NCV8775CDT33RKG [ONSEMI]

Ultra Low Iq 350 mA LDO Regulator with Reset;
NCV8775CDT33RKG
型号: NCV8775CDT33RKG
厂家: ONSEMI    ONSEMI
描述:

Ultra Low Iq 350 mA LDO Regulator with Reset

文件: 总15页 (文件大小:225K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV8775C  
Ultra Low Iq 350 mA LDO  
Regulator with Reset  
The NCV8775C is 350 mA LDO regulator with integrated reset  
functions dedicated for microprocessor applications. Its robustness allows  
NCV8775C to be used in severe automotive environments. Ultra low  
quiescent current as low as 19 mA typical makes it suitable for  
applications permanently connected to battery requiring ultra low  
quiescent current with or without load. This feature is especially critical  
when modules remain in active mode when ignition is off. The  
NCV8775C contains protection functions as current limit, thermal  
shutdown.  
www.onsemi.com  
MARKING  
DIAGRAMS  
DPAK−5  
DT SUFFIX  
CASE 175AA  
Features  
775CxxG  
ALYWW  
Output Voltage Options: 3.3 V and 5 V  
Output Voltage Accuracy: 2%  
Output Current up to 350 mA  
Ultra Low Quiescent Current: typ 19 mA (max 28 mA)  
Very Wide Range of C and ESR Values for Stability  
Microprocessor Compatible Control Functions:  
− Reset with Adjustable Delay  
out  
2
D PAK−5  
NC  
V8775Cxx  
AWLYWWG  
D5S SUFFIX  
CASE 936A  
Wide Input Voltage Operation Range: up to 40 V  
Protection Features  
− Current Limitation  
− Thermal Shutdown  
xx  
A
= 50 (5.0 V Version)  
= 33 (3.3 V Version)  
= Assembly Location  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AEC−Q100 Grade 1  
Qualified and PPAP Capable  
WL, L = Wafer Lot  
EMC Compliant  
Y
WW  
= Year  
= Work Week  
These are Pb−Free Devices  
G or G = Pb−Free Package  
Typical Applications  
Body Control Module  
Instruments and Clusters  
Occupant Protection and Comfort  
Powertrain  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 12 of  
this data sheet.  
V
V
BAT  
out  
V
V
in  
V
out  
DD  
C
C
in  
out  
10 mF  
R
5 kW  
0.1 mF  
RO  
NCV8775C  
Microprocessor  
RESET  
D
RO  
C
D
47 nF  
GND  
Figure 1. Typical Application Schematic  
© Semiconductor Components Industries, LLC, 2017  
1
Publication Order Number:  
December, 2019 − Rev. 1  
NCV8775C/D  
NCV8775C  
V
in  
V
out  
Thermal  
Shutdown  
RO  
Driver  
With  
Current  
Limit  
Reset Driver  
Error Amplifier  
Reset Comparator  
D
Reference  
Delay  
Timer  
GND  
Figure 2. Simplified Block Diagram  
PIN CONNECTIONS  
PIN 1. V  
PIN 1. V  
in  
in  
2. RO  
Tab, 3. GND  
4. D  
2. RO  
Tab, 3. GND  
4. D  
5. V  
out  
5. V  
out  
1
1
2
DPAK−5  
D PAK−5  
Figure 3. Pin Connections  
PIN FUNCTION DESCRIPTION  
Pin No.  
DPAK−5  
D2PAK−5  
Pin Name  
Description  
1
V
Positive Power Supply Input. Connect 0.1 mF capacitor to ground.  
Reset (Open Collector) Output. External Pull−up resistor connected to V  
Power Supply Ground. Pin 3 internally connected to tab.  
in  
2
RO  
GND  
D
.
out  
3, TAB  
4
5
Reset Delay. Timing capacitor to GND for Reset Delay function.  
