NCV8705 [ONSEMI]

LDO Voltage Regulator;
NCV8705
型号: NCV8705
厂家: ONSEMI    ONSEMI
描述:

LDO Voltage Regulator

文件: 总23页 (文件大小:1758K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV8705  
500 mA, Ultra-Low  
Quiescent Current, IQ 13 mA,  
Ultra-Low Noise, LDO  
Voltage Regulator  
www.onsemi.com  
The NCV8705 is a low noise, low power consumption and low  
dropout Linear Voltage Regulator. With its excellent noise and PSRR  
specifications, the device is ideal for use in products utilizing RF  
receivers, imaging sensors, audio processors or any component  
requiring an extremely clean power supply. The NCV8705 uses an  
innovative Adaptive Ground Current circuit to ensure ultra low  
ground current during light load conditions.  
MARKING  
DIAGRAM  
1
WDFN6, 2x2  
CASE 511BR  
XX M  
XX = Specific Device Code  
M
= Date Code  
Features  
1
8705W  
XXX  
Operating Input Voltage Range: 2.5 V to 5.5 V  
Available − Fixed Voltage Option: 0.8 V to 3.5 V  
DFN8, 3x3  
CASE 506DB  
ALYWG  
1
G
Available − Adjustable Voltage Option: 0.8 V to 5.5 V−V  
Reference Voltage 0.8 V  
DROP  
1
8705L  
XXX  
ALYWG  
G
Ultra−Low Quiescent Current of Typ. 13 mA  
DFNW8, 3x3  
CASE 507AD  
Ultra−Low Noise: 12 mV  
from 100 Hz to 100 kHz  
RMS  
1
Very Low Dropout: 230 mV Typical at 500 mA  
2% Accuracy Over Load/Line/Temperature  
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
High PSRR: 71 dB at 1 kHz  
= Year  
Internal Soft−Start to Limit the Turn−On Inrush Current  
Thermal Shutdown and Current Limit Protections  
Stable with a 1 mF Ceramic Output Capacitor  
Active Output Discharge for Fast Turn−Off  
Wettable Flank Package Option Available  
= Work Week  
= Pb−Free Package  
(Note: Microdot may be in either location)  
PIN CONNECTIONS  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AEC−Q100  
Qualified and PPAP Capable  
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS  
Compliant  
OUT  
N/C  
1
2
3
4
8
7
6
5
IN  
1
2
6
5
N/C  
N/C  
EN  
EXP  
EXP  
N/C or ADJ  
GND  
3
4
WDFN6 2x2 mm  
(Top View)  
DFN8/DFNW8 3x3 mm  
(Top View)  
Typical Applicaitons  
ADAS, Infotainment & Cluster, and Telematics  
General Purpose Automotive & Industrial  
Building & Factory Automation, Smart Meters  
ORDERING INFORMATION  
See detailed ordering, marking and shipping information in the  
package dimensions section on page 20 of this data sheet.  
V
V
V
V
IN  
OUT  
OUT  
IN  
IN  
OUT  
N/C  
IN  
OUT  
ADJ  
NCV8705  
EN  
R
1
NCV8705  
C
1
C
C
OUT  
1 mF  
EN  
C
IN  
C
IN  
OUT  
ON  
GND  
ON  
GND  
1 mF  
OFF  
1 mF  
1 mF  
OFF  
R
2
Fixed Voltage Version  
Adjustable Voltage Version  
Figure 1. Typical Application Schematic  
© Semiconductor Components Industries, LLC, 2017  
1
Publication Order Number:  
February, 2017 − Rev. 8  
NCV8705/D  
NCV8705  
IN  
ENABLE  
LOGIC  
THERMAL  
SHUTDOWN  
UVLO  
EN  
BANDGAP  
REFERENCE  
MOSFET  
DRIVER WITH  
CURRENT LIMIT  
INTEGRATED  
SOFT−START  
OUT  
AUTO LOW  
POWER MODE  
ACTIVE  
DISCHARGE  
EN  
GND  
IN  
ENABLE  
LOGIC  
THERMAL  
SHUTDOWN  
UVLO  
EN  
BANDGAP  
REFERENCE  
MOSFET  
DRIVER WITH  
CURRENT LIMIT  
INTEGRATED  
SOFT−START  
OUT  
AUTO LOW  
POWER MODE  
ACTIVE  
DISCHARGE  
ADJ  
EN  
GND  
Figure 2. Simplified Schematic Block Diagrams  
www.onsemi.com  
2
NCV8705  
Table 1. PIN FUNCTION DESCRIPTION  
Pin No. −  
Fixed  
DFN8/DFNW8  
Pin No. −  
Adjustable  
DFN8/DFNW8  
Pin No. −  
Fixed  
WDFN6  
Pin No. −  
Adjustable  
WDFN6  
Pin  
Name  
Description  
OUT  
1
1
1
1
Regulated output voltage pin. A small 1 mF ceramic capac-  
itor is needed from this pin to ground to assure stability.  
GND  
4
4
3
3
Power supply ground. Expose pad must be tied with  
GND pin. Soldered to the copper plane allows for effective  
heat dissipation.  
EN  
5
5
4
4
Enable pin. Driving EN over 0.9 V turns on the regulator.  
Driving EN below 0.4 V puts the regulator into shutdown  
mode.  
IN  
8
8
3
6
6
2
5
Input pin. A small capacitor is needed from this pin to  
ground to assure stability.  
ADJ  
N/C  
Feedback pin for set−up output voltage. Use resistor di-  
vider for voltage selection.  
2, 3, 6, 7  
2, 6, 7  
2, 5  
Not connected. This pin can be tied to ground to improve  
thermal dissipation.  
Table 2. ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
V
Input Voltage (Note 1)  
V
IN  
−0.3 V to 6 V  
Output Voltage  
V
OUT  
−0.3 V to V + 0.3 V  
V
IN  
Enable Input  
V
EN  
−0.3 V to V + 0.3 V  
V
IN  
Adjustable Input  
V
ADJ  
−0.3 V to V + 0.3 V  
V
IN  
Output Short Circuit Duration  
Maximum Junction Temperature  
Storage Temperature  
t
Indefinite  
125  
s
SC  
T
°C  
°C  
V
J(MAX)  
T
STG  
−55 to 150  
2000  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Machine Model (Note 2)  
ESD  
HBM  
ESD  
200  
V
MM  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AEC−Q100−002 (EIA/JESD22−A114)  
ESD Machine Model tested per AEC−Q100−003 (EIA/JESD22−A115)  
Latchup Current Maximum Rating tested per JEDEC standard: JESD78.  
Table 3. THERMAL CHARACTERISTICS (Note 3)  
Rating  
Symbol  
Value  
Unit  
Thermal Characteristics, WDFN6 2x2 mm  
Thermal Resistance, Junction−to−Air  
Thermal Resistance Parameter, Junction−to−Board  
°C/W  
q
Y
116.5  
30  
JA  
JB  
Thermal Characteristics, DFN8 3x3 mm / DFNW8 3x3 mm  
Thermal Resistance, Junction−to−Air  
Thermal Resistance Parameter, Junction−to−Board  
°C/W  
q
Y
92.6  
35.1  
JA  
JB  
2
3. Single component mounted on 1 oz, FR 4 PCB with 645 mm Cu area.  
www.onsemi.com  
3
 
