NCV8715SQ12T2G [ONSEMI]

Wide Input Voltage, Low Dropout Linear Voltage Regulator;
NCV8715SQ12T2G
型号: NCV8715SQ12T2G
厂家: ONSEMI    ONSEMI
描述:

Wide Input Voltage, Low Dropout Linear Voltage Regulator

文件: 总21页 (文件大小:959K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV8715  
50 mA Ultra-Low Iq, Wide  
Input Voltage, Low Dropout  
Linear Voltage Regulator  
The NCV8715 is 50 mA LDO Linear Voltage Regulator. It is a very  
stable and accurate device with ultra−low ground current consumption  
(4.7 mA over the full output load range) and a wide input voltage range  
(up to 24 V). The regulator incorporates several protection features  
such as Thermal Shutdown and Current Limiting.  
www.onsemi.com  
MARKING  
DIAGRAMS  
Features  
1
Operating Input Voltage Range: 2.5 V to 24 V  
Fixed Voltage Options Available: 1.2 V to 5.0 V  
Ultra Low Quiescent Current: Max. 5.8 mA Over Full Load and  
Temperature  
XXXMG  
XDFN6  
CASE 711AE  
G
2% Accuracy Over Full Load, Line and Temperature Variations  
PSRR: 52 dB at 100 kHz  
from 200 Hz to 100 kHz  
XXX MG  
Noise: 190 mV  
RMS  
SC−70−5  
(SC−88A)  
CASE 419A  
G
Thermal Shutdown and Current Limit protection  
Available in XDFN6 1.5 x 1.5 mm and SC−70 (SC−88A) Package  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AEC−Q100  
Qualified and PPAP Capable; Device Temperature Grade 1: −40°C to  
+125°C Ambient Operating Temperature Range  
XXX  
M
= Specific Device Code  
= Date Code  
= Pb−Free Package  
G
(Note: Microdot may be in either location)  
These Devices are Pb−Free, Halogen Free/BFR Free and are RoHS  
Compliant  
ORDERING INFORMATION  
See detailed ordering, marking and shipping information on  
page 19 of this data sheet.  
Typical Applications  
Infotainment, Audio  
Communication Systems  
Safety Systems  
1.2 V < V < 5 V  
out  
2.5 V < V < 24 V  
out  
OUT  
NC  
IN  
NCV8715  
GND  
1 mF  
Ceramic  
1 mF  
Ceramic  
NC  
Figure 1. Typical Application Schematic  
© Semiconductor Components Industries, LLC, 2016  
1
Publication Order Number:  
June, 2016 − Rev. 6  
NCV8715/D  
NCV8715  
IN  
THERMAL  
SHUTDOWN  
UVLO  
BANDGAP  
REFERENCE  
MOSFET  
DRIVER WITH  
CURRENT LIMIT  
OUT  
EEPROM  
GND  
Figure 2. Simplified Block Diagram  
Figure 3. Pin Description  
PIN FUNCTION DESCRIPTION  
Pin No.  
SC−70  
XDFN6  
Pin Name  
Description  
5
6
OUT  
Regulated output voltage pin. A small 0.47 mF ceramic capacitor is needed from this pin to  
ground to assure stability.  
1
2
3
4
2
3
4
5
1
N/C  
GND  
N/C  
N/C  
IN  
No connection. This pin can be tied to ground to improve thermal dissipation or left disconnected.  
Power supply ground.  
No connection. This pin can be tied to ground to improve thermal dissipation or left disconnected.  
No connection. This pin can be tied to ground to improve thermal dissipation or left disconnected.  
Input pin. A small capacitor is needed from this pin to ground to assure stability.  
www.onsemi.com  
2
NCV8715  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Value  
−0.3 to 24  
−0.3 to 6  
Indefinite  
150  
Unit  
V
Input Voltage (Note 1)  
V
IN  
Output Voltage  
V
OUT  
V
Output Short Circuit Duration  
Maximum Junction Temperature  
Operating Ambient Temperature Range  
Storage Temperature Range  
Moisture Sensitivity Level  
t
s
SC  
T
°C  
°C  
°C  
J(MAX)  
T
A
−40 to 125  
−55 to 150  
MSL1  
T
STG  
MSL  
ESD Capability, Human Body Model (Note 2)  
ESD Capability, Machine Model (Note 2)  
ESD  
2000  
V
HBM  
ESD  
200  
V
MM  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per EIA/JESD22−A114  
ESD Machine Model tested per EIA/JESD22−A115  
ESD Charged Device Model tested per EIA/JESD22−C101E  
Latch up Current Maximum Rating tested per JEDEC standard: JESD78.  
THERMAL CHARACTERISTICS  
Rating  
Symbol  
Value  
Unit  
Thermal Characteristics, SC−70 (Note 3)  
R
390  
°C/W  
q
JA  
Thermal Resistance, Junction−to−Air (Note 4)  
Thermal Characteristics, XDFN6 (Note 3)  
R
260  
°C/W  
q
JA  
Thermal Resistance, Junction−to−Air (Note 4)  
3. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
2
4. As measured using a copper heat spreading area of 650 mm , 1 oz copper thickness.  
RECOMMENDED OPERATING CONDITIONS  
Parameter  
Symbol  
Min  
2.5  
Max  
24  
Unit  
V
Input Voltage  
V
IN  
Junction Temperature  
T
J
−40  
125  
°C  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
www.onsemi.com  
3
 