V
out  
Regulated Output Voltage. Connect 10 mF capacitor with ESR < 5 W to ground.  
www.onsemi.com  
2
NCV8775C  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Min  
−0.3  
Max  
40  
45  
7
Unit  
V
Input Voltage (Note 1)  
DC  
Load Dump − Suppressed  
V
in  
Input Voltage (Note 2)  
Output Voltage  
U *  
s
V
V
out  
−0.3  
−0.3  
−0.3  
−40  
−55  
V
Reset Delay Voltage  
Reset Output Voltage  
Junction Temperature  
Storage Temperature  
V
D
7
V
V
RO  
7
V
T
J
150  
150  
°C  
°C  
T
STG  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
2. Load Dump Test B (with centralized load dump suppression) according to ISO16750−2 standard. Guaranteed by design. Not tested in  
production. Passed Class A according to ISO16750−1.  
ESD CAPABILITY (Note 3)  
Rating  
ESD Capability, Human Body Model  
ESD Capability, Charged Device Model  
Symbol  
Min  
−4  
Max  
4
Unit  
kV  
ESD  
ESD  
HBM  
CDM  
−1  
1
kV  
3. This device series incorporates ESD protection and is tested by the following methods:  
ESD HBM tested per AEC−Q100−002 (JS−001−2017)  
Field Induced Charge Device Model ESD characterization is not performed on plastic molded packages with body sizes 2 x 2 mm due to  
the inability of a small package body to acquire and retain enough charge to meet the minimum CDM discharge current waveform  
characteristic defined in JEDEC JS−002−2018.  
LEAD SOLDERING TEMPERATURE AND MSL (Note 4)  
Rating  
Symbol  
Min  
Max  
Unit  
Moisture Sensitivity Level  
DPAK−5  
D2PAK−5  
MSL  
1
1
4. For more information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.  
THERMAL CHARACTERISTICS (Note 5)  
Rating  
Symbol  
Value  
Unit  
Thermal Characteristics, DPAK−5  
°C/W  
Thermal Resistance, Junction−to−Air (Note 6)  
R
53.5  
8.2  
θJA  
Thermal Reference, Junction−to−Lead (Note 6)  
Thermal Resistance, Junction−to−Air (Note 7)  
Thermal Reference, Junction−to−Lead (Note 7)  
R
ψJL1  
23.9  
7.4  
R
θJA  
R
ψJL1  
Thermal Characteristics, D2PAK−5  
°C/W  
Thermal Resistance, Junction−to−Air (Note 6)  
Thermal Reference, Junction−to−Lead (Note 6)  
Thermal Resistance, Junction−to−Air (Note 7)  
Thermal Reference, Junction−to−Lead (Note 7)  
R
53.3  
7.6  
θJA  
R
ψJL1  
23.7  
6.9  
R
θJA  
R
ψJL1  
5. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
6. Values based on 1s0p board with copper area of 645 mm2 (or 1 in2) of 1 oz copper thickness and FR4 PCB substrate. Single layer − according  
to JEDEC51.3.  
7. Values based on 2s2p board with copper area of 645 mm2 (or 1 in2) of 1 oz copper thickness for inner layers, 2 oz copper thickness for signal  
layers and FR4 PCB substrate. 4 layers − according to JEDEC51.7.  
RECOMMENDED OPERATING RANGE (Note 8)  
Rating  
Symbol  
Min  
4.5  
Max  
40  
Unit  
V
Input Voltage (Note 9)  