NCV8705  
Table 4. ELECTRICAL CHARACTERISTICS  
−40°C T 125°C; V = V  
+ 0.5 V or 2.5 V, whichever is greater; V = 0.9 V, I  
= 10 mA, C = C  
= 1 mF unless  
J
IN  
OUT(NOM)  
EN  
OUT  
IN  
OUT  
otherwise noted. Typical values are at T = +25°C. (Note 4)  
J
Parameter  
Test Conditions  
Symbol  
Min  
2.5  
0.8  
Typ  
Max  
5.5  
Unit  
V
Operating Input Voltage  
V
IN  
Output Voltage Range (Adjustable)  
V
OUT  
5.5−  
V
V
DO  
Undervoltage Lock−out  
Output Voltage Accuracy  
Reference Voltage  
V
V
rising  
UVLO  
1.2  
−2  
1.6  
0.8  
1.9  
+2  
V
%
IN  
+ 0.5 V V 5.5 V, I  
= 0 − 500 mA  
V
OUT  
OUT  
IN  
OUT  
V
V
V
REF  
Reference Voltage Accuracy  
Line Regulation  
I
= 10 mA  
−2  
+2  
%
OUT  
REF  
V
V
+ 0.5 V V 4.5 V, I  
+ 0.5 V V 5.5 V, I  
= 10 mA  
= 10 mA  
Reg  
550  
750  
mV/V  
OUT  
OUT  
IN  
IN  
OUT  
OUT  
LINE  
Load Regulation  
Load Transient  
I
I
= 0 mA to 500 mA  
Reg  
12  
mV/mA  
OUT  
LOAD  
= 1 mA to 500 mA or 500 mA to 1 mA in  
= 1 mF  
Tran  
120  
mV  
OUT  
LOAD  
1 ms, C  
OUT  
Dropout Voltage (Note 5)  
Output Current Limit  
Quiescent Current  
Ground Current  
I
= 500 mA, V  
= 2.8 V  
V
230  
750  
13  
350  
950  
25  
mV  
mA  
mA  
mA  
mA  
mA  
V
OUT  
OUT(nom)  
OUT(nom)  
DO  
V
= 90% V  
I
CL  
510  
OUT  
I
I
= 0 mA  
I
Q
OUT  
OUT  
= 500 mA  
I
260  
0.12  
0.55  
GND  
Shutdown Current  
V
0.4 V, T = +25°C  
I
EN  
EN  
J
DIS  
DIS  
V
0 V, V = 2.0 to 4.5 V, T = −40 to +85°C  
I
2
IN  
J
EN Pin Threshold Voltage  
High Threshold  
Low Threshold  
V
V
Voltage increasing  
Voltage decreasing  
V
EN_HI  
0.9  
EN  
EN  
V
0.4  
EN_LO  
EN Pin Input Current  
ADJ Pin Current  
Turn−On Time  
V
= 5.5 V  
= 0.8 V  
I
100  
1
500  
nA  
nA  
ms  
EN  
EN  
V
ADJ  
C
= 1.0 mF, from assertion EN pin to 98%  
t
150  
OUT  
ON  
V
OUT(nom)  
Power Supply Rejection Ratio  
Output Noise Voltage  
V
= 3.8 V, V  
= 2.8 V  
f = 100 Hz  
f = 1 kHz  
f = 10 kHz  
PSRR  
73  
71  
56  
dB  
IN  
OUT  
(Fixed), I  
= 500 mA  
OUT  
V
OUT  
= 2.5 V (Fixed), V = 3.5 V, I  
= 500 mA  
V
N
12  
mV  
rms  
IN  
OUT  
f = 100 Hz to 100 kHz  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
Temperature increasing from T = +25°C  
T
160  
20  
°C  
°C  
J
SD  
Temperature falling from T  
T
SDH  
SD  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
4. Performance guaranteed over the indicated operating temperature range by design and/or characterization. Production tested at T = T  
J
A
= 25_C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
5. Characterized when V  
falls 100 mV below the regulated voltage at V = V  
+ 0.5 V.  
OUT  
IN  
OUT(NOM)  
www.onsemi.com  
4
 
NCV8705  
TYPICAL CHARACTERISTICS  
10  
1
I
= 10 mA  
OUT  
RMS Output Noise (mV)  
10 Hz − 100 kHz 100 Hz − 100 kHz  
19.06 18.21  
I
I
= 500 mA  
OUT  
OUT  
0.1  
10 mA  
100 mA  
300 mA  
500 mA  
15.99  
14.42  
13.70  
15.04  
13.39  
12.60  
V
V
C
= 2.5 V  
IN  
= 0.8 V  
= C = 1 mF  
OUT  
I
= 100 mA  
0.01  
OUT  
IN  
OUT  
MLCC, X7R,  
1206 size  
I
= 300 mA  
OUT  
0.001  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
Figure 3. Output Voltage Noise Spectral Density for VOUT = 0.8 V, COUT = 1 mF  
10  
1
I
= 100 mA  
OUT  
RMS Output Noise (mV)  
I
= 10 mA  
OUT  
I
OUT  
10 Hz − 100 kHz  
16.17  
100 Hz − 100 kHz  
15.28  
10 mA  
100 mA  
300 mA  
500 mA  
0.1  
V
V
C
C
= 2.5 V  
16.41  
14.94  
14.08  
15.65  
14.10  
13.11  
IN  
= 0.8 V  
OUT  
= 1 mF  
IN  
0.01  
= 10 mF  
I
= 500 mA  
OUT  
OUT  
MLCC, X7R,  
1206 size  
I
= 300 mA  
100  
OUT  
0.001  
0.01  
0.1  
1
10  
1000  
FREQUENCY (kHz)  
Figure 4. Output Voltage Noise Spectral Density for VOUT = 0.8 V, COUT = 10 mF  
10  
1
I
= 100 mA  
OUT  
RMS Output Noise (mV)  
I
OUT  
10 Hz − 100 kHz  
18.12  
100 Hz − 100 kHz  
15.39  
I
= 300 mA  
OUT  
0.1  
10 mA  
100 mA  
300 mA  
500 mA  
16.42  
16.35  
16.00  
13.50  
12.47  
12.10  
V
V
C
= 3.8 V  
IN  
= 3.3 V  
OUT  
0.01  
= C  
= 1 mF  
IN  
OUT  
I
= 500 mA  
OUT  
MLCC, X7R,  
1206 size  
I
= 10 mA  
OUT  
0.001  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
Figure 5. Output Voltage Noise Spectral Density for VOUT = 3.3 V, COUT = 1 mF  
www.onsemi.com  
5
 
NCV8705  
TYPICAL CHARACTERISTICS  
10  
1
I
= 300 mA  
OUT  
RMS Output Noise (mV)  
10 Hz − 100 kHz 100 Hz − 100 kHz  
17.35 14.07  
I
OUT  
I
= 10 mA  
I
= 100 mA  
OUT  
OUT  
0.1  
1 mA  
100 mA  
300 mA  
500 mA  
17.43  
16.55  
16.48  
14.29  
13.33  
13.20  
V
V
C
C
= 3.8 V  
IN  
= 3.3 V  
= 1 mF  
OUT  
0.01  
IN  
= 10 mF  
OUT  
I
= 500 mA  
100  
OUT  
MLCC, X7R,  
1206 size  
0.001  
0.01  
0.1  
1
10  
1000  
FREQUENCY (kHz)  
Figure 6. Output Voltage Noise Spectral Density for VOUT = 3.3 V, COUT = 10 mF  
10  
1
V
OUT  
= 3.3 V, R = 25k,  
1
R = 8.2k  
2
RMS Output Noise (mV)  
V
OUT  
10 Hz − 100 kHz  
31.40  
49.14  
100 Hz − 100 kHz  
30.33  
44.30  
0.1  
1.5 V  
3.3 V  
V
OUT  
= 1.5 V, R = 15k,  
1
R = 13k  
2
V
C
C
= V  
= 1 mF  
=+1 V  
0.01  
IN  
OUT  
IN  
= 10 mF  
OUT  
I
= 10 mA  
OUT  
0.001  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
Figure 7. Output Voltage Noise Spectral Density for Adjustable Version – Different Output Voltage  
10  
1
C = none  
1
C = 100 pF  
1
RMS Output Noise (mV)  
10 Hz − 100 kHz 100 Hz − 100 kHz  
50.17 43.85  
C = 1 nF  
1
I
C = 10 nF  
OUT  
1
0.1  
none  
100 pF  
1 nF  
46.90  
36.92  
27.02  
40.39  
27.99  
18.31  
V
V
= 4.3 V  
IN  
= 3.3 V  
OUT  
0.01  
10 nF  
R = 255k, R = 82k  
1
2
C
= C  
= 1 mF  
IN  
OUT  
I
= 10 mA  
OUT  
0.001  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
Figure 8. Output Voltage Noise Spectral Density for Adjustable Version for Various C1  
www.onsemi.com  
6
 
