.4  
i(diff)(th)_LP  
12 V v V  
, V  
CANL  
v 12 V  
CANH  
www.onsemi.com  
6
NCV7451  
ELECTRICAL CHARACTERISTICS (continued)  
6 V v VS v 18 V; 40°C v Tj v 150°C; 4.75 V v VR1 v 5.25 V; R = 60 W, C = 100 pF, C not used, unless otherwise specified.  
LT  
LT  
ST  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
CAN BUS LINES (Pins CANH and CANL)  
R
Commonmode input resis-  
2 V v V  
2 V v V  
, V  
v 7 V  
v 7 V  
15  
15  
25  
25  
0
37  
37  
kΩ  
kΩ  
%
i(cm)(CANH)  
CANH  
CANL  
tance at pin CANH  
R
Commonmode input resis-  
tance at pin CANL  
, V  
CANL  
i(cm)(CANL)  
CANH  
R
Matching between pin CANH  
and pin CANL common  
mode input resistance  
V
CANH  
= V = 5 V  
CANL  
1.0  
1.0  
i(cm)(m)  
R
Differential input resistance  
25  
50  
75  
20  
kΩ  
i(diff)  
C
Input capacitance at pin  
CANH  
TxDC = High; (Note 7)  
TxDC = High; (Note 7)  
TxDC = High; (Note 7)  
7.5  
pF  
i(CANH)  
C
Input capacitance at pin  
CANL  
7.5  
20  
10  
pF  
pF  
i(CANL)  
C
Differential input capacitance  
3.75  
i(diff)  
TIMING CHARACTERISTICS (see Figure 3, Figure 4 and Figure 5)  
t
Propagation delay TxDC to  
bus active  
CAN enabled  
CAN enabled  
CAN enabled  
CAN enabled  
CAN enabled  
65  
90  
ns  
ns  
ns  
ns  
ns  
d(TxDCBUSon)  
d(TxDCBUSoff)  
d(BUSonRxDC)  
d(BUSoffRxDC)  
t
Propagation delay TxDC to  
bus inactive  
t
t
Propagation delay bus active  
to RxDC  
60  
Propagation delay bus inac-  
tive to RxDC  
65  
t
Propagation delay TxDC to  
RxDC dominant to recessive  
transition  
50  
100  
170  
pd_dr  
pd_rd  
t
Propagation delay TxDC to  
RxDC recessive to dominant  
transition  
CAN enabled  
50  
120  
170  
ns  
t
Dominant time for wakeup  
CAN_EN = Low  
0.15  
0.5  
1.8  
6.0  
ms  
ms  
wake_filt  
via bus  
t
Delay to flag wake event (re-  
cessive to dominant transi-  
tions)  
CAN_EN = Low; Valid bus wakeup event  
CAN_EN = Low; Valid bus wakeup event  
dwakerd  
dwakedr  
t
Delay to flag wake event  
(dominant to recessive tran-  
sitions)  
0.5  
6.0  
ms  
t
Bus time for wakeup time-  
CAN_EN = Low  
1.0  
1.0  
10  
10  
ms  
ms  
wake_to  
out  
t
TxDC dominant time for time-  
out  
CAN_EN = High; TxDC = Low  
dom(TxDC)  
t
Bit time on RxDC pin  
t
t
= 500 ns  
= 200 ns  
400  
120  
550  
220  
ns  
ns  
Bit(RxDC)  
Bit(TxDC)  
Bit(TxDC)  
t
Bit time on bus pins  
(CANH CANL)  
t
= 500 ns  
= 200 ns  
435  
155  
530  
210  
ns  
ns  
Bit(Vi(diff))  
Bit(TxDC)  
Bit(TxDC)  
t
Receiver timing symmetry  
Dt  
Rec  
t
t
= 500 ns  
= 200 ns  
65  
45  
40  
15  
ns  
ns  
Bit(TxDC)  
Dt  
Rec  
= t  
t
Bit(RxDC) Bit(Vi(diff))  
Bit(TxDC)  
www.onsemi.com  
7
NCV7451  
ELECTRICAL CHARACTERISTICS (continued)  
6 V v VS v 18 V; 40°C v Tj v 150°C; 4.75 V v VR1 v 5.25 V; R = 60 W, C = 100 pF, C not used, unless otherwise specified.  
LT  
LT  
ST  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
TIMING CHARACTERISTICS (see Figure 3, Figure 4 and Figure 5)  
t
Mode change delay from  
wakeup detection to normal  
mode  
CAN_EN = Low High  
25  
47  
ms  
d(LPNM)  
WATCHDOG TIMING  
twd_acc  
Watchdog timing accuracy  
Timeout watchdog period  
15  
15  
74  
%
t_wd_TO  
After WD_EN low high transition or RSTN  
pulse  
56  
65  
ms  
t_wd_CW  
Window watchdog closed win-  
dow  
5.1  
6.0  
6.9  
ms  
t_wd_OW  
t_WDI  
Window watchdog open window  
85  
100  
115  
ms  