Junction Temperature  
V
in  
T
J
−40  
150  
°C  
8. Refer to ELECTRICAL CHARACTERISTICS and APPLICATION INFORMATION for Safe Operating Area.  
9. Minimum V = 4.5 V or (V + V ), whichever is higher.  
in  
out  
DO  
www.onsemi.com  
3
 
NCV8775C  
ELECTRICAL CHARACTERISTICS V = 13.5 V, C = 0.1 mF, C = 10 mF, Min and Max values are valid for temperature range  
in  
in  
out  
−40°C T 150°C unless noted otherwise and are guaranteed by test, design or statistical correlation. Typical values are referenced to  
J
T = 25°C (Notes 10 and 11)  
J
Parameter  
REGULATOR OUTPUT  
Output Voltage (Accuracy %)  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
V
out  
V
3.3 V V = 4.5 V to 40 V, I = 0.1 mA to 200 mA  
3.234  
3.234  
4.9  
3.3  
3.3  
5.0  
5.0  
3.366  
3.366  
5.1  
in  
out  
V
in  
= 4.5 V to 16 V, I = 0.1 mA to 350 mA  
out  
5.0 V V = 5.6 V to 40 V, I = 0.1 mA to 200 mA  
in  
in  
out  
V
= 5.975 V to 16 V, I = 0.1 mA to 350 mA  
4.9  
5.1  
out  
Line Regulation  
Reg  
−20  
0
20  
mV  
line  
3.3 V V = 4.5 V to 28 V, I = 5 mA  
in  
out  
5.0 V V = 6 V to 28 V, I = 5 mA  
in  
out  
Load Regulation  
I
= 0.1 mA to 350 mA  
Reg  
−35  
10  
35  
mV  
mV  
out  
load  
Dropout Voltage (Note 12)  
V
DO  
5.0 V I = 200 mA  
200  
350  
350  
600  
out  
I
= 350 mA  
out  
QUIESCENT CURRENT  
Quiescent Current (I = I − I  
)
I
q
mA  
q
in  
out  
I
I
= 0.1 mA, T = 25°C  
19  
27  
28  
out  
out  
J
= 0.1 mA, T 125°C  
J
CURRENT LIMIT PROTECTION  
Current Limit  
V
= 0.96 x V  
= 0 V  
I
500  
500  
1100  
1100  
mA  
mA  
out  
out_nom  
LIM  
Short Circuit Current Limit  
PSRR  
V
out  
I
SC  
Power Supply Ripple Rejection (Note 13) f = 100 Hz, 0.5 V  
D (RESET DELAY)  
PSRR  
80  
dB  
pp  
Reset Charging Current  
V
= 1.0 V  
= 47 nF  
I
2.0  
1.2  
10  
4.0  
1.3  
16  
6.5  
1.4  
22  
mA  
V
D
D
Upper Timing Threshold  
V
DU  
RD  
RR  
Reset Delay Time  
C
t
t
ms  
ms  
D
Reset Reaction Time  
6.0  
RESET OUTPUT RO  
Input Voltage Reset Threshold  
V
decreasing, V > V  
V
in_RT  
V
in  
out  
RT  
3.3 V  
90  
3.8  
93  
2.0  
0.2  
4.2  
96  
Output Voltage Reset Threshold  
Reset Hysteresis  
V
out  
decreasing  
V
RT  
%V  
%V  
out  
V
RH  
out  
Reset Output Low Voltage  
Reset High Level Leakage Current  
THERMAL SHUTDOWN  
V
out  
> 1 V, R > 5 kW  
V
ROL  
0.4  
5
V
RO  
I
mA  
ROLK  
Thermal Shutdown Temperature  
(Note 13)  
T
150  
175  
10  
195  
°C  
°C  
SD  
Thermal Shutdown Hysteresis  
(Note 13)  
T
SH  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product per-  
formance may not be indicated by the Electrical Characteristics if operated under different conditions.  
10.Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.  