NCV8705  
TYPICAL CHARACTERISTICS  
450  
400  
350  
300  
250  
200  
150  
100  
50  
160  
140  
V
= 3.3 V  
V
= 0.8 V  
120  
OUT  
OUT  
V
= 2.5 V  
OUT  
100  
80  
60  
40  
20  
0
V
= 3.3 V  
OUT  
V
OUT  
= 0.8 V  
V
= 2.5 V  
OUT  
V
C
C
= V  
+ 0.5 V  
IN  
OUT  
V
C
C
= V  
+ 0.5 V  
IN  
OUT  
= 1 mF  
= 1 mF  
OUT  
OUT  
= 1 mF  
MLCC, X7R,  
1206 size  
IN  
= 1 mF  
IN  
MLCC, X7R,  
1206 size  
0
0
50 100 150 200 250 300 350 400 450 500  
0
0.25  
0.5 0.75  
1
1.25 1.5 1.75  
2
I , OUTPUT CURRENT (mA)  
OUT  
I , OUTPUT CURRENT (mA)  
OUT  
Figure 9. Ground Current vs. Output Current  
Figure 10. Ground Current vs. Output Current  
from 0 mA to 2 mA  
160  
140  
120  
100  
80  
300  
250  
200  
150  
100  
50  
T = 125°C  
J
T = 125°C  
J
T = 25°C  
J
V
V
= 3.8 V  
= 3.3 V  
= 1 mF  
= 1 mF  
IN  
T = 25°C  
V
V
C
C
= 3.8 V  
T = −40°C  
J
IN  
J
60  
OUT  
= 3.3 V  
OUT  
C
C
OUT  
= 1 mF  
40  
OUT  
IN  
T = −40°C  
= 1 mF  
J
IN  
MLCC, X7R,  
1206 size  
20  
MLCC, X7R,  
1206 size  
0
0
0
50 100 150 200 250 300 350 400 450 500  
, OUTPUT CURRENT (mA)  
0
0.25  
0.5 0.75  
1
1.25 1.5 1.75  
2
I
I
, OUTPUT CURRENT (mA)  
OUT  
OUT  
Figure 11. Ground Current vs. Output Current  
at Temperatures  
Figure 12. Ground Current vs. Output Current  
0 mA to 2 mA at Temperature  
16  
14  
12  
10  
8
320  
280  
240  
200  
160  
120  
80  
V
C
C
= V  
+ 0.5 V  
IN  
OUT  
V
= 3.3 V  
OUT  
= 1 mF  
OUT  
= 1 mF  
IN  
T = 125°C  
J
MLCC, X7R,  
1206 size  
V
= 2.5 V  
OUT  
T = 25°C  
J
V
OUT  
= 0.8 V  
6
V
IN  
= V  
+ 0.5 V  
OUT  
C
C
= 1 mF  
= 1 mF  
OUT  
T = −40°C  
J
4
IN  
40  
MLCC, X7R,  
1206 size  
2
0
0
−40 −20  
0
20  
40  
60  
80  
100 120 140  
0
50 100 150 200 250 300 350 400 450500  
, OUTPUT CURRENT (mA)  
T , JUNCTION TEMPERATURE (°C)  
J
I
OUT  
Figure 13. Quiescent Current vs. Temperature  
Figure 14. Dropout Voltage vs. Output Current  
at Temperature (2.5 V)  
www.onsemi.com  
7
NCV8705  
TYPICAL CHARACTERISTICS  
320  
280  
240  
200  
160  
120  
80  
400  
V
C
C
= V  
+ 0.5 V  
V
C
C
= V  
+ 0.5 V  
IN  
OUT  
IN  
OUT  
= 1 mF  
= 1 mF  
OUT  
350  
OUT  
= 1 mF  
= 1 mF  
IN  
IN  
300 MLCC, X7R,  
1206 size  
250  
MLCC, X7R,  
1206 size  
I
= 500 mA  
OUT  
T = 125°C  
J
T = 25°C  
200  
150  
100  
50  
J
I
I
= 300 mA  
= 0 mA  
OUT  
T = −40°C  
OUT  
J
40  
0
0
0
50 100 150 200 250 300 350 400 450 500  
, OUTPUT CURRENT (mA)  
−40 −20  
0
20  
40  
60  
80  
100 120 140  
I
T , JUNCTION TEMPERATURE (°C)  
J
OUT  
Figure 15. Dropout Voltage vs. Output Current  
at Temperatures (3.3 V)  
Figure 16. Dropout Voltage vs. Temperature  
(2.5 V)  
4
3.5  
3
400  
350  
300  
250  
200  
150  
100  
50  
I
C
C
= 0 mA  
V
C
C
= V  
+ 0.5 V  
IN  
IN  
OUT  
V = 3.3 V  
OUT  
= 1 mF  
= 1 mF  
OUT  
OUT  
= 1 mF  
= 1 mF  
IN  
IN  
MLCC, X7R,  
1206 size  
MLCC, X7R,  
1206 size  
V
= 2.5 V  
= 0.8 V  
OUT  
2.5  
2
I
= 500 mA  
OUT  
1.5  
1
I
I
= 300 mA  
OUT  
OUT  
V
OUT  
= 0 mA  
0.5  
0
0
−40 −20  
0
20  
40  
60  
80  
100 120 140  
0
1
2
3
4
5
6
T , JUNCTION TEMPERATURE (°C)  
J
V
IN  
, INPUT VOLTAGE (V)  
Figure 17. Dropout Voltage vs. Temperature,  
(3.3 V)  
Figure 18. Input Voltage vs. Output Voltage  
0.8014  
0.8012  
0.8010  
0.8008  
0.8006  
0.8004  
0.8002  
0.8000  
0.7998  
0.7996  
0.7994  
0.7992  
0.7990  
1.804  
1.803  
1.802  
1.801  
1.800  
1.799  
1.798  
1.797  
1.796  
1.795  
1.794  
1.793  
1.792  
V
V
C
C
= 2.5 V  
V
V
C
C
= 3 V  
IN  
IN  
= 0.8 V  
= 2.5 V  
OUT  
OUT  
= 1 mF  
= 1 mF  
OUT  
= 1 mF  
IN  
OUT  
= 1 mF  
IN  
MLCC, X7R,  
1206 size  
MLCC, X7R,  
1206 size  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 19. Output Voltage vs. Temperature,  
(0.8 V)  
Figure 20. Output Voltage vs. Temperature,  
(2.5 V)  
www.onsemi.com  
8
NCV8705  
TYPICAL CHARACTERISTICS  
3.305  
3.304  
3.303  
3.302  
3.301  
3.300  
3.299  
3.298  
3.297  
3.296  
3.295  
3.294  
3.293  
700  
680  
660  
640  
620  
600  
V
V
C
C
= 3.8 V  
IN  
V
V
C
C
= 2.5 V  
580  
560  
540  
520  
500  
IN  
= 3.3 V  
OUT  
= 1.8 V  
OUT  
= 1 mF  
OUT  
= 1 mF  
OUT  
= 1 mF  
IN  
= 1 mF  
IN  
MLCC, X7R,  
1206 size  
MLCC, X7R,  
1206 size  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 21. Output Voltage vs. Temperature,  
(3.3 V)  
Figure 22. Line Regulation vs. Temperature,  
(1.8 V)  
1200  
1150  
1050  
1000  
950  
8
7
6
5
4
3
2
1
0
V
V
C
C
= 3.8 V  
IN  
V
V
C
C
= 2.5 V  
IN  
= 3.3 V  
OUT  
= 1.8 V  
OUT  
= 1 mF  
OUT  
= 1 mF  
OUT  
= 1 mF  
IN  
= 1 mF  
IN  
MLCC, X7R,  
1206 size  
MLCC, X7R,  
1206 size  
900  
850  
800  
750  
700  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 23. Line Regulation vs. Temperature,  
(3.3 V)  
Figure 24. Load Regulation vs. Temperature,  
(1.8 V)  
8
7
6
5
4
3
2
1
0
0.3  
0.25  
0.2  
V
V
C
C
= 3.8 V  
V
0.4 V  
IN  
EN  
= 3.3 V  
R = 330 W  
C
C
MLCC, X7R,  
1206 size  
OUT  
L
= 1 mF  
= 1 mF  
OUT  
OUT  
= 1 mF  
= 1 mF  
IN  
IN  
MLCC, X7R,  
1206 size  
0.15  
0.1  
V
IN  
= 4.5 V  
0.05  
0
V
IN  
= 2.3 V  
−0.05  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 25. Load Regulation vs. Temperature,  
(3.3 V)  
Figure 26. Disable Current vs. Temperature  
www.onsemi.com  
9
NCV8705  
TYPICAL CHARACTERISTICS  
120  
100  
80  
60  
40  
20  
0
750  
735  
720  
705  
690  
675  
V
V
= 5.5 V  
= 0.4 V  
EN  
V
= 1.8 V  
OUT  
EN  
V
V
= 3.8 V  
IN  
660  
645  
630  
615  
600  
= 3.3 V  
OUT  
V
= 3.3 V  
OUT  
V
C
C
= V  
+ 0.5 V  
IN  
OUT  
R = 330 W  
C
C
MLCC, X7R,  
1206 size  
L
= 1 mF  
OUT  
= 1 mF  
OUT  
= 1 mF  
IN  
= 1 mF  
IN  
MLCC, X7R,  
1206 size  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 27. Enable Current vs. Temperature  
Figure 28. Current Limit vs. Temperature  
800  
780  
760  
740  
720  
700  
680  
660  
640  
620  
600  
800  
780  
760  
740  
720  
700  
680  
660  
640  
620  
600  
V
C
= 0.8 V  
= 1 mF  
OUT  
IN  
V
= 3.3 V  
OUT  
COUT = 1 mF  
MLCC, X7R  
1206 size  
V
= 1.8 V  
OUT  
V
IN  
= V  
= 1 mF  
= 1 mF  
+ 0.5 V  
OUT  
C
C
OUT  
IN  
MLCC, X7R,  
1206 size  
−40 −20  
0
20  
40  
60  
80 100 120 140  
2.5  
3.00  
3.50  
V , INPUT VOLTAGE (V)  
IN  
4.00  
4.50  
5.00 5.50  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 29. Short−Circuit vs. Temperature  
Figure 30. Short−Circuit Current vs.  
Temperature  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
V
C
C
= 3.8 V  