Minimum WDI pulse width ac-  
cepted as a watchdog service  
6.0  
ms  
WAKE INPUT  
Vth_WAKE  
Vhys_WAKE  
tfilt_WAKE  
WAKE pin threshold  
2.0  
0.1  
10  
4.0  
0.7  
50  
V
V
WAKE pin threshold hysteresis  
WAKE wakeup filter time  
Pullup current on WAKE pin  
ms  
mA  
mA  
Ipu_WAKE  
Ipd_WAKE  
V(WAKE) = 4 V  
11  
3.0  
3.0  
11  
Pulldown current on WAKE pin V(WAKE) = 2 V  
DIGITAL OUTPUTS, RxDC, WAKE_OUT  
IoutL_pinx  
IoutH_pinx  
Lowlevel output driving current pinx is logical Low, forced V(pinx) = 0.4 V  
1.0  
6.0  
12  
mA  
mA  
Highlevel output driving cur-  
pinx is logical High,  
forced V(pinx) = VR1 0.4 V  
8.0  
3.0  
1.0  
rent  
DIGITAL OUTPUT RSTN  
IoutL_RSTN  
Lowlevel output driving current RSTN is active (logical Low),  
2.0  
5.0  
12  
mA  
V
forced V(RSTN) = 0.4 V  
VoutL_RSTN  
Lowlevel output voltage,  
low VR1/VS  
VR1 > 4.7 V, I(RSTN) = 0.6 mA  
0.2  
0.2  
0.4  
0.4  
0.4  
19  
VR1 > 2 V, VS < VR1, I(RSTN) = 0.1 mA  
VR1 = 0 V, VS > 2 V, I(RSTN) = 0.2 mA  
0.2  
Rpu_RSTN  
t_RSTN  
Internal pullup resistor to VR1  
5.0  
6.8  
10.0  
8.0  
kW  
kW  
Reset pulse length after VR1  
undervoltage or watchdog  
failure  
9.2  
DIGITAL INPUTS TxDC, CAN_EN, WD_EN, WDI  
VinL_pinx  
Lowlevel input voltage (logical  
0.8  
V
V
“Low”)  
VinH_pinx  
Highlevel input voltage (logical  
“High”)  
2.0  
Vin_hys_pinx  
Rpu_pinx  
Input voltage hysteresis  
200  
100  
mV  
Internal pullup resistor to VR1;  
pin TxDC  
55  
185  
kΩ  
Rpd_pinx  
Ipu_WD_EN  
tper_pu_WDEN  
Internal pulldown resistor to  
55  
50  
100  
100  
610  
185  
200  
kΩ  
mA  
ms  
ground; pins CAN_EN, WDI  
Internal pullup current to VR1, V(WD_EN) = 0 V, pullup current source active  
pin WD_EN  
WD_EN pullup current source WD_EN = CAN_EN = Low  
activation period  
www.onsemi.com  
8
NCV7451  
ELECTRICAL CHARACTERISTICS (continued)  
6 V v VS v 18 V; 40°C v Tj v 150°C; 4.75 V v VR1 v 5.25 V; R = 60 W, C = 100 pF, C not used, unless otherwise specified.  
LT  
LT  
ST  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DIGITAL INPUTS TxDC, CAN_EN, WD_EN, WDI  
ton_pu_WDEN  
WD_EN pullup current source WD_EN = CAN_EN = Low  
activation ontime  
5.0  
ms  
THERMAL PROTECTION  
Tsd  
Thermal shutdown level  
Temperature increasing  
Temperature decreasing  
155  
165  
10  
175  
°C  
°C  
Tsd_hys  
Thermal shutdown level hys-  
teresis  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
7. Not tested in production, guaranteed by design.  
6-18 V  
100 nF  
VS  
VR1  
CANH  
4.7 uF  
RLT/2  
CLT  
NCV7451  
CAN_EN  
TxDC  
C
100 pF  
RLT/2  
RxDC  
CANL  
R
LT = 60 W  
15 pF  
GND  
Figure 3. Test Circuit for CAN Timing Characteristics  
recessive  
dominant  
recessive  
TxDC1  
0.7 × VR1  
0.3 × VR1  
CANH  
CANL  
900 mV  
Vi(diff)  
=
VCANH VCANL  
500 mV  
0.7 × VR1  
RxDC  
0.3 × VR1  
td(TxDCBUSon)  
td(BUSonRxDC) td(TxDCBUSoff)  
td(BUSoffRxDC)  
1 TxDC Edge length below 10 ns  
Figure 4. CAN Transceiver Timing Diagram Propagation Delays  
www.onsemi.com  
9
NCV7451  
0.7 × VR1  
TxDC1  
0.3 × VR1  
0.3 × VR1  
5 × tbit(TxDC)  
tbit(TxDC)  
tpd_rd  
Vi(diff)  
=
900 mV  
VCANH VCANL  
500 mV  
tbit(Vi(diff))  
0.7 × VR1  
RxDC  
0.3 × VR1  
1 TxDC Edge length below 10 ns  
tpd_dr  
tbit(RxDC)  
Figure 5. CAN Transceiver Timing Diagram Loop Delay and Recessive Bit Time  
Reset or previous  
WD service  
nominal t _wd_TO  
Timeout WD  
period  