11. Performance guaranteed over the indicated operating temperature range by design and/or characterization tested at T [ T . Low duty  
A
J
cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
12.Measured when output voltage falls 100 mV below the regulated voltage at V = 13.5 V.  
in  
13.Values based on design and/or characterization.  
www.onsemi.com  
4
 
NCV8775C  
TYPICAL CHARACTERISTICS  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
30  
V
= 13.5 V  
= 100 mA  
V
= 13.5 V  
= 100 mA  
in  
in  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
I
I
out  
out  
V
= 5.0 V  
V
= 3.3 V  
out(nom)  
out(nom)  
−40 −20  
0
20 40 60 80 100 120 140 160  
−40 −20  
0
20 40 60 80 100 120 140 160  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 4. Quiescent Current vs. Junction  
Temperature  
Figure 5. Quiescent Current vs. Junction  
Temperature  
800  
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
I
= 100 mA  
out  
I
= 100 mA  
out  
T = 25°C  
V
J
T = 25°C  
V
J
= 3.3 V  
out(nom)  
= 5.0 V  
out(nom)  
0
4
8
12 16 20  
24  
28  
32 36 40  
0
4
8
12 16 20  
24  
28  
32 36 40  
V , INPUT VOLTAGE (V)  
in  
V , INPUT VOLTAGE (V)  
in  
Figure 6. Quiescent Current vs. Input Voltage  
Figure 7. Quiescent Current vs. Input Voltage  
1200  
1000  
800  
600  
400  
200  
0
1200  
1000  
800  
600  
400  
200  
0
V
V
= 13.5 V  
V
V
= 13.5 V  
in  
in  
T = −40°C  
J
= 3.3 V  
= 5.0 V  
out(nom)  
out(nom)  
T = −40°C  
J
T = 25°C  
J
T = 25°C  
J
T = 150°C  
J
T = 150°C  
J
0
50  
100  
150  
200  
250  
300  
350  
0
50  
100  
150  
200  
250  
300  
350  
I , OUTPUT CURRENT (mA)  
OUT  
I
, OUTPUT CURRENT (mA)  
out  
Figure 8. Quiescent Current vs. Output Current  
Figure 9. Quiescent Current vs. Output Current  
www.onsemi.com  
5
 
NCV8775C  
TYPICAL CHARACTERISTICS  
5.10  
3.38  
V
= 13.5 V  
= 100 mA  
V
= 13.5 V  
= 100 mA  
in  
in  
5.08  
5.06  
5.04  
5.02  
5.00  
4.98  
4.96  
4.94  
4.92  
4.90  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
I
I
out  
out  
V
= 5.0 V  
V
= 3.3 V  
out(nom)  
out(nom)  
−40 −20  
0
20  
40 60  
80 100 120 140 160  
−40 −20  
0
20 40 60 80 100 120 140 160  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 10. Output Voltage vs. Junction  
Temperature  
Figure 11. Output Voltage vs. Junction  
Temperature  
4
3.5  
3
6
5
4
3
2
1
0
I
V
= 100 mA  
I
V
= 100 mA  
out  
out  
= 3.3 V  
= 5.0 V  
out(nom)  
out(nom)  
2.5  
2
T = 25°C  
J
1.5  
1
T = −40°C  
J
T = 25°C  
J
T = −40°C  
T = 150°C  
J
J
0.5  
0
T = 150°C  
J
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
V , INPUT VOLTAGE (V)  
in  
V , INPUT VOLTAGE (V)  
in  
Figure 12. Output Voltage vs. Input Voltage  
Figure 13. Output Voltage vs. Input Voltage  