V
V
C
C
= 3.8 V  
IN  
IN  
= 3.3 V  
= 3.3 V  
OUT  
OUT  
= 1 mF  
= 1 mF  
OUT  
= 1 mF  
IN  
OUT  
= 1 mF  
IN  
MLCC, X7R,  
1206 size  
MLCC, X7R,  
1206 size  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 31. Enable Threshold (High)  
Figure 32. Enable Threshold (Low)  
www.onsemi.com  
10  
NCV8705  
TYPICAL CHARACTERISTICS  
400  
390  
380  
370  
250  
240  
230  
220  
210  
200  
V
V
C
C
= 3.8 V  
IN  
= 3.3 V  
OUT  
= 1 mF  
OUT  
= 1 mF  
IN  
MLCC, X7R,  
360 1206 size  
350  
340  
330  
320  
310  
V
V
C
C
= 3.8 V  
IN  
190  
180  
170  
160  
150  
= 3.3 V  
OUT  
= 1 mF  
OUT  
= 1 mF  
IN  
MLCC, X7R,  
1206 size  
300  
−40 −20  
0
20  
40  
60  
80 100 120 140  
−40 −20  
0
20  
40  
60  
80 100 120 140  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 33. Discharge Resistance vs.  
Temperature  
Figure 34. Start−up Time vs. Temperature  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
I
I
I
= 10 mA  
OUT  
OUT  
OUT  
OUT  
I
I
I
I
= 10 mA  
OUT  
OUT  
OUT  
OUT  
= 100 mA  
= 300 mA  
= 500 mA  
= 100 mA  
= 300 mA  
= 500 mA  
V
V
C
C
= 3.8 V + 100 mV  
= 2.8 V  
V
V
C
C
= 2.8 V + 100 mV  
= 1.8 V  
IN  
PP  
IN  
PP  
OUT  
OUT  
= 1 mF  
= 1 mF  
OUT  
OUT  
= none  
= none  
IN  
IN  
MLCC, X7R,  
1206 size  
MLCC, X7R,  
1206 size  
0.01  
0.1  
1
10  
100  
1k  
10k  
0.01  
0.1  
1
10  
100  
1k  
10k  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 35. Power Supply Rejection Ratio,  
Figure 36. Power Supply Rejection Ratio,  
VOUT = 2.8 V  
V
OUT = 1.8 V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
I
I
I
I
= 10 mA  
OUT  
OUT  
OUT  
OUT  
= 100 mA  
= 300 mA  
= 500 mA  
V
V
C
C
= 4.3 V + 100 mV  
= 3.3 V  
V
V
C
= 4.3 V + 100 mV  
IN  
PP  
IN  
PP  
= 3.3 V  
OUT  
OUT  
= 1 mF  
= none  
OUT  
IN  
C
C
C
= 1 mF  
= 4.7 mF  
= 10 mF  
= none  
OUT  
OUT  
OUT  
MLCC, X7R,  
1206 size  
IN  
MLCC, X7R,  
1206 size  
0.01  
0.1  
1
10  
100  
1k  
10k  
0.01  
0.1  
1
10  
100  
1k  
10k  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 37. Power Supply Rejection Ratio,  
OUT = 3.3 V  
Figure 38. Power Supply Rejection Ratio,  
VOUT = 3.3 V, IOUT = 10 mA − Different COUT  
V
www.onsemi.com  
11  
NCV8705  
TYPICAL CHARACTERISTICS  
80  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
C = none  
1
C
C
C
= 1 mF  
= 4.7 mF  
= 10 mF  
OUT  
OUT  
OUT  
70  
60  
50  
40  
30  
20  
10  
0
C = 100 pF  
1
C = 1 nF  
1
C = 10 nF  
1
C = 100 nF  
1
V
V
= 4.3 V + 100 mV  
= 3.3 V  
V
V
I
= 4.3 V + 100 mV  
= 3.3 V  
IN  
PP  
IN  
PP  
OUT  
OUT  
R = 225k, R = 82k  
= 500 mA  
1
2
LOAD  
I
= 10 mA  
C
= none  
LOAD  
IN  
C
= 1 mF MLCC,  
MLCC, X7R,  
1206 size  
OUT  
X7R, 1206 size  
0.01  
0.1  
1
10  
100  
1k  
10k  
0.01 0.1  
1
10  
100  
1k  
10k  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 39. Power Supply Rejection Ratio,  
OUT = 3.3 V, IOUT = 500 mA − Different COUT  
Figure 40. Power Supply Rejection Ratio,  
VOUT = 3.3 V, IOUT = 500 mA − Different COUT  
V
100  
10  
UNSTABLE REGION  
V
V
= 0.8 V  
= 3.3 V  
OUT  
1
OUT  
0.1  
0.01  
STABLE REGION  
0
50 100 150 200 250 300 350 400 450 500  
, OUTPUT CURRENT (mA)  
I
OUT  
Figure 41. Output Capacitor ESR vs. Output  
Current  
V
EN  
V
EN  
I
INRUSH  
I
INRUSH  
V
V
V
= 3.8 V  
V
V
V
= 3.8 V  
IN  
OUT  
IN  
OUT  
= 3.3 V  
= 1 V  
= 3.3 V  
= 1 V  
EN  
EN  
C
C
I
= 1 mF  
= 1 mF  
= 500 mA  
C
C
I
= 1 mF  
= 1 mF  
= 500 mA  
OUT  
OUT  
V
OUT  
V
OUT  
IN  
IN  
OUT  
OUT  
100 ms/div  
100 ms/div  
Figure 42. Enable Turn−on Response,  
OUT = 1 mF, IOUT = 10 mA  
Figure 43. Enable Turn−on Response,  
C
COUT = 1 mF, IOUT = 500 mA  
www.onsemi.com  
12  
NCV8705  
TYPICAL CHARACTERISTICS  
V
EN  
V
EN  
I
I
INRUSH  
INRUSH  
V
V
V
= 3.8 V  
V
V
V
= 3.8 V  
IN  
OUT  
IN  
OUT  
= 3.3 V  
= 1 V  
= 3.3 V  
= 1 V  
EN  
EN  
C
C
I
= 10 mF  
= 1 mF  
= 500 mA  
C
C
I
= 10 mF  
= 1 mF  
= 500 mA  
OUT  
V
OUT  
OUT  
V
OUT  
IN  
IN  
OUT  
OUT  
100 ms/div  
100 ms/div  
Figure 44. Enable Turn−on Response,  
Figure 45. Enable Turn−on Response,  
OUT = 10 mF, IOUT = 500 mA  
C
OUT = 10 mF, IOUT = 10 mA  
C
V
V
V
I
= 2.5 V  
IN  
V
EN  
= 0.8 V  
OUT  
= 1 V  
t
= 1 ms  
V
= 2.5 V  
= 0.8 V  
= 1 V  
EN  
FALL  
IN  
= 10 mA  
V
V
OUT  
OUT  
V
EN  
t
= 1 ms  
RISE  
EN  
I
= 10 mA  
OUT  
C
= 1 mF  
OUT  
C
= 10 mF  
OUT  
C
= 10 mF  
OUT  
V
OUT  
V
OUT  
C
= 1 mF  
OUT  
5 ms/div  
5 ms/div  
Figure 46. Line Transient Response − Rising  
Edge, VOUT = 0.8 V, IOUT = 10 mA  
Figure 47. Line Transient Response − Falling  
Edge, VOUT = 0.8 V, IOUT = 10 mA  
V
V
V
= 3.8 V  
IN  
= 3.3 V  
OUT  
V
EN  
= 1 V  
EN  
t
= 1 ms  
FALL  
I
= 10 mA  
OUT  
V
V
V
= 3.8 V  
IN  
V
EN  
t
= 1 ms  
= 1 mF  
RISE  
= 3.3 V  
OUT  
= 1 V  
EN  
I
= 10 mA  
OUT  
C
OUT  
C
= 10 mF  
OUT  
C
= 10 mF  
OUT  
V
OUT  
V
OUT  
C
= 1 mF  
OUT  
10 ms/div  
10 ms/div  
Figure 48. Line Transient Response − Rising  
Edge, VOUT = 3.3 V, IOUT = 10 mA  
Figure 49. Line Transient Response − Falling  
Edge, VOUT = 3.3 V, IOUT = 10 mA  
www.onsemi.com  
13  
NCV8705  
TYPICAL CHARACTERISTICS  
V
EN  
t
= 1 ms  
FALL  
V
EN  
t
= 1 ms  
= 1 mF  
RISE  
V
V
V
I
= 3.8 V  
IN  
V
V
V
= 3.8 V  
IN  
= 3.3 V  
OUT  
= 3.3 V  
OUT  
C
OUT  
= 1 V  
EN  
= 1 V  
EN  
C
= 10 mF  
= 500 mA  
C
= 10 mF  
OUT  
OUT  
OUT  
I
= 500 mA  
OUT  
V
OUT  
V
OUT  
C
= 1 mF  
OUT  
5 ms/div  
10 ms/div  
Figure 50. Line Transient Response − Rising  
Edge, VOUT = 3.3 V, IOUT = 500 mA  
Figure 51. Line Transient Response − Falling  
Edge, VOUT = 3.3 V, IOUT = 500 mA  
V
V
= 2.5 V  
IN  
I
OUT  
= 0.8 V  
OUT  
V
V
= 2.5 V  
IN  
C = 1 mF (MLCC)  
IN  
t
= 1 ms  
= 0.8 V  
FALL  
OUT  
I
t
= 1 ms  
OUT  
RISE  
C
= 1 mF (MLCC)  
IN  
C
= 1 mF  
OUT  
C
= 10 mF  
OUT  
C
= 10 mF  
OUT  
V
OUT  
V
OUT  
C
= 1 mF  
OUT  
10 ms/div  
100 ms/div  
Figure 52. Load Transient Response − Rising  
Edge, VOUT = 0.8 V, IOUT = 1 mA to 500 mA,  
Figure 53. Load Transient Response − Falling  
Edge, VOUT = 0.8 V, IOUT = 1 mA to 500 mA,  
C
OUT = 1 mF, 10 mF  
COUT = 1 mF, 10 mF  
V
V
C
C
= 2.5 V  
IN  
I
= 0.8 V  
OUT  
OUT  
V
V
C
C
= 2.5 V  
IN  
= 1 mF (MLCC)  
= 1 mF (MLCC)  
IN  
= 0.8 V  
OUT  
I
OUT  
OUT  
= 1 mF (MLCC)  
IN  
= 1 mF (MLCC)  
OUT  
t
= 1 ms  
FALL_IOUT  
t
= 10 ms  
RISE_IOUT  
V
OUT  
V
OUT  
t
= 1 ms  
t
= 10 ms  
RISE_IOUT  
FALL_IOUT  
10 ms/div  
10 ms/div  
Figure 54. Load Transient Response − Rising  