Safe trigger of timeout WD  
WD expired  
Previous  
WD service  
t_wd_TO  
tolerance  
nominal t_wd_OW  
t_wd_trig  
nominal t _wd_CW  
Closed window  
(WD trigger would be too early )  
Window WD  
period  
Safe trigger of window WD  
t_wd_CW  
tolerance  
t_wd_OW  
tolerance  
recommended  
WD trigger  
Figure 6. Watchdog Modes Timing  
www.onsemi.com  
10  
NCV7451  
FUNCTIONAL DESCRIPTION  
Supply Concept  
level drops below this level for longer than  
tfilt_RES_VR1, a reset towards the MCU is  
generated through the RSTN pin and the CAN  
transceiver is disabled.  
The device has one battery supply pin VS, supplying the  
VR1 regulator and logic control. The supply line has to be  
properly decoupled by filtering capacitors close to the  
device pin.  
VR1 Overvoltage Reset Comparator – the VR1  
regulator output is compared with an overvoltage  
level OV_VR1. If the VR1 level crosses this  
threshold for longer than tfilt_OV_VR1, a reset  
towards the MCU is generated through the RSTN  
pin and the CAN transceiver is disabled.  
Temperature (see Figure 14)  
VR1 Lowdrop Regulator  
VR1 is a lowdrop output regulator providing 5 V voltage  
derived from the VS main supply. It is able to deliver up to  
250 mA and is primarily intended to supply the onchip  
CAN transceiver, the application microcontroller unit  
(MCU) and related 5 V loads (e.g. its own MCUrelated  
digital inputs/outputs). An external capacitor needs to be  
connected on VR1 pin in order to ensure the regulator’s  
stability and to filter the disturbances caused by the  
connected loads.  
V(VR1)  
V_VR1  
RES_hys_VR1  
RES_VR1  
VR1 voltage supplies all the digital lowvoltage  
input/output pins.  
The protection and monitoring of the VR1 regulator  
consist of the following features:  
VR1 Current Limitation – the twolevel current  
limitation controlled by VR1 reset comparator to  
reduce the power dissipation in case of shorts to  
ground by the current foldback (see Figure 7)  
VR1 Reset Comparator – the VR1 regulator output  
is compared with a reset level RES_VR1. If the VR1  
Ishort _VR1  
Ilim_VR1  
I(VR1)  
Figure 7. VR1 Current Foldback  
V(VS)  
V(VR1)  
OV_VR1  
V_VR1  
RES_VR1  
Vdrop_VR1  
VS_PORH  
VS_PORL  
<tfilt_OV_VR1  
<tfilt_RES_VR1  
tfilt_RES_VR1  
tfilt_RES_VR1  
tfilt_RES_VR1  
tfilt_RES_VR1  
t_RSTN  
RSTN  
t_RSTN  
Off  
Reset  
Normal functionality  
Reset  
Normal Rst  
Off  
Mode  
Figure 8. VS1 and VR1 Monitoring  
CAN Transceiver  
In order to prevent a faulty node from blocking the bus  
traffic, the maximum length of the transmitted dominant  
The SBC contains one highspeed CAN transceiver  
compliant with ISO118982:2016. The transceiver consists  
of the following subblocks: transmitter, receiver, and  
wakeup detector.  
If enabled (CAN_EN = High), the CAN transceiver is  
ready to provide the fullspeed interface between the bus  
and a CAN controller connected on pins RxDC (received  
data) and TxDC (data to transmit).  
symbol is limited by a timeout counter to t  
. In  
dom(TxDC)  
case the TxDC Low signal exceeds the timeout value, the  
transmitter returns automatically to the recessive state. The  
transmission is again deblocked when TxDC pin returns to  
high (recessive) state.  
If the CAN block is disabled (CAN_EN = Low) or RSTN  
pin active (Low) due to failed watchdog service or VR1  
www.onsemi.com  
11  
 