700  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
300  
200  
100  
0
V
V
= 13.5 V  
V
= 13.5 V  
in  
in  
= 5.0 V  
V = 5.0 V  
out(nom)  
out(nom)  
I
I
= 350 mA  
= 200 mA  
out  
T = 25°C  
J
T = 150°C  
out  
J
T = −40°C  
J
−40 −20  
0
20 40 60 80 100 120 140 160  
0
50  
100  
150  
200  
250  
300  
350  
I
, OUTPUT CURRENT (mA)  
T , JUNCTION TEMPERATURE (°C)  
J
out  
Figure 14. Dropout Voltage vs. Output Current  
Figure 15. Dropout Voltage vs. Junction  
Temperature  
www.onsemi.com  
6
NCV8775C  
TYPICAL CHARACTERISTICS  
1000  
800  
600  
400  
200  
0
1000  
I
@ V = 0 V  
out  
SC  
I
@ V = 0 V  
out  
SC  
800  
600  
400  
200  
0
I
@ V = 3.168 V  
out  
LIM  
I
@ V = 4.8 V  
out  
LIM  
T = 25°C  
out(nom)  
T = 25°C  
out(nom)  
J
V
J
V
= 5.0 V  
= 3.3 V  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
V , INPUT VOLTAGE (V)  
in  
V , INPUT VOLTAGE (V)  
in  
Figure 16. Output Current Limit vs. Input  
Voltage  
Figure 17. Output Current Limit vs. Input  
Voltage  
1100  
1000  
900  
800  
700  
600  
500  
400  
1100  
1000  
900  
800  
700  
600  
500  
400  
V
V
= 13.5 V  
V
= 13.5 V  
in  
in  
= 5.0 V  
V = 3.3 V  
out(nom)  
out(nom)  
I
@ V = 0 V  
SC  
out  
I
@ V = 0 V  
I
@ V = 3.168 V  
SC  
out  
LIM  
out  
I
@ V = 4.8 V  
LIM  
out  
−40 −20  
0
20 40 60 80 100 120 140 160  
−40 −20  
0
20 40 60 80 100 120 140 160  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 18. Output Current Limit vs. Junction  
Temperature  
Figure 19. Output Current Limit vs. Junction  
Temperature  
100  
10  
100  
10  
Unstable Region  
Stable Region  
Unstable Region  
Stable Region  
1
1
0.1  
0.01  
0.1  
0.01  
V
= 13.5 V  
V = 13.5 V  
in  
in  
V
= 5.0 V  
V
= 3.3 V  
out(nom)  
out(nom)  
Cout = 1.0 mF − 100 mF  
Cout = 1.0 mF − 100 mF  
0
50  
100  
I , OUTPUT CURRENT (mA)  
out  
150  
200  
250  
300  
350  
0
50  
100  
150  
200  
250  
300  
350  
I
, OUTPUT CURRENT (mA)  
out  
Figure 20. Output Stability with Output  
Capacitor ESR  
Figure 21. Output Stability with Output  
Capacitor ESR  
www.onsemi.com  
7
 
NCV8775C  
TYPICAL CHARACTERISTICS  
4.8  
4.75  
4.7  
3.17  
V
= 13.5 V  
V = 13.5 V  
in  
in  
V
= 5.0 V  
V
= 3.3 V  
out(nom)  
out(nom)  
3.13  
3.09  
3.05  
3.01  
2.97  
4.65  
4.6  
4.55  
4.5  
−40 −20  
0
20 40 60 80 100 120 140 160  
−40 −20  
0
20  
40  
60 80 100 120 140 160  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 22. Reset Threshold vs. Junction  
Temperature  
Figure 23. Reset Threshold vs. Junction  
Temperature  
4.2  
V
= 13.5 V  
in  
4.1  
4.0  
V
= 3.3 V  
out(nom)  
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
−40 −20  
0
20 40 60 80 100 120 140 160  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 24. Input Voltage Reset Threshold vs.  