NCV8715  
ELECTRICAL CHARACTERISTICS − Voltage Version 1.2 V  
−40°C T 125°C; V = 2.5 V; I  
= 1 mA, C = C  
= 1.0 mF, unless otherwise noted. Typical values are at T = +25°C. (Note 7)  
OUT J  
J
IN  
OUT  
IN  
Parameter  
Test Conditions  
10 mA  
Symbol  
Min  
2.5  
Typ  
Max  
24  
Unit  
Operating Input Voltage  
I
V
IN  
V
OUT  
10 mA< I  
< 50 mA  
3.0  
24  
OUT  
Output Voltage Accuracy  
Line Regulation  
3.0 V < V < 24 V, 0 mA < I  
< 50 mA  
V
OUT  
1.164  
1.2  
2
1.236  
10  
V
IN  
OUT  
2.5 V V 24 V, I  
= 1 mA  
Reg  
mV  
mV  
mV  
mA  
IN  
OUT  
LINE  
LOAD  
DO  
Load Regulation  
I
= 0 mA to 50 mA  
Reg  
5
10  
OUT  
Dropout Voltage (Note 5)  
Maximum Output Current  
V
(Note 8)  
I
100  
200  
5.8  
OUT  
0 < I  
< 50 mA, V = 24 V  
I
3.4  
60  
GND  
OUT  
IN  
Power Supply Rejection Ratio  
Output Noise Voltage  
V
= 3.0 V, V  
= 200 mV modulation  
= 1.2 V  
f = 100 kHz  
PSRR  
dB  
IN  
OUT  
V
PP  
I
= 1 mA, C = 10 mF  
OUT  
OUT  
V
OUT  
= 1.2 V, I  
= 50 mA  
V
N
65  
170  
15  
mV  
rms  
OUT  
f = 200 Hz to 100 kHz, C  
= 10 mF  
OUT  
Thermal Shutdown Temperature  
(Note 6)  
Temperature increasing from T = +25°C  
T
SD  
°C  
°C  
J
Thermal Shutdown Hysteresis (Note 6)  
Temperature falling from T  
T
SDH  
SD  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
5. Not Characterized at V = 3.0 V, V  
= 1.2 V, I  
= 50 mA.  
IN  
OUT  
OUT  
6. Guaranteed by design and characterization.  
7. Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at T = T =  
J
A
25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
8. Respect SOA.  
www.onsemi.com  
4
 
NCV8715  
ELECTRICAL CHARACTERISTICS − Voltage Version 1.5 V  
−40°C T 125°C; V = 2.5 V; I  
= 1 mA, C = C  
= 1.0 mF, unless otherwise noted. Typical values are at T = +25°C. (Note 11)  
OUT J  
J
IN  
OUT  
IN  
Parameter  
Test Conditions  
10 mA  
Symbol  
Min  
2.5  
Typ  
Max  
24  
Unit  
Operating Input Voltage  
I
V
IN  
V
OUT  
10 mA < I  
< 50 mA  
3.0  
24  
OUT  
Output Voltage Accuracy  
Line Regulation  
3.0 V < VIN < 24 V, 0 < I  
< 50 mA  
= 1 mA  
V
1.455  
1.5  
2
1.545  
10  
V
OUT  
OUT  
VOUT + 1 V VIN 24 V, I  
Reg  
mV  
mV  
mV  
mA  
mA  
OUT  
LINE  
LOAD  
DO  
Load Regulation  
I
= 0 mA to 50 mA  
Reg  
5
10  
OUT  
Dropout Voltage (Note 9)  
Maximum Output Current  
Ground Current  
V
(Note 12)  
< 50 mA, V = 24 V  
I
100  
200  
5.8  
OUT  
0 < I  
I
GND  
3.4  
56  
OUT  
IN  
Power Supply Rejection Ratio  
V
IN  
= 3.0 V, V  
= 1.5 V  
f = 100 kHz  
PSRR  
dB  
OUT  
V
PP  
= 200 mV modulation  
I
= 1 mA, C  
= 10 mF  
OUT  
OUT  
Output Noise Voltage  
V
= 1.5 V, I  
= 50 mA  
V
75  
170  
15  
mV  
rms  
OUT  
OUT  
N
f = 200 Hz to 100 kHz, C  
= 10 mF  
OUT  
Thermal Shutdown Temperature  
(Note 10)  
Temperature increasing from T = +25°C  
T
SD  
°C  
°C  
J
Thermal Shutdown Hysteresis  
(Note 10)  
Temperature falling from T  
T
SDH  
SD  
9. Not Characterized at V = 3.0 V, V  
= 1.5 V, I  
= 50 mA.  
IN  
OUT  
OUT  
10.Guaranteed by design and characterization.  
11. Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at  
T = T = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
J
A
12.Respect SOA.  
www.onsemi.com  
5
 