NCV7451  
undervoltage / overvoltage, the CAN transceiver is in its  
if the WAKE level stays Low for longer than  
tfilt_WAKE, an internal pulldown current source is  
connected to WAKE pin  
wakeup detection state. Logical level on TxDC is ignored  
and pin RxDC is kept high until a CAN bus wakeup is  
detected. The CAN bus wakeup corresponds to a pattern  
consisting of dominant – recessive – dominant symbols of  
at least t  
each. The RxDC starts following the CAN  
wake_filt  
bus afterwards. The pattern must be received within t  
wake_to  
Vth_WAKE  
Vhys_WAKE  
to be recognized as a valid wakeup event, otherwise  
internal wakeup logic is reset.  
WAKE  
Voltage  
EN_CAN  
tfilt_WAKE  
tfilt_WAKE  
twake_filt  
twake_filt  
twake_filt  
WAKE  
_OUT  
Current  
souce  
CANH  
CANL  
Pull-down  
Pull-up  
Pull-down  
Figure 10. WAKE Pin Functionality  
< twake_to  
tdwakerd  
Watchdog  
RxDC  
The onchip watchdog requires that the MCU software  
“triggers” or “services” the watchdog in a specified time  
frame. A correct watchdog service consists of hightolow  
transition on the WDI input. The watchdog timer restarts  
immediately after a successful trigger is received.  
After any Reset event (powerup, watchdog failure, VR1  
under/overvoltage, thermal shutdown) or watchdog enable  
(WD_EN = Low High), the watchdog always starts in a  
timeout mode. The MCU software must serve the watchdog  
any time before the timeout expiration. After the watchdog  
is triggered for the first time, it starts working in a window  
mode operation: the watchdog time is split to two distinct  
parts – a closed window, where the watchdog may not be  
triggered, is followed by an open window where the MCU  
must send a valid watchdog trigger (see Figure 12).  
Figure 9. CAN Wakeup Pattern  
WAKE Comparator  
WAKE pin is a highvoltage input typically used to  
monitor an external contact or switch. The inverted logical  
level on pin WAKE can be polled via WAKE_OUT output  
pushpull pin.  
A stable logical level of the WAKE signal is ensured even  
without an external connection:  
if the WAKE level is High for longer than tfilt_WAKE,  
an internal pullup current source is connected to  
WAKE pin  
Vs < Vs_PORL  
Vs > Vs_PORH  
Unpowered  
Reset  
No trigger  
within t_wd_OW  
No trigger  
within  
Trigger  
t_wd_TO  
WD_EN = high  
Trigger  
WD_EN = low  
WD_EN = high  
Closed  
Open  
Disabled  
Timeout  
Window  
Window  
t_wd_CW  
elapsed  
Trigger  
Figure 11. Watchdog Operating Modes  
www.onsemi.com  
12  
NCV7451  
WD Enable  
Trigger in  
Closed Window  
WD_EN  
WD_EN  
WDI  
Service  
Service  
Service  
WDI  
RSTN  
RSTN  
Closed  
Reset  
win.  
Closed Open Closed Open  
window win. window win.  
Timeout  
WD status  
Closed  
Open  
Closed  
window window window window  
Open  
Timeout  
WD status off  
<t_wd_CW t_RSTN  
t_wd_CW  
t_wd_CW  
<t_wd_TO  
t_wd_CW <t_wd_OW  
t_wd_trig  
Figure 15. Watchdog Service during Closed Window  
Figure 12. Correct Watchdog Services  
The WD_EN pin has an integrated pullup source to  
enable the watchdog in case the pin is disconnected from the  
application. To reduce the power consumption in the  
lowpower mode (watchdog and CAN disabled), the  
WD_EN pullup current source is switched on for  
ton_pu_WDEN time with period of tper_pu_WDEN. The  
pin state is sampled in the end of the current source  
activation. Once High level is detected on the WD_EN pin,  
the current source is activated permanently.  
In case the watchdog is not triggered before the timeout or  
open window elapses (Figure 13, Figure 14), or trigger is  
sent within the closed window (Figure 15), RSTN signal is  
generated and then watchdog restarted in the timeout mode  
again.  
WD Enable  
WD_EN  
WDI  
Timeout elapsed  
To ensure the High level is correctly detected if the pin  
becomes floating, external WD_EN capacitance should stay  
below 50 pF.  
After the rising edge on WD_EN pin, the MCU should  
wait tper_pu_WDEN before the first watchdog service.  
RSTN  
Closed  
window  
Open  
win.  
Reset  
Timeout  
off  
Timeout  
t_wd_TO  
WD status  
t_RSTN  
t_wd_CW  
WD_EN  
sampled  
WD_EN  
sampled  
WD_EN  
sampled  
WD_EN  
Figure 13. Missed Watchdog in Timeout Mode  
Ipu_WD_EN  
Pull-up current  
tper_pu_WDEN  
ton_pu_WDEN  
Enabled  
(timeout )  
Enabled  
Disabled  
WD status  
WD_EN  
WDI  
Open Window elapsed  
Figure 16. WD_EN Pullup Current Source Activation  
Thermal Protection  
RSTN  
A thermal protection circuit protects the IC from damage  
by complete device deactivation if the junction  
temperature exceeds a value of Tsd.  
The device recovers automatically after the junction  
temperature drops below Tsd level lowered by hysteresis  
Tsd_hys and toff_VR1 (typ. 1 second) expires.  
Closed Open  
window window  
Closed Open  
window window  
Reset  
Timeout  
WD status  
t_wd_CW t_wd_OW t_RSTN  
t_wd_CW  
Figure 14. Missed Watchdog in Window Mode  
www.onsemi.com  
13  
 