Junction Temperature  
22  
20  
18  
16  
14  
12  
10  
22  
20  
18  
16  
14  
12  
10  
V
C
= 13.5 V  
= 47 nF  
V
= 13.5 V  
C = 47 nF  
D
in  
in  
D
V
= 5.0 V  
V
= 3.3 V  
out(nom)  
out(nom)  
−40 −20  
0
20 40  
60  
80 100 120 140 160  
−40 −20  
0
20  
40  
60  
80 100 120 140 160  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 25. Reset Delay Time vs. Junction  
Temperature  
Figure 26. Reset Delay Time vs. Junction  
Temperature  
www.onsemi.com  
8
NCV8775C  
TYPICAL CHARACTERISTICS  
120  
100  
80  
60  
40  
20  
0
6000  
5500  
5000  
f = 10 Hz − 100 kHz  
V = 268 mV  
n
4500  
I
= 100 mA  
out  
4000  
3500  
3000  
2500  
2000  
I
= 100 mA  
out  
V
= 13.5 V  
1500  
1000  
500  
0
in  
C
I
= 1 mF  
V
= 13.5 V 0.5 V  
out  
in  
PP  
= 100 mA  
C
V
= 1 mF  
out  
out  
V
= 5.0 V  
= 5.0 V  
out(nom)  
out(nom)  
10  
100  
1000  
10000  
100000 1000000  
10  
100  
1000  
f, FREQUENCY (Hz)  
10000  
100000  
f, FREQUENCY (Hz)  
Figure 27. PSRR vs. Frequency  
Figure 28. Noise vs. Frequency  
T = 25°C  
in  
J
V
28 V  
T = 25°C  
J
= 13.5 V  
I
C
= 100 mA  
C
t
= 10 mF  
350 mA  
out  
out  
= 10 mF  
= 1 ms (I  
)
out  
out  
rise/fall  
t
= 1 ms (V )  
in  
rise/fall  
V
I
out  
in  
6 V  
(10 V/div)  
(200 mA/div)  
0.1 mA  
5.17 V  
V
out  
5 V  
5.012 V  
5 V  
(200 mV/div)  
V
out  
4.78 V  
(20 mV/div)  
4.995 V  
TIME (400 ms/div)  
TIME (100 ms/div)  
Figure 29. Line Transients  
Figure 30. Load Transients  
T = 25°C  
J
I
C
C
= 100 mA  
V
out  
in  
13.5 V  
= 10 mF  
(5 V/div)  
out  
= 47 nF  
D
t
= 1 s (V )  
in  
rise/fall  
0 V  
V
out  
0 V  
0 V  
(5 V/div)  
V
RO  
(5 V/div)  
TIME (400 ms/div)  
Figure 31. Power Up/Down Response  
www.onsemi.com  
9
NCV8775C  
V
in  
t
t
t
V
out  
< t  
> t  
RR  
RR  
V
+ V  
RT  
RH  
RT  
V
V
RO  
t
RR  
t
RR  
V
ROL  
V
D
t
RD  
t
RD  
V
DU  
t
Figure 32. Reset Function and Timing Diagram  
DEFINITIONS  
General  
Current Limit and Short Circuit Current Limit  
Current Limit is value of output current by which output  
voltage drops below 96% of its nominal value. Short Circuit  
Current Limit is output current value measured with output  
of the regulator shorted to ground.  
All measurements are performed using short pulse low  
duty cycle techniques to maintain junction temperature as  
close as possible to ambient temperature.  
Output voltage  
The output voltage parameter is defined for specific  
temperature, input voltage and output current values or  
specified over Line, Load and Temperature ranges.  
PSRR  
Power Supply Rejection Ratio is defined as ratio of output  
voltage and input voltage ripple. It is measured in decibels  
(dB).  
Line Regulation  
The change in output voltage for a change in input voltage  
measured for specific output current over operating ambient  
temperature range.  
Line Transient Response  
Typical output voltage overshoot and undershoot  
response when the input voltage is excited with a given  
slope.  
Load Regulation  
The change in output voltage for a change in output  
current measured for specific input voltage over operating  
ambient temperature range.  
Load Transient Response  
Typical output voltage overshoot and undershoot  
response when the output current is excited with a given  
slope between low−load and high−load conditions.  
Dropout Voltage  
The input to output differential at which the regulator  
output no longer maintains regulation against further  
reductions in input voltage. It is measured when the output  
drops 100 mV below its nominal value. The junction  
temperature, load current, and minimum input supply  
requirements affect the dropout level.  
Thermal Protection  
Internal thermal shutdown circuitry is provided to protect  
the integrated circuit in the event that the maximum junction  
temperature is exceeded. When activated at typically 175°C,  
the regulator turns off. This feature is provided to prevent  
failures from accidental overheating.  