NCV8715  
ELECTRICAL CHARACTERISTICS − Voltage Version 1.8 V  
−40°C T 125°C; V = 2.8V; I  
= 1 mA, C = C  
= 1.0 mF, unless otherwise noted. Typical values are at T = +25°C. (Note 15)  
OUT J  
J
IN  
OUT  
IN  
Parameter  
Test Conditions  
Symbol  
Min  
2.8  
Typ  
Max  
24  
Unit  
Operating Input Voltage  
IOUT 10 mA  
V
IN  
V
10 mA < I  
< 50 mA  
3.0  
24  
OUT  
Output Voltage Accuracy  
Line Regulation  
3.0 V < V < 24 V, 0 < I  
< 10 mA  
V
OUT  
1.746  
1.8  
2
1.854  
10  
V
IN  
OUT  
3 V VIN 24 V, I  
= 1 mA  
Reg  
mV  
mV  
mV  
mA  
mA  
OUT  
LINE  
LOAD  
DO  
Load Regulation  
I
= 0 mA to 50 mA  
Reg  
5
10  
OUT  
Dropout Voltage (Note 13)  
Maximum Output Current  
Ground Current  
V
(Note 16)  
I
100  
200  
5.8  
OUT  
0 < I  
< 50 mA, V = 24 V  
I
GND  
3.4  
60  
OUT  
IN  
Power Supply Rejection Ratio  
V
IN  
= 3.0 V, V  
= 1.8 V  
f = 100 kHz  
PSRR  
dB  
OUT  
V
PP  
= 200 mV modulation  
I
= 1 mA, C  
=10 mF  
OUT  
OUT  
Output Noise Voltage  
VOUT = 1.8 V, IOUT = 50 mA  
V
95  
170  
15  
mV  
rms  
N
f = 200 Hz to 100 kHz, C = 10 mF  
OUT  
Thermal Shutdown Temperature  
(Note 14)  
Temperature increasing from TJ = +25°C  
T
SD  
°C  
°C  
Thermal Shutdown Hysteresis  
(Note 14)  
Temperature falling from T  
T
SDH  
SD  
13.Not characterized at V = 3.0 V, V  
= 1.8 V, I  
= 50 mA  
IN  
OUT  
OUT  
14.Guaranteed by design and characterization.  
15.Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at T = T =  
J
A
25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
16.Respect SOA.  
www.onsemi.com  
6
 
NCV8715  
ELECTRICAL CHARACTERISTICS − Voltage Version 2.1 V  
−40°C T 125°C; V = 3.1V; I  
= 1 mA, C = C  
= 1.0 mF, unless otherwise noted. Typical values are at T = +25°C. (Note 19)  
OUT J  
J
IN  
OUT  
IN  
Parameter  
Test Conditions  
0 < I < 50 mA  
Symbol  
Min  
3.1  
Typ  
Max  
24  
Unit  
V
Operating Input Voltage  
Output Voltage Accuracy  
Line Regulation  
V
IN  
OUT  
3.1 V < V < 24 V, 0 < I  
< 50 mA  
V
OUT  
2.058  
2.1  
3
2.142  
45  
V
IN  
OUT  
3.1 V VIN 24 V, I  
= 1 mA  
= 1 mA  
Reg  
mV  
OUT  
LINE  
3.3 V VIN 24 V, I  
3
10  
OUT  
Load Regulation  
I
= 0 mA to 50 mA  
Reg  
10  
15  
mV  
mV  
mA  
mA  
OUT  
LOAD  
Dropout Voltage (Note 17)  
Maximum Output Current  
Ground Current  
V
DO  
(Note 20)  
I
100  
200  
5.8  
OUT  
0 < I  
< 50 mA, V = 24 V  
I
GND  
3.4  
60  
OUT  
IN  
Power Supply Rejection Ratio  
V
IN  
= 3.1 V, V  
= 2.1 V  
f = 100 kHz  
PSRR  
dB  
OUT  
V
PP  
= 200 mV modulation  
I
= 1 mA, C  
=10 mF  
OUT  
OUT  
Output Noise Voltage  
VOUT = 2.1 V, IOUT = 50 mA  
V
105  
170  
15  
mV  
rms  
N
f = 200 Hz to 100 kHz, C = 10 mF  
OUT  
Thermal Shutdown Temperature  
(Note 18)  
Temperature increasing from TJ = +25°C  
T
SD  
°C  
°C  
Thermal Shutdown Hysteresis  
(Note 18)  
Temperature falling from T  
T
SDH  
SD  
17.Not characterized at V = 3.1 V, V  
= 2.1 V, I  
= 50 mA  
IN  
OUT  
OUT  
18.Guaranteed by design and characterization.  
19.Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at T = T =  
J
A
25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
20.Respect SOA.  
www.onsemi.com  
7
 
NCV8715  
ELECTRICAL CHARACTERISTICS − Voltage Version 2.5 V  
−40°C T 125°C; V = 3.5 V; I  
= 1 mA, C = C  
= 1.0 mF, unless otherwise noted. Typical values are at T = +25°C. (Note 23)  
OUT J  
J
IN  
OUT  
IN  
Parameter  
Test Conditions  
0 < I < 50 mA  
Symbol  
Min  
3.5  
Typ  
Max  
24  
Unit  
V
Operating Input Voltage  
Output Voltage Accuracy  
Line Regulation  
V
IN  
OUT  
3.5 V < V < 24 V, 0 < I  
< 50 mA  
= 1 mA  
V
OUT  
2.45  
2.5  
3
2.55  
10  
V
IN  
OUT  
V
+ 1 V V 24 V, I  
Reg  
mV  
mV  
mV  
OUT  
IN  
OUT  
LINE  
LOAD  
DO  
Load Regulation  
I
= 0 mA to 50 mA  
Reg  
10  
260  
15  
OUT  
Dropout Voltage (Note 21)  
V
= V – (V – 125 mV)  
OUT(NOM)  
V
450  
DO  
IN  
I
= 50 mA  
OUT  
Maximum Output Current  
Ground Current  
(Note 24)  
< 50 mA, VIN = 24 V  
I
100  
200  
5.8  
mA  
mA  
dB  
OUT  
0 < I  
I
3.4  
60  
OUT  
GND  
Power Supply Rejection Ratio  
VIN = 3.5 V, V  
= 2.5 V  
f = 100 kHz  
PSRR  
OUT  
VPP = 200 mV modulation  
= 1 mA, C =10 mF  
I
OUT  
OUT  
Output Noise Voltage  
V
= 2.5 V, I  
= 50 mA  
V
115  
170  
15  
mV  
rms  
OUT  
OUT  
N
f = 200 Hz to 100 kHz, C  
= 10 mF  
OUT  
Thermal Shutdown Temperature  
(Note 22)  
Temperature increasing from TJ = +25°C  
T
SD  
°C  
°C  
Thermal Shutdown Hysteresis  
(Note 22)  
Temperature falling from T  
T
SDH  
= 2.5 V.  
SD  
21.Characterized when V  
falls 125 mV below the regulated voltage and only for devices with V  
OUT  
OUT  
22.Guaranteed by design and characterization.  
23.Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at  
T = T = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
J
A
24.Respect SOA.  
www.onsemi.com  
8
 