NCV7451  
Operating Modes  
The device operating modes are directly controlled by  
CAN_EN input pin and failure events (see Figure 17).  
POWERUP  
Cooldown  
POWER OFF  
VR1: starting  
CAN: off  
WAKE: on  
Watchdog: off  
RSTN: Low  
VR1: off  
CAN: off  
WAKE: off  
Watchdog: off  
RSTN: Low  
VR1: off  
CAN: off  
toff_VR1  
WAKE: off  
VS >  
VS_PORH  
Watchdog: off  
RSTN: HiZ / Low (if VS>2 V)  
elapsed  
RES_VR1 < VR1 < OV_VR1  
Tj < (Tsd – Tsd_hys)  
VS <VS_PORL  
Any  
mode  
Thermal Shutdown  
RESET  
VR1: on  
CAN: wakeup detection  
WAKE: on  
VR1: off  
CAN: off  
WAKE: off  
Watchdog: off  
RSTN: Low  
Watchdog: off  
RSTN: Low  
VR1 < RES_VR1  
or  
VR1 > OV_VR1  
t_RSTN elapsed  
Tj > Tsd  
or  
Correct  
Watchdog failure  
NORMAL  
Any  
mode  
VR1: on  
CAN: on  
WAKE: on  
Watchdog: per WD_EN  
RSTN: High  
CAN_EN = 0  
CAN_EN = 1  
Correct  
WD service  
LowPower  
VR1: on  
CAN: wakeup detection  
WAKE: on  
Watchdog: per WD_EN  
RSTN: High  
OK20201015.01  
Figure 17. Operating Modes Diagram  
www.onsemi.com  
14  
 