Edge, VOUT = 0.8 V, IOUT = 1 mA to 500 mA,  
Figure 55. Load Transient Response − Falling  
Edge, VOUT = 0.8 V, IOUT = 1 mA to 500 mA,  
t
RISE_IOUT = 1 ms, 10 ms  
tFALL_IOUT = 1 ms, 10 ms  
www.onsemi.com  
14  
NCV8705  
TYPICAL CHARACTERISTICS  
V
V
C
= 3.8 V  
IN  
I
OUT  
= 3.3 V  
V
V
= 3.8 V  
OUT  
IN  
= 1 mF (MLCC)  
= 3.3 V  
IN  
OUT  
I
OUT  
C
= 1 mF (MLCC)  
IN  
C
= 1 mF  
OUT  
C
= 10 mF  
OUT  
V
OUT  
V
OUT  
C
= 10 mF  
OUT  
C
= 1 mF  
OUT  
5 ms/div  
50 ms/div  
Figure 56. Load Transient Response − Rising  
Edge, VOUT = 3.3 V, IOUT = 1 mA to 500 mA,  
Figure 57. Load Transient Response − Falling  
Edge, VOUT = 3.3 V, IOUT = 1 mA to 500 mA,  
C
OUT = 1 mF, 10 mF  
C
OUT = 1 mF, 10 mF  
I
V
V
= 3.8 V  
OUT  
IN  
= 3.3 V  
OUT  
I
OUT  
C
C
= 1 mF (MLCC)  
IN  
= 1 mF (MLCC)  
OUT  
t
= 1 ms  
FALL_IOUT  
V
t
V
OUT  
OUT  
V
V
= 3.8 V  
IN  
= 10 ms  
= 3.3 V  
FALL_IOUT  
t
= 10 ms  
OUT  
RISE_IOUT  
C
C
= 1 mF (MLCC)  
IN  
t
= 1 ms  
RISE_IOUT  
= 1 mF (MLCC)  
OUT  
10 ms/div  
50 ms/div  
Figure 58. Load Transient Response − Rising  
Edge, VOUT = 3.3 V, IOUT = 1 mA to 500 mA,  
Figure 59. Load Transient Response − Falling  
Edge, VOUT = 3.3 V, IOUT = 1 mA to 500 mA,  
t
RISE_IOUT = 1 ms, 10 ms  
t
FALL_IOUT = 1 ms, 10 ms  
V
I
= 3.3 V  
V
V
= 5.5 V  
IN  
IN  
V
OUT  
= 1 mA  
= 3.3 V  
OUT  
OUT  
C
C
= 1 mF (MLCC)  
= 1 mF (MLCC)  
C
C
= 1 mF (MLCC)  
= 1 mF (MLCC)  
IN  
IN  
OUT  
OUT  
Short−Circuit  
V
IN  
Thermal Shutdown  
V
OUT  
I
OUT  
5 ms/div  
20 ms/div  
Figure 60. Turn−on/off, Slow Rising VIN  
Figure 61. Short−Circuit and Thermal  
Shutdown  
www.onsemi.com  
15  
NCV8705  
TYPICAL CHARACTERISTICS  
V
V
C
C
= 5.5 V  
IN  
V
V
C
C
= 5.5 V  
IN  
= 3.3 V  
V
OUT  
OUT  
= 3.3 V  
V
EN  
OUT  
= 1 mF (MLCC)  
IN  
= 1 mF (MLCC)  
IN  
= 1 mF (MLCC)  
OUT  
= 1 mF (MLCC)  
OUT  
V
OUT  
C
= 10 mF  
OUT  
C
= 1 mF  
OUT  
I
OUT  
50 ms/div  
5 ms/div  
Figure 62. Short−Circuit Current Peak  
Figure 63. Enable Turn−off  
www.onsemi.com  
16  
NCV8705  
APPLICATIONS INFORMATION  
General  
10  
The NCV8705 is a high performance 500 mA Low  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
Dropout Linear Regulator. This device delivers excellent  
noise and dynamic performance. Thanks to its adaptive  
ground current feature the device consumes only 13 mA of  
quiescent current at no*load condition. The regulator  
features ultra*low noise of 12 mVRMS, PSRR of 71 dB at  
1 kHz and very good load/line transient performance. Such  
excellent dynamic parameters and small package size make  
the device an ideal choice for powering the precision analog  
and noise sensitive circuitry in portable applications. The  
LDO achieves this ultra low noise level output without the  
need for a noise bypass capacitor. A logic EN input provides  
ON/OFF control of the output voltage. When the EN is low  
the device consumes as low as typ. 10 nA from the IN pin.  
The device is fully protected in case of output overload,  
output short circuit condition and overheating, assuring a  
very robust design.  
Package Size  
1206  
0805  
0603  
0402  
0
1
2
3
4
5
6
7
8
9
10  
DC BIAS (V)  
Figure 64. Capacitance Change vs. DC Bias  
No−load Operation  
The regulator remains stable and regulates the output  
voltage properly within the 2% tolerance limits even with  
no external load applied to the output.  
Input Capacitor Selection (CIN)  
It is recommended to connect a minimum of 1 mF Ceramic  
X5R or X7R capacitor close to the IN pin of the device. This  
capacitor will provide a low impedance path for unwanted  
AC signals or noise modulated onto constant input voltage.  
There is no requirement for the min. /max. ESR of the input  
capacitor but it is recommended to use ceramic capacitors  
for their low ESR and ESL. A good input capacitor will limit  
the influence of input trace inductance and source resistance  
during sudden load current changes. Larger input capacitor  
may be necessary if fast and large load transients are  
encountered in the application.  
Adjustable Operation  
The output voltage range can be set from 0.8 V to  
5.5 V−V by resistor divider network. Use Equations 1  
DO  
and 2 to calculate appropriate values of resistors and output  
voltage. Typical current to ADJ pin is 1 nA. For output  
voltage 0.8 V ADJ pin can be tied directly to Vout pin.  
R1  
+ 0.8 @ ǒ1 ) Ǔ) R @ I  
(eq. 1)  
VOUT  
1
ADJ  
R2  
1
(eq. 2)  
R2 ^ R1 @  
Output Decoupling (COUT)  
V
OUT * 1  
0.8  
The NCV8705 requires an output capacitor connected as  
close as possible to the output pin of the regulator. The  
minimal capacitor value is 1 mF and X7R or X5R dielectric  
due to its low capacitance variations over the specified  
temperature range. The NCV8705 is designed to remain  
stable with minimum effective capacitance of 1 mF to  
account for changes with temperature, DC bias and package  
size. Especially for small package size capacitors such as  
0402 the effective capacitance drops rapidly with the  
applied DC bias. Refer to the Figure 64, for the capacitance  
vs. package size and DC bias voltage dependence.  
The resistor divider should be designed carefully to  
achieve the best performance. Recommended current  
through divider is 10 mA and more. Too high values of  
resistors (MW) cause increasing noise and longer start−up  
time. The suggested values of the resistors are in Table 5. To  
improve dynamic performance capacitor C1 should be at  
least 1 nF. Recommended range of capacity is between  
10 nF and 100 nF. Higher value of capacitor C1 increasing  
start−up time.  
There is no requirement for the minimum value of  
Table 5. Proposal Resistor Values for Various VOUT  
Equivalent Series Resistance (ESR) for the C  
but the  
OUT  
V
R1  
R2  
150k  
82k  
OUT  
maximum value of ESR should be less than 900 mΩ. Larger  
output capacitors and lower ESR could improve the load  
transient response or high frequency PSRR as shown in  
typical characteristics. It is not recommended to use  
tantalum capacitors on theoutput due to their large ESR. The  
equivalent series resistance of tantalum capacitors is also  
strongly dependent on the temperature, increasing at low  
temperature. The tantalum capacitors are generally more  
costly than ceramic capacitors.  
1.5 V  
3.3 V  
5.0 V  
130k  
256k  
430k  
82k  
www.onsemi.com  
17  
 