NCV8715  
ELECTRICAL CHARACTERISTICS − Voltage Version 3.0 V  
−40°C T 125°C; V = 4.0 V; I  
= 1 mA, C = C  
= 1.0 mF, unless otherwise noted. Typical values are at T = +25°C. (Note 27)  
OUT J  
J
IN  
OUT  
IN  
Parameter  
Test Conditions  
0 < I < 50 mA  
Symbol  
VIN  
Min  
4.0  
Typ  
Max  
24  
Unit  
V
Operating Input Voltage  
Output Voltage Accuracy  
Line Regulation  
OUT  
4.0 V < V < 24 V, 0< I  
< 50 mA  
= 1 mA  
VOUT  
2.94  
3.0  
3
3.06  
10  
V
IN  
OUT  
V
+ 1 V V 24 V, I  
Reg  
mV  
mV  
mV  
OUT  
IN  
OUT  
LINE  
Load Regulation  
I
= 0 mA to 50 mA  
Reg  
10  
15  
OUT  
LOAD  
Dropout voltage (Note 25)  
V
= V – (V – 150 mV)  
OUT(NOM)  
VDO  
400  
DO  
IN  
I
= 50 mA  
250  
OUT  
Maximum Output Current  
Ground current  
(Note 28)  
0 < IOUT < 50 mA, VIN = 24 V  
= 4.0 V, V = 3.0 V f = 100 kHz  
IOUT  
IGND  
100  
200  
5.8  
mA  
mA  
dB  
3.4  
60  
Power Supply Rejection Ratio  
V
IN  
PSRR  
OUT  
V
PP  
= 100 mV modulation  
I
= 1 mA, C  
= 10 mF  
OUT  
OUT  
Output Noise Voltage  
V
= 3 V, I  
= 50 mA,  
VN  
TSD  
135  
170  
25  
mV  
rms  
OUT  
OUT  
f = 200 Hz to 100 kHz, C  
= 10 mF  
OUT  
Thermal Shutdown Temperature  
(Note 26)  
Temperature increasing from T = +25°C  
°C  
°C  
J
Thermal Shutdown Hysteresis  
(Note 26)  
Temperature falling from T  
TSDH  
-
-
SD  
25.Characterized when VOUT falls 150 mV below the regulated voltage and only for devices with VOUT = 3.0 V  
26.Guaranteed by design and characterization.  
27.Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested  
at T = T = 25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as  
J
A
possible.  
28.Respect SOA  
www.onsemi.com  
9
 
NCV8715  
ELECTRICAL CHARACTERISTICS − Voltage Version 3.3 V  
−40°C T 125°C; V = 4.3 V; I  
= 1 mA, C = C  
= 1.0 mF, unless otherwise noted. Typical values are at T = +25°C. (Note 31)  
OUT J  
J
IN  
OUT  
IN  
Parameter  
Test Conditions  
0 < I < 50 mA  
Symbol  
Min  
4.3  
Typ  
Max  
24  
Unit  
V
Operating Input Voltage  
Output Voltage Accuracy  
Line Regulation  
V
IN  
OUT  
4.3 V < V < 24 V, 0 < I  
< 50 mA  
= 1 mA  
V
OUT  
3.234  
3.3  
3
3.366  
10  
V
IN  
OUT  
V
OUT  
+ 1 V VIN 24 V, I  
Reg  
mV  
mV  
mV  
OUT  
LINE  
LOAD  
DO  
Load Regulation  
I
= 0 mA to 50 mA  
Reg  
10  
230  
15  
OUT  
Dropout Voltage (Note 29)  
VDO = VIN – (VOUT(NOM) – 165 mV)  
IOUT = 50 mA  
V
350  
Maximum Output Current  
Ground Current  
(Note 32)  
I
100  
200  
5.8  
mA  
mA  
dB  
OUT  
0 < IOUT < 50 mA, VIN = 24 V  
I
3.4  
60  
GND  
Power Supply Rejection Ratio  
V
IN  
= 4.3 V, V  
= 3.3 V  
f = 100 kHz  
PSRR  
OUT  
V
PP  
= 200 mV modulation  
I
= 1 mA, C  
=10 mF  
OUT  
OUT  
Output Noise Voltage  
VOUT = 4.3 V, IOUT = 50 mA  
V
140  
170  
15  
mV  
rms  
N
f = 200 Hz to 100 kHz, C = 10 mF  
OUT  
Thermal Shutdown Temperature  
(Note 30)  
Temperature increasing from TJ = +25°C  
T
SD  
°C  
°C  
Thermal Shutdown Hysteresis  
(Note 30)  
Temperature falling from T  
T
SDH  
SD  
29.Characterized when VOUT falls 165 mV below the regulated voltage and only for devices with VOUT = 3.3 V.  
30.Guaranteed by design and characterization.  
31.Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at T = T =  
J
A
25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
32.Respect SOA.  
www.onsemi.com  
10  
 