NCV7451  
ISO118982:2016 PARAMETER CROSSREFERENCE TABLE  
ISO 118982:2016 Specification  
NCV7451 Datasheet  
Symbol  
Parameter  
Notation  
DOMINANT OUTPUT CHARACTERISTICS  
Single ended voltage on CAN_H  
V
V
o(dom)(CANH)  
CAN_H  
Single ended voltage on CAN_L  
V
CAN_L  
V
o(dom)(CANL)  
Differential voltage on normal bus load  
Differential voltage on effective resistance during arbitration  
Differential voltage on extended bus load range (optional)  
DRIVER SYMMETRY  
V
Diff  
V
Diff  
V
Diff  
V
o(dom)(diff)  
V
o(dom)(diff)_arb  
NA  
Driver symmetry  
V
SYM  
V
o(sym)  
DRIVER OUTPUT CURRENT  
Absolute current on CAN_H  
I
I
o(SC)(CANH)  
CAN_H  
Absolute current on CAN_L  
I
I
o(SC)(CANL)  
CAN_L  
RECEIVER OUTPUT CHARACTERISTICS, BUS BIASING ACTIVE  
Single ended output voltage on CAN_H  
Single ended output voltage on CAN_L  
Differential output voltage  
V
V
o(rec)(CANH)  
CAN_H  
V
V
o(rec)(CANL)  
CAN_L  
V
Diff  
V
o(rec)(diff)  
RECEIVER OUTPUT CHARACTERISTICS, BUS BIASING INACTIVE  
Single ended output voltage on CAN_H  
Single ended output voltage on CAN_L  
Differential output voltage  
V
V
o(off)(CANH)  
CAN_H  
V
V
o(off)(CANL)  
CAN_L  
V
Diff  
V
o(off)(dif)  
TRANSMIT DOMINANT TIMEOUT  
Transmit dominant timeout, long  
t
t
t
dom(TxDC)  
dom  
Transmit dominant timeout, short  
NA  
dom  
STATIC RECEIVER INPUT CHARACTERISTICS, BUS BIASING ACTIVE  
Recessive state differential input voltage range  
Dominant state differential input voltage range  
STATIC RECEIVER INPUT CHARACTERISTICS, BUS BIASING INACTIVE  
Recessive state differential input voltage range  
Dominant state differential input voltage range  
RECEIVER INPUT RESISTANCE  
V
V
V
i(rec)(diff)_NM  
Diff  
V
Diff  
i(dom)(diff)_NM  
V
V
V
Diff  
i(rec)(diff)_LP  
V
Diff  
i(dom)(diff)_LP  
Differential internal resistance  
R
R
Diff  
i(diff)  
R
i(cm)(CANH)  
Single ended internal resistance  
R
CAN_H  
R
R
i(cm)(CANL)  
CAN_L  
RECEIVER INPUT RESISTANCE MATCHING  
Matching a of internal resistance  
IMPLEMENTATION LOOP DELAY REQUIREMENT  
Loop delay  
m
R
i(cm)(m)  
R
t
t
Loop  
pd_rd  
t
pd_dr  
DATA SIGNAL TIMING REQUIREMENTS for use with bit rates above 1 Mbit/s and up to 2 Mbit/s  
Transmitted recessive bit width @ 2 Mbit/s  
Received recessive bit width @ 2 Mbit/s  
Receiver timing symmetry @ 2 Mbit/s  
t
t
Bit(Vi(diff))  
Bit(Bus)  
t
t
Bit(RxDC)  
Bit(RXD)  
Dt  
Rec  
Dt  
Rec  
www.onsemi.com  
15  
NCV7451  
ISO118982:2016 PARAMETER CROSSREFERENCE TABLE (continued)  
ISO 118982:2016 Specification  
NCV7451 Datasheet  
Symbol  
Parameter  
Notation  
DATA SIGNAL TIMING REQUIREMENTS for use with bit rates above 2 Mbit/s and up to 5 Mbit/s  
Transmitted recessive bit width @ 5 Mbit/s  
Transmitted recessive bit width @ 5 Mbit/s  
Received recessive bit width @ 5 Mbit/s  
t
t
Bit(Vi(diff))  
Bit(Bus)  
t
t
Bit(RxDC)  
Bit(RXD)  
Dt  
Rec  
Dt  
Rec  
MAXIMUM RATINGS OF V  
, V AND V  
CAN_L DIFF  
CAN_H  
Maximum rating V  
V
Diff  
Vdiff  
Diff  
General maximum rating V  
and V  
V
V
CANH  
CANL  
CAN_H  
CAN_L  
CAN_H  
CAN_L  
Optional: Extended maximum rating V  
and V  
V
NA  
CAN_H  
CAN_L  
CAN_H  
V
CAN_L  
MAXIMUM LEAKAGE CURRENTS ON CAN_H AND CAN_L, UNPOWERED  
Leakage current on CAN_H, CAN_L  
I
,
I
LI  
CAN_H  
I
CAN_L  
BUS BIASING CONTROL TIMINGS  
CAN activity filter time, long  
t
t
NA  
Filter  
CAN activity filter time, short  
t
wake_filt  
Filter  
Optional: Wakeup timeout, short  
t
t
NA  
Wake  
Wake  
Optional: Wakeup timeout, long  
t
wake_to  
Timeout for bus inactivity (Required for selective wakeup implementation only)  
Bus Bias reaction time (Required for selective wakeup implementation only)  
t
NA  
Silence  
t
NA  
Bias  
www.onsemi.com  
16  
NCV7451  
PACKAGE DIMENSIONS  
DFNW14 4.5x3, 0.65P  
CASE 507AC  
ISSUE D  
NOTES:  
L3  
L3  
A B  
D
1. DIMENSIONS AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMESNION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.15 AND 0.30 MM FROM TERMINAL.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
5. THIS DEVICE CONTAINS WETTABLE FLANK  
DESIGN FEATURES TO AID IN FILLET FOR-  
MATION ON THE LEADS DURING MOUNTING.  
L
L
DETAIL A  
PIN ONE  
ALTERNATE  
REFERENCE  
CONSTRUCTION  
E
EXPOSED  
COPPER  
MILLIMETERS  
TOP VIEW  
DIM MIN  
NOM  
0.85  
−−−  
0.20 REF  
−−−  
0.30  
4.50  
4.20  
3.00  
1.60  
MAX  
0.90  
0.05  
A
A1  
A3  
A4  
b
D
D2  
E
E2  
e
0.80  
−−−  
A
DETAIL B  
0.10  
C
C
PLATING  
A1  
A4  
0.10  
0.25  
4.40  
4.13  
2.90  
1.53  
−−−  
0.35  
4.60  
4.27  
3.10  
1.67  
C
C
DETAIL B  
A4  
0.08  
SEATING  
PLANE  
A3  
NOTE 4  
C
SIDE VIEW  
0.65 BSC  
0.30 REF  
0.40  
DETAIL A  
K
L
L3  
0.35  
0.00  
0.45  
0.10  
D2  
L3  
0.05  
PLATED  
SURFACES  
14X  
L
1
7
SECTION CC  
RECOMMENDED  
SOLDERING FOOTPRINT*  
E2  
14X  
0.75  
4.35  
4.23  
8
14  
K
14X b  
0.10  
0.05  
e
14  
8
7
M
M
C A B  
NOTE 3  
C
BOTTOM VIEW  
3.60 1.75  
PACKAGE  
OUTLINE  
1
0.65  
PITCH  
14X  
0.33  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
17  
NCV7451  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
ON Semiconductor Website: www.onsemi.com  
www.onsemi.com  