NCV8705  
V
V
Internal Soft−Start circuit  
OUT  
IN  
IN  
OUT  
ADJ  
NCV8705 contains an internal soft−start circuitry to  
protect against large inrush currents which could otherwise  
flow during the start−up of the regulator. Soft−start feature  
protects against power bus disturbances and assures a  
controlled and monotonic rise of the output voltage.  
NCV8705  
EN  
R
1
C
1
C
C
OUT  
1 mF  
IN  
ON  
GND  
1 mF  
OFF  
R
2
Thermal Shutdown  
When the die temperature exceeds the Thermal Shutdown  
Figure 65. NCV8705 Adjustable with Noise  
Improvement Capacitor  
threshold (T − 160°C typical), Thermal Shutdown event  
SD  
is detected and the device is disabled. The IC will remain in  
this state until the die temperature decreases below the  
Enable Operation  
The NCV8705 uses the EN pin to enable/disable its device  
and to deactivate/activate the active discharge function.  
If the EN pin voltage >0.9 V the device is guaranteed to  
be enabled. The NCV8705 regulates the output voltage and  
the active discharge transistor is turned−off.  
The EN pin has internal pull−down current source with  
typ. value of 110 nA which assures that the device is  
turned−off when the EN pin is not connected. Build in 2 mV  
hysteresis into the EN prevents from periodic on/off  
oscillations that can occur due to noise.  
Thermal Shutdown Reset threshold (T  
− 140°C typical).  
SDU  
Once the IC temperature falls below the 140°C the LDO is  
enabled again. The thermal shutdown feature provides the  
protection from a catastrophic device failure due to  
accidental overheating. This protection is not intended to be  
used as a substitute for proper heat sinking.  
Power Dissipation  
As power dissipated in the NCV8705 increases, it might  
become necessary to provide some thermal relief. The  
maximum power dissipation supported by the device is  
dependent upon board design and layout. Mounting pad  
configuration on the PCB, the board material, and the  
ambient temperature affect the rate of junction temperature  
rise for the part.  
In the case where the EN function isn’t required the EN  
should be tied directly to IN.  
Undervoltage Lockout  
The internal UVLO circuitry assures that the device  
becomes disabled when the V falls below typ. 1.5 V. When  
IN  
The maximum power dissipation the NCV8705 can  
handle is given by:  
the V voltage ramps−up the NCV8705 becomes enabled, if  
IN  
V
IN  
rises above typ. 1.6 V. The 100 mV hysteresis prevents  
from on/off oscillations that can occur due to noise on V line.  
IN  
ƪT  
ƫ
J(MAX) * TA  
(eq. 3)  
PD(MAX)  
+
Output Current Limit  
qJA  
Output Current is internally limited within the IC to a  
typical 750 mA. The NCV8705 will source this amount of  
current measured with a voltage drops on the 90% of the  
The power dissipated by the NCV8705 for given  
application conditions can be calculated from the following  
equations:  
nominal V  
ground (V  
. If the Output Voltage is directly shorted to  
= 0 V), the short circuit protection will limit  
OUT  
ǒI  
Ǔ ) I ǒV  
Ǔ (eq. 4)  
PD [ VIN GND@IOUT  
OUT IN * VOUT  
OUT  
the output current to 800 mA (typ). The current limit and  
short circuit protection will work properly up to  
V
= 5.5 V at T = 125°C. There is no limitation for the  
IN  
A
short circuit duration.  
220  
200  
180  
160  
140  
120  
100  
80  
1.6  
1.4  
P
, T = 25°C, 2 oz Cu  
D(MAX)  
A
1.2  
1
P , T = 25°C, 1 oz Cu  
D(MAX) A  
0.8  
0.6  
0.4  
0.2  
q
, 1 oz Cu  
JA  
q
, 2 oz Cu  
400  
JA  
0
100  
200  
300  
500  
600  
700  
2
COPPER HEAT SPREADER AREA (mm )  
Figure 66. qJA and PD(MAX) vs. Copper Area (WDFN6)  
www.onsemi.com  
18  
 