NCV8715  
ELECTRICAL CHARACTERISTICS − Voltage Version 5.0 V  
−40°C T 125°C; V = 6.0 V; I  
= 1 mA, C = C  
= 1 mF, unless otherwise noted. Typical values are at T = +25°C. (Note 35)  
OUT J  
J
IN  
OUT  
IN  
Parameter  
Test Conditions  
Symbol  
Min  
6.0  
4.9  
Typ  
Max  
24  
Unit  
V
Operating Input Voltage  
Output Voltage Accuracy  
Line Regulation  
0 < IOUT < 50 mA  
V
IN  
6.0V < VIN < 24V, 0< IOUT < 50 mA  
VOUT + 1 V VIN 24 V, Iout = 1mA  
IOUT = 0 mA to 50 mA  
V
OUT  
5.0  
3
5.1  
10  
V
Reg  
mV  
mV  
mV  
LINE  
LOAD  
DO  
Load Regulation  
Reg  
10  
230  
15  
Dropout Voltage (Note 33)  
VDO = VIN – (VOUT(NOM) – 250 mV)  
IOUT = 50 mA  
V
350  
Maximum Output Current  
Ground Current  
(Note 36)  
I
90  
200  
5.8  
mA  
mA  
dB  
OUT  
0 < IOUT < 50 mA, VIN = 24 V  
I
3.4  
56  
GND  
Power Supply Rejection Ratio  
VIN = 6.0 V, VOUT = 5.0 V  
VPP = 200 mV modulation  
f = 100 kHz  
PSRR  
IOUT = 1 mA, C  
=10 mF  
OUT  
Output Noise Voltage  
VOUT = 5.0 V, IOUT = 50 mA  
f = 200 Hz to 100 kHz, C = 10 mF  
V
190  
170  
15  
mV  
rms  
N
OUT  
Thermal Shutdown Temperature  
(Note 34)  
Temperature increasing from TJ = +25°C  
T
SD  
°C  
°C  
Thermal Shutdown Hysteresis  
(Note 34)  
Temperature falling from T  
T
SDH  
SD  
33.Characterized when VOUT falls 250 mV below the regulated voltage and only for devices with VOUT = 5.0 V.  
34.Guaranteed by design and characterization.  
35.Performance guaranteed over the indicated operating temperature range by design and/or characterization production tested at T = T =  
J
A
25°C. Low duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
36.Respect SOA.  
www.onsemi.com  
11  
 