相关型号:

NCV7462

LIN/CAN SBC/System-IC
ONSEMI

NCV7462DQ0R2G

LIN/CAN SBC/System-IC
ONSEMI

NCV7462DQ1R2G

LDO 稳压器,250 mA/50 mA,低漏,超低 Iq,高 PSRR
ONSEMI

NCV7462_1

LIN/CAN SBC/System-IC
ONSEMI

NCV7462_16

LIN/CAN SBC/System-IC
ONSEMI

NCV7471

System Basis Chip
ONSEMI

NCV7471ADQ5R2G

System Basis Chip
ONSEMI

NCV7471B

System Basis Chip with a High-Speed CAN/CANFD, Two LINs and a Boost-Buck DC/DC Converter
ONSEMI

NCV7471BDQ5R2G

System Basis Chip with a High-Speed CAN/CANFD, Two LINs and a Boost-Buck DC/DC Converter
ONSEMI

NCV7471C

System Basis Chip with a High-Speed CAN/CANFD, Two LINs and a Boost-Buck DC/DC Converter
ONSEMI

NCV7471CDQ5R2G

System Basis Chip with a High-Speed CAN/CANFD, Two LINs and a Boost-Buck DC/DC Converter
ONSEMI

NCV7471DQ5G

System Basis Chip
ONSEMI