NCV8705  
300  
250  
200  
150  
100  
50  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
P
, T = 25°C, 2 oz Cu  
D(MAX)  
A
P
, T = 25°C, 1 oz Cu  
D(MAX)  
A
q
, 1 oz Cu  
JA  
q
, 2 oz Cu  
JA  
0
0
100  
200  
300  
400  
500  
600  
700  
2
COPPER HEAT SPREADER AREA (mm )  
Figure 67. qJA and PD(MAX) vs. Copper Area (DFN8/DFNW8)  
Reverse Current  
The PMOS pass transistor has an inherent body diode  
which will be forward biased in the case that V > V .  
Due to this fact in cases, where the extended reverse current  
condition can be anticipated the device may require  
additional external protection.  
the range 100 kHz – 10 MHz can be tuned by the selection  
of C capacitor and proper PCB layout.  
OUT  
OUT  
IN  
Output Noise  
The IC is designed for ultra−low noise output voltage  
without external noise filter capacitor (C ). Figures 3 6  
nr  
shows NCV8705 noise performance. Generally the noise  
performance in the indicated frequency range improves with  
increasing output current.  
Load Regulation  
The NCV8705 features very good load regulation of  
maximum 2 mV in 0 mA to 500 mA range. In order to  
achieve this very good load regulation a special attention to  
PCB design is necessary. The trace resistance from the OUT  
pin to the point of load can easily approach 100 mW which  
will cause 50 mV voltage drop at full load current,  
deteriorating the excellent load regulation.  
Turn−On Time  
The turn−on time is defined as the time period from EN  
assertion to the point in which V  
will reach 98% of its  
OUT  
nominal value. This time is dependent on various  
application conditions such as V , C , T .  
OUT(NOM) OUT  
A
PCB Layout Recommendations  
Line Regulation  
To obtain good transient performance and good regulation  
characteristics place C and C capacitors close to the  
The IC features very good line regulation of 0.75 mV/V  
IN  
OUT  
measured from V = V  
+ 0.5 V to 5.5V. For battery  
IN  
OUT  
device pins and make the PCB traces wide. In order to  
minimize the solution size, use 0402 capacitors. Larger  
copper area connected to the pins will also improve the  
device thermal resistance. The actual power dissipation can  
be calculated from the equation above (Equation 4).  
operated applications it may be important that the line  
regulation from V = V  
+ 0.5 V up to 4.5 V is only  
IN  
OUT  
0.55 mV/V.  
Power Supply Rejection Ratio  
The NCV8705 features very good Power Supply  
Rejection ratio. If desired the PSRR at higher frequencies in  
www.onsemi.com  
19  
NCV8705  
ORDERING INFORMATION  
Device  
Voltage Option  
Marking  
VF  
Package  
Feature  
Shipping  
NCV8705MT12TCG  
NCV8705MT18TCG  
NCV8705MT28TCG  
NCV8705MT30TCG  
NCV8705MT33TCG  
NCV8705MTADJTCG  
1.2 V  
1.8 V  
VA  
2.8 V  
VC  
WDFN6  
(Pb−Free)  
Non−Wettable Flank  
3000 / Tape & Reel  
3.0 V  
VD  
3.3 V  
VE  
Adjustable  
VJ  
8705W  
120  
NCV8705MW12TCG  
NCV8705MW18TCG  
NCV8705MW28TCG  
NCV8705MW30TCG  
NCV8705MW33TCG  
NCV8705MWADJTCG  
NCV8705ML33TCG  
1.2 V  
1.8 V  
8705W  
180  
8705W  
280  
2.8 V  
DFN8  
(Pb−Free)  
Wettable Flank,  
SFS Process  
3000 / Tape & Reel  
8705W  
300  
3.0 V  
8705W  
330  
3.3 V  
8705W  
ADJ  
Adjustable  
3.3 V  
8705L  
330  
DFNW8  
(Pb−Free)  
Wettable Flank,  
SLP Process  
3000 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
20  
NCV8705  
PACKAGE DIMENSIONS  
WDFN6 2x2, 0.65P  
CASE 511BR  
ISSUE B  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL AND  
IS MEASURED BETWEEN 0.15 AND 0.25 mm FROM  
THE TERMINAL TIP.  
A3  
EXPOSED Cu  
MOLD CMPD  
D
A
B
A1  
ALTERNATE B−1  
ALTERNATE B−2  
4. COPLANARITY APPLIES TO THE EXPOSED PAD AS  
WELL AS THE TERMINALS.  
5. FOR DEVICES CONTAINING WETTABLE FLANK  
OPTION, DETAIL A ALTERNATE CONSTRUCTION  
A-2 AND DETAIL B ALTERNATE CONSTRUCTION  
B-2 ARE NOT APPLICABLE.  
DETAIL B  
PIN ONE  
ALTERNATE  
REFERENCE  
E
CONSTRUCTIONS  
0.10  
C
L
L
MILLIMETERS  
DIM  
A
MIN  
0.70  
0.00  
MAX  
0.80  
0.05  
0.10  
C
L1  
TOP VIEW  
A1  
A3  
b
ALTERNATE A−1  
ALTERNATE A−2  
0.20 REF  
0.25  
1.50  
0.35  
DETAIL A  
ALTERNATE  
CONSTRUCTIONS  
A3  
DETAIL B  
D
2.00 BSC  
0.05  
C
C
D2  
E
1.70  
2.00 BSC  
A
E2  
e
0.90  
1.10  
0.65 BSC  
L
0.20  
---  
0.40  
0.15  
0.05  
6X  
A1  
L1  
SEATING  
PLANE  
NOTE 4  
C
SIDE VIEW  
D2  
RECOMMENDED  
MOUNTING FOOTPRINT*  
6X  
DETAIL A  
L
1.72  
1
0.45  
3
E2  
1.12  
2.30  
6
4
6X b  
M
M
0.10  
0.05  
C
C
A
B
e
PACKAGE  
OUTLINE  
NOTE 3  
1
BOTTOM VIEW  
0.65  
PITCH  
6X  
0.40  
DIMENSIONS: MILLIMETERS  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
21  
NCV8705  
PACKAGE DIMENSIONS  
DFN8, 3x3, 0.65P  
CASE 506DB  
ISSUE A  
NOTES:  
A
B
D
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
L
DETAIL A  
A3  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.15 AND  
0.30mm FROM THE TERMINAL TIP.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
E
MILLIMETERS  
PIN ONE  
REFERENCE  
DIM MIN  
0.80  
A1 0.00  
MAX  
1.00  
0.05  
A
2X  
0.10  
C
A3  
b
b1 0.20  
0.20 REF  
0.25  
0.35  
0.30  
2X  
0.10  
C
D
3.00 BSC  
1.85  
3.00 BSC  
1.60  
0.65 BSC  
0.65 REF  
TOP VIEW  
D2 1.65  
E
E2 1.40  
e
e1  
L
A1  
A
C
DETAIL B  
(A3)  
0.05  
C
C
DETAIL B  
0.30  
0.50  
0.15  
L1 0.00  
0.05  
A1  
NOTE 4  
SEATING  
PLANE  
SIDE VIEW  
D2  
RECOMMENDED  
SOLDERING FOOTPRINT*  
DETAIL A  
3.30  
2.05  
8X  
L
8X  
0.63  
4
1
PACKAGE  
OUTLINE  
E2  
e1  
1.64 3.30  
4X b1  
0.65  
PITCH  
8
5
8X b  
1
e/2  
e
12X  
0.10 C A B  
0.40  
0.65  
PITCH  
NOTE 3  
C
0.05  
DIMENSIONS: MILLIMETERS  
BOTTOM VIEW  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
22  
NCV8705  
PACKAGE DIMENSIONS  
DFNW8 3x3, 0.65P  
CASE 507AD  
ISSUE O  
NOTES:  
A
B
D
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.15 AND  
0.30mm FROM THE TERMINAL TIP.  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
5. THIS DEVICE CONTAINS WETTABLE FLANK  
DESIGN FEATURE TO AID IN FILLET FORMA-  
TION ON THE LEADS DURING MOUNTING.  
L3  
L3  
L
L
ALTERNATE  
CONSTRUCTION  
DETAIL A  
E
A
PIN ONE  
REFERENCE  
EXPOSED  
COPPER  
MILLIMETERS  
DIM MIN  
NOM  
0.90  
−−−  
MAX  
1.00  
0.05  
A4  
A1  
A
A1  
A3  
A4  
b
0.80  
−−−  
0.20 REF  
0.10 REF  
0.30  
3.00  
2.40  
TOP VIEW  
PLATING  
A1  
A4  
ALTERNATE  
CONSTRUCTION  
0.25  
2.90  
2.30  
2.90  
1.55  
0.35  
3.10  
2.50  
3.10  
1.75  
DETAIL B  
D
D2  
E
E2  
e
K
0.05  
0.05  
C
C
DETAIL B  
A3  
C
3.00  
1.65  
C
C
A4  
0.65 BSC  
0.28 REF  
0.40  
L
L3  
0.30  
0.50  
SEATING  
PLANE  
NOTE 4  
SIDE VIEW  
0.05 REF  
L3  
PLATED  
SURFACES  
D2  
DETAIL A  
SECTION C−C  
RECOMMENDED  
SOLDERING FOOTPRINT*  
1
4
2.50  
8X  
0.58  
8X  
L
2.35  
E2  
8
5
K
3.30  
1.75  
8
5
8X b  
e/2  
e
0.10 C A B  
PACKAGE  
OUTLINE  
1
NOTE 3  
C
4
8X  
0.05  
BOTTOM VIEW  
0.40  
0.65  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCV8705/D  