NCV8715  
1.2  
1.199  
1.198  
1.197  
1.196  
1.195  
1.194  
1.193  
1.192  
2.506  
2.504  
2.502  
2.5  
V
= 3.0 V  
IN  
V
= 3.0 V  
IN  
V
= (5.0 − 24.0) V  
IN  
2.498  
2.496  
2.494  
2.492  
2.49  
V
= (5.0 − 24.0) V  
IN  
NCV8715x12xxx  
NCV8715x25xxx  
C
= C  
= 1 mF  
C
= C  
= 1 mF  
IN  
I
OUT  
IN  
I
OUT  
= 1 mA  
0
= 1 mA  
0
OUT  
OUT  
−40  
−20  
20  
40  
60  
80 100  
120  
−40  
−20  
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 4. Output Voltage vs. Temperature  
Figure 5. Output Voltage vs. Temperature  
3.318  
3.315  
3.312  
3.309  
3.306  
3.303  
3.3  
5.02  
5.015  
5.01  
5.005  
5
V
= (8.0 − 24.0) V  
IN  
V
= 6.0 V  
IN  
4.995  
4.99  
4.985  
4.98  
NCV8715x50xxx  
NCV8715x33xxx  
C
= C  
= 1 mF  
C
= C  
= 1 mF  
IN  
I
OUT  
= 1 mA  
IN  
OUT  
I
= 1 mA  
3.297  
OUT  
OUT  
V
IN  
= 4.3 V to 24 V  
3.294  
−40  
−20  
0
20  
40  
60  
80 100  
120  
−40 −20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
JUNCTION TEMPERATURE (°C)  
Figure 6. Output Voltage vs. Temperature  
Figure 7. Output Voltage vs. Temperature  
1.204  
1.200  
1.196  
1.192  
1.188  
1.184  
1.180  
1.176  
1.172  
2.504  
2.500  
2.496  
2.492  
2.488  
2.484  
2.480  
2.476  
2.472  
NCV8715x25xxx  
NCV8715x12xxx  
C
= C  
= 1 mF  
C
= C  
= 1 mF  
IN  
OUT  
IN  
OUT  
T = 25°C  
A
T = 25°C  
A
V
V
V
V
V
V
= 3.5 V  
= 5.0 V  
= 10 V  
= 15 V  
= 20 V  
= 24 V  
V
V
V
V
V
V
= 3.0 V  
= 5.0 V  
= 10 V  
= 15 V  
= 20 V  
= 24 V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Figure 8. Output Voltage vs. Output Current  
Figure 9. Output Voltage vs. Output Current  
www.onsemi.com  
12  
NCV8715  
3.312  
3.308  
3.304  
3.300  
3.296  
3.292  
5.016  
NCV8715x33xxx  
= C = 1 mF  
NCV8715x50xxx  
= C = 1 mF  
C
5.008  
5.000  
4.992  
4.984  
4.976  
4.968  
4.960  
4.952  
IN  
OUT  
C
IN  
OUT  
T = 25°C  
A
T = 25°C  
A
V
V
V
V
V
= 4.3 V  
= 10 V  
= 15 V  
= 20 V  
= 24 V  
IN  
V
V
V
V
V
= 6.0 V  
= 10 V  
= 15 V  
= 20 V  
= 24 V  
IN  
IN  
IN  
3.288  
3.284  
IN  
IN  
IN  
IN  
IN  
IN  
3.280  
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Figure 10. Output Voltage vs. Output Current  
Figure 11. Output Voltage vs. Output Current  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
NCV8715x25xxx  
NCV8715x33xxx  
C
= C  
= 1 mF  
IN  
OUT  
C
= C  
= 1 mF  
IN  
OUT  
T = 125°C  
A
T = 125°C  
A
T = 25°C  
A
T = 25°C  
A
T = −40°C  
A
T = −40°C  
A
0
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Figure 12. Dropout Voltage vs. Output Current  
Figure 13. Dropout Voltage vs. Output Current  
400  
350  
300  
250  
200  
150  
100  
50  
40  
35  
30  
25  
20  
15  
10  
5
NCV8715x50xxx  
NCV8715x12xxx  
C
= C  
= 1 mF  
IN  
OUT  
C
= C  
= 1 mF  
IN  
OUT  
T = 25°C  
A
T = 125°C  
A
T = 25°C  
A
I
I
= 0  
= 50 mA  
OUT  
OUT  
T = −40°C  
A
0
0
0
10  
20  
30  
40  
50  
0
5
10  
15  
20  
25  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
Figure 14. Dropout Voltage vs. Output Current  
Figure 15. Ground Current vs. Input Voltage  
www.onsemi.com  
13  
NCV8715  
40  
35  
30  
25  
20  
15  
10  
5
40  
I
I
= 0  
= 50 mA  
NCV8715x25xxx  
NCV8715x33xxx  
C = C = 1 mF  
IN  
OUT  
I
I
= 0  
= 50 mA  
OUT  
C
= C  
= 1 mF  
35  
30  
25  
20  
15  
10  
5
IN  
OUT  
OUT  
OUT  
OUT  
T = 25°C  
A
T = 25°C  
A
0
0
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 16. Ground Current vs. Input Voltage  
Figure 17. Ground Current vs. Input Voltage  
4.5  
4.3  
4.0  
3.8  
3.5  
3.3  
3.0  
2.8  
2.5  
40  
35  
30  
25  
20  
15  
10  
5
NCV8715x50xxx  
= C = 1 mF  
I
I
= 0  
= 50 mA  
OUT  
C
IN  
OUT  
OUT  
T = 25°C  
A
V
V
= 3 V  
= 10 V  
= 24 V  
NCV8715x12xxx  
IN  
C
= C = 1 mF  
OUT  
IN  
IN  
I
= 0  
V
OUT  
IN  
0
0
5
10  
15  
20  
25  
−40  
−20  
0
20  
40  
60  
80  
100 120  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 18. Ground Current vs. Input Voltage  
Figure 19. Quiescent Current vs. Temperature  
6.0  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
NCV8715x25xxx  
NCV8715x33xxx  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
C
= C  
= 1 mF  
C
= C  
= 1 mF  
IN  
OUT  
IN  
OUT  
I
= 0  
I
= 0  
OUT  
OUT  
V
V
= 4.3 V  
= 10 V  
= 24 V  
IN  
V
V
= 3.5 V  
= 10 V  
= 24 V  
IN  
IN  
IN  
V
IN  
V
IN  
−40 −20  
0
20  
40  
60  
80  
100 120  
−40 −20  
0
20  
40  
60  
80  
100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 21. Quiescent Current vs. Temperature  
Figure 20. Quiescent Current vs. Temperature  
www.onsemi.com  
14  
NCV8715  
100  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
NCV8715x12xxx  
NCV8715x50xxx  
= C = 1 mF  
C
V
= 10 mF  
OUT  
C
IN  
OUT  
= 3.0 V + 200 mV Modulation  
80  
60  
40  
20  
0
IN  
PP  
I
= 0  
OUT  
T = 25°C  
A
I
= 1 mA  
OUT  
V
V
= 6 V  
= 10 V  
= 24 V  
IN  
IN  
I
= 50 mA  
I
= 10 mA  
OUT  
OUT  
V
IN  
−40 −20  
0
20  
40  
60  
80  
100 120  
0.1  
1
10  
FREQUENCY (kHz)  
100  
1000  
TEMPERATURE (°C)  
Figure 23. PSRR vs. Frequency  
Figure 22. Quiescent Current vs. Temperature  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
NCV8715x33xxx  
= 10 mF  
NCV8715x25xxx  
C
OUT  
C
= 10 mF  
OUT  
I
= 1 mA  
OUT  
I
= 1 mA  
OUT  
V
IN  
= 4.3 V + 200 mV Modulation  
PP  
V
IN  
= 3.5 V + 200 mV Modulation  
PP  
T = 25°C  
A
T = 25°C  
A
I
= 10 mA  
OUT  
I
= 10 mA  
100  
OUT  
I
= 50 mA  
OUT  
I
= 50 mA  
1
OUT  
0.1  
1
10  
FREQUENCY (kHz)  
1000  
0.1  
10  
100  
1000  
FREQUENCY (kHz)  
Figure 24. PSRR vs. Frequency  
Figure 25. PSRR vs. Frequency  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
100  
80  
60  
40  
20  
0
C
C
= 10 mF, 65.1 mVrms @ 200 Hz − 100 kHz  
= 4.7 mF, 80.5 mVrms @ 200 Hz − 100 kHz  
= 2.2 mF, 111.5 mVrms @ 200 Hz − 100 kHz  
= 1.0 mF, 172.1 mVrms @ 200 Hz − 100 kHz  
= 0.47 mF, 208 mVrms @ 200 Hz − 100 kHz  
NCV8715x50xxx  
= 10 mF  
OUT  
C
OUT  
OUT  
I
= 1 mA  
OUT  
V
IN  
= 6.0 V + 200 mV Modulation  
C
OUT  
OUT  
OUT  
PP  
T = 25°C  
A
C
C
NCV8715x12xxx  
= 50 mA  
I
= 10 mA  
I
OUT  
OUT  
I
= 50 mA  
10  
OUT  
T = 25°C  
A
V
IN  
= 3 V  
0.1  
1
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 26. PSRR vs. Frequency  
Figure 27. Output Spectral Noise Density vs.  
Frequency  
www.onsemi.com  
15  
NCV8715  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.0  
4.5  
4.0  
3.5  
C
C
= 10 mF, 114.7 mVrms @ 200 Hz − 100 kHz  
= 4.7 mF, 128.4 mVrms @ 200 Hz − 100 kHz  
= 2.2 mF, 152.2 mVrms @ 200 Hz − 100 kHz  
= 1.0 mF, 172.1 mVrms @ 200 Hz − 100 kHz  
C
C
= 10 mF, 137.1 mVrms @ 200 Hz − 100 kHz  
= 4.7 mF, 145.7 mVrms @ 200 Hz − 100 kHz  
= 2.2 mF, 170.6 mVrms @ 200 Hz − 100 kHz  
= 1.0 mF, 220.8 mVrms @ 200 Hz − 100 kHz  
= 0.47 mF, 271.1 mVrms @ 200 Hz − 100 kHz  
OUT  
OUT  
OUT  
OUT  
C
C
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
C
C
C
= 0.47 mF, 203.6 mVrms @ 200 Hz − 100 kHz  
C
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
NCV8715x33xxx  
NCV8715x25xxx  
I
= 50 mA  
OUT  
I
= 50 mA  
OUT  
T = 25°C  
A
T = 25°C  
A
V
IN  
= 4.3 V  
V
IN  
= 3.5 V  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Figure 28. Output Spectral Noise Density vs.  
Frequency  
Figure 29. Output Spectral Noise Density vs.  
Frequency  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
C
C
= 10 mF, 186.1 mVrms @ 200 Hz − 100 kHz  
= 4.7 mF, 189.41 mVrms @ 200 Hz − 100 kHz  
= 2.2 mF, 207.6 mVrms @ 200 Hz − 100 kHz  
= 1.0 mF, 244.5 mVrms @ 200 Hz − 100 kHz  
= 0.47 mF, 305.0 mVrms @ 200 Hz − 100 kHz  
OUT  
OUT  
C
OUT  
OUT  
OUT  
C
C
NCV8715x50xxx  
I
= 50 mA  
OUT  
T = 25°C  
A
V
IN  
= 6.0 V  
0.01  
0.1  
1
10  
100  
1000  
FREQUENCY (kHz)  
Figure 30. Output Spectral Noise Density vs.  
Frequency  
Figure 31. Line Transient Response  
Figure 32. Line Transient Response  
Figure 33. Line Transient Response  
www.onsemi.com  
16  
NCV8715  
Figure 34. Load Transient Response  
Figure 35. Load Transient Response  
Figure 36. Load Transient Response  
Figure 37. Input Voltage Turn−On Response  
Figure 38. Input Voltage Turn−On Response  
Figure 39. Input Voltage Turn−On Response  
www.onsemi.com  
17  
NCV8715  
APPLICATIONS INFORMATION  
The NCV8715 is the member of new family of Wide Input  
ambient temperature affect the rate of junction temperature  
rise for the part. The maximum power dissipation the  
NCV8715 can handle is given by:  
Voltage Range Low Dropout Regulators which delivers  
Ultra Low Ground Current consumption, Good Noise and  
Power Supply Rejection Ratio Performance.  
ƪT  
ƫ
J(MAX) * TA  
(eq. 1)  
PD(MAX)  
+
Input Decoupling (CIN)  
RqJA  
It is recommended to connect at least 0.1 mF Ceramic X5R  
or X7R capacitor between IN and GND pin of the device.  
This capacitor will provide a low impedance path for any  
unwanted AC signals or Noise superimposed onto constant  
Input Voltage. The good input capacitor will limit the  
influence of input trace inductances and source resistance  
during sudden load current changes.  
The power dissipated by the NCV8715 for given  
application conditions can be calculated from the following  
equations:  
ǒ
ǒ
ǓǓ  
ǒ
Ǔ
(eq. 2)  
PD [ VIN IGND IOUT ) IOUT VIN * VOUT  
or  
Higher capacitance and lower ESR Capacitors will  
improve the overall line transient response.  
ǒ
Ǔ
PD(MAX) ) VOUT   IOUT  
(eq. 3)  
VIN(MAX)  
[
IOUT ) IGND  
Output Decoupling (COUT  
)
For reliable operation, junction temperature should be  
The NCV8715 does not require a minimum Equivalent  
Series Resistance (ESR) for the output capacitor. The device  
is designed to be stable with standard ceramics capacitors  
with values of 0.47 mF or greater up to 10 mF. The X5R and  
X7R types have the lowest capacitance variations over  
temperature thus they are recommended.  
limited to +125°C maximum.  
Hints  
VIN and GND printed circuit board traces should be as  
wide as possible. When the impedance of these traces is  
high, there is a chance to pick up noise or cause the regulator  
to malfunction. Place external components, especially the  
output capacitor, as close as possible to the NCV8715, and  
make traces as short as possible.  
Power Dissipation and Heat sinking  
The maximum power dissipation supported by the device  
is dependent upon board design and layout. Mounting pad  
configuration on the PCB, the board material, and the  
www.onsemi.com  
18  
NCV8715  
ORDERING INFORMATION  
Nominal Output  
Voltage  
Device  
NCV8715SQ12T2G  
NCV8715SQ15T2G  
NCV8715SQ18T2G  
NCV8715SQ21T2G  
NCV8715SQ25T2G  
NCV8715SQ30T2G  
NCV8715SQ33T2G  
NCV8715SQ50T2G  
NCV8715MX12TBG  
NCV8715MX15TBG  
NCV8715MX18TBG  
NCV8715MX25TBG  
NCV8715MX30TBG  
NCV8715MX33TBG  
NCV8715MX50TBG  
Marking  
Package  
Shipping  
1.2 V  
1.5 V  
1.8 V  
2.1 V  
2.5 V  
3.0 V  
3.3 V  
5.0 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.0 V  
3.3 V  
5.0 V  
V5A  
V5C  
V5D  
V5J  
V5E  
V5F  
V5G  
V5H  
VA  
SC−88A/SC−70  
(Pb−Free)*  
3000 / Tape & Reel  
VC  
VE  
XDFN6  
(Pb−Free)*  
VE  
VF  
VG  
VH  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting  
Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
19  
NCV8715  
PACKAGE DIMENSIONS  
XDFN6 1.5x1.5, 0.5P  
CASE 711AE  
ISSUE B  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.10 AND 0.20mm FROM TERMINAL TIP.  
L
D
A
B
L1  
DETAIL A  
MILLIMETERS  
ALTERNATE TERMINAL  
CONSTRUCTIONS  
DIM  
A
MIN  
0.35  
0.00  
MAX  
0.45  
0.05  
E
PIN ONE  
A1  
A3  
b
REFERENCE  
0.13 REF  
EXPOSED Cu  
MOLD CMPD  
0.20  
0.30  
2X  
0.10  
C
1.50 BSC  
1.50 BSC  
0.50 BSC  
D
E
e
2X  
0.10  
C
L
0.40  
---  
0.60  
0.15  
0.70  
TOP VIEW  
L1  
L2  
DETAIL B  
0.50  
ALTERNATE  
A
DETAIL B  
CONSTRUCTIONS  
0.05  
0.05  
C
C
A3  
A1  
RECOMMENDED  
MOUNTING FOOTPRINT*  
SEATING  
PLANE  
C
SIDE VIEW  
5X  
0.73  
6X  
0.35  
DETAIL A  
1
e
5X  
L
3
L2  
1.80  
0.50  
PITCH  
0.83  
6
4
DIMENSIONS: MILLIMETERS  
6X b  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
0.10  
0.05  
C
C
A
B
NOTE 3  
BOTTOM VIEW  
www.onsemi.com  
20  
NCV8715  
PACKAGE DIMENSIONS  
SC−88A (SC−70−5/SOT−353)  
CASE 419A−02  
ISSUE L  
A
NOTES:  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. 419A−01 OBSOLETE. NEW STANDARD  
419A−02.  
G
4. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD FLASH, PROTRUSIONS, OR GATE  
BURRS.  
5
4
3
−B−  
S
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
1.80  
1.15  
0.80  
0.10  
MAX  
2.20  
1.35  
1.10  
0.30  
1
2
A
B
C
D
G
H
J
0.071  
0.045  
0.031  
0.004  
0.087  
0.053  
0.043  
0.012  
0.026 BSC  
0.65 BSC  
M
M
B
D 5 PL  
0.2 (0.008)  
---  
0.004  
0.004  
0.004  
0.010  
0.012  
---  
0.10  
0.10  
0.10  
0.25  
0.30  
K
N
S
N
0.008 REF  
0.20 REF  
0.079  
0.087  
2.00  
2.20  
J
C
K
H
SOLDER FOOTPRINT*  
0.50  
0.0197  
0.65  
0.025  
0.65  
0.025  
0.40  
0.0157  
1.9  
0.0748  
mm  
inches  
ǒ
Ǔ
SCALE 20:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCV8715/D  