相关型号:

NCV8705ML33TCG

LDO Voltage Regulator
ONSEMI

NCV8705MT12TCG

500 mA, Ultra-Low Quiescent Current, IQ 13 A, Ultra-Low Noise, LDO Voltage Regulator
ONSEMI

NCV8705MT18TCG

500 mA, Ultra-Low Quiescent Current, IQ 13 A, Ultra-Low Noise, LDO Voltage Regulator
ONSEMI

NCV8705MT28TCG

500 mA, Ultra-Low Quiescent Current, IQ 13 A, Ultra-Low Noise, LDO Voltage Regulator
ONSEMI

NCV8705MT30TCG

500 mA, Ultra-Low Quiescent Current, IQ 13 A, Ultra-Low Noise, LDO Voltage Regulator
ONSEMI

NCV8705MT33TCG

500 mA, Ultra-Low Quiescent Current, IQ 13 A, Ultra-Low Noise, LDO Voltage Regulator
ONSEMI

NCV8705MTADJTCG

500 mA, Ultra-Low Quiescent Current, IQ 13 A, Ultra-Low Noise, LDO Voltage Regulator
ONSEMI

NCV8705MW12TCG

500 mA, Ultra-Low Quiescent Current, IQ 13 A, Ultra-Low Noise, LDO Voltage Regulator
ONSEMI

NCV8705MW18TCG

500 mA, Ultra-Low Quiescent Current, IQ 13 A, Ultra-Low Noise, LDO Voltage Regulator
ONSEMI

NCV8705MW28TCG

500 mA, Ultra-Low Quiescent Current, IQ 13 A, Ultra-Low Noise, LDO Voltage Regulator
ONSEMI

NCV8705MW30TCG

500 mA, Ultra-Low Quiescent Current, IQ 13 A, Ultra-Low Noise, LDO Voltage Regulator
ONSEMI

NCV8705MW33TCG

500 mA, Ultra-Low Quiescent Current, IQ 13 A, Ultra-Low Noise, LDO Voltage Regulator
ONSEMI