相关型号:

NCV8715SQ15T2G

Wide Input Voltage, Low Dropout Linear Voltage Regulator
ONSEMI

NCV8715SQ18T2G

Wide Input Voltage, Low Dropout Linear Voltage Regulator
ONSEMI

NCV8715SQ21T2G

Wide Input Voltage, Low Dropout Linear Voltage Regulator
ONSEMI

NCV8715SQ25T2G

Wide Input Voltage, Low Dropout Linear Voltage Regulator
ONSEMI

NCV8715SQ30T2G

Wide Input Voltage, Low Dropout Linear Voltage Regulator
ONSEMI

NCV8715SQ33T2G

Wide Input Voltage, Low Dropout Linear Voltage Regulator
ONSEMI

NCV8715SQ50T2G

Wide Input Voltage, Low Dropout Linear Voltage Regulator
ONSEMI

NCV8715_16

Wide Input Voltage, Low Dropout Linear Voltage Regulator
ONSEMI

NCV8716

80 mA Ultra-Low Iq, Wide Input Voltage Low Dropout Regulator
ONSEMI

NCV8716MT15TBG

80 mA Ultra-Low Iq, Wide Input Voltage Low Dropout Regulator
ONSEMI

NCV8716MT18TBG

80 mA Ultra-Low Iq, Wide Input Voltage Low Dropout Regulator
ONSEMI

NCV8716MT25TBG

80 mA Ultra-Low Iq, Wide Input Voltage Low Dropout Regulator
ONSEMI