Quiescent Current  
Quiescent Current (I ) is the difference between the input  
current (measured through the LDO input pin) and the  
output load current.  
Maximum Package Power Dissipation  
q
The power dissipation level is maximum allowed power  
dissipation for particular package or power dissipation at  
which the junction temperature reaches its maximum  
operating value, whichever is lower.  
www.onsemi.com  
10  
 
NCV8775C  
APPLICATIONS INFORMATION  
VDU  
The NCV8775C regulator is self−protected with internal  
thermal shutdown and internal current limit. Typical  
characteristics are shown in Figure 4 to Figure 34.  
tRD + CD  
 
ID  
(eq. 1)  
1.3 V  
tRD + 47 nF   
+ 15.3 ms  
Input Decoupling (Cin)  
4 mA  
A ceramic or tantalum 0.1 mF capacitor is recommended  
and should be connected close to the NCV8775C package.  
Higher capacitance and lower ESR will improve the overall  
line and load transient response.  
Input Capacitor is required if regulator is located far from  
power supply filter. If extremely fast input voltage transients  
are expected with slew rate in excess of 4 V/ms then  
appropriate input filter must be used. The filter can be  
composed of several capacitors in parallel.  
Other time delays can be obtained by changing the C  
capacitor value. The Delay Time can be reduced by  
D
decreasing the capacitance of C . Using the formula above,  
D
Delay can be reduced as desired. For minimum reset delay  
time Delay pin must be left open with no PCB trace  
connected to the pin.  
Thermal Considerations  
As power in the NCV8775C increases, it might become  
necessary to provide some thermal relief. The maximum  
power dissipation supported by the device is dependent  
upon board design and layout. Mounting pad configuration  
on the PCB, the board material, and the ambient temperature  
affect the rate of junction temperature rise for the part. When  
the NCV8775C has good thermal conductivity through the  
PCB, the junction temperature will be relatively low with  
high power applications. The maximum dissipation the  
NCV8775C can handle is given by:  
Output Decoupling (Cout  
)
The NCV8775C is a stable component and does not  
require a minimum Equivalent Series Resistance (ESR) for  
the output capacitor. Stability region of ESR vs Output  
Current is shown in Figures 20 and 21. The minimum output  
decoupling value is 1 mF and can be augmented to fulfill  
stringent load transient requirements. The regulator works  
with ceramic chip capacitors as well as tantalum devices.  
Larger values improve noise rejection and load regulation  
transient response.  
ƪT  
ƫ
J(max) * TA  
(eq. 2)  
PD max  
+
(
)
Reset Operation  
RqJA  
A reset signal is provided on the Reset Output (RO) pin to  
provide feedback to the microprocessor of an out of  
regulation condition. The timing diagram of reset function  
is shown in Figure 32. This is in the form of a logic signal on  
RO. Output voltage conditions below the Reset threshold  
Since T is not recommended to exceed 150°C, then the  
J
2
NCV8775C soldered on 645 mm , 1 oz copper area, FR4  
can dissipate up to 2.35 W (for D2PAK−5) when the ambient  
temperature (T ) is 25°C. See Figures 33 and 34 for R  
A
qJA  
versus PCB area. The power dissipated by the NCV8775C  
can be calculated from the following equations:  
cause RO to go low. RO is pulled up to V by an external  
out  
resistor, typically 5.0 kW in value. Output voltage regulation  
must be maintained for the delay time before the reset output  
signals a valid condition. The delay for the reset output is  
defined as the amount of time it takes the timing capacitor  
on the delay pin to charge from a residual voltage of 0 V to  
ǒ
Ǔ
ǒ
Ǔ
(eq. 3)  
(eq. 4)  
PD + Vin Iq@Iout ) Iout Vin * Vout  
or  
ǒ
Ǔ
PD(max) ) Vout   Iout  
the upper timing threshold voltage V  
charging current for this is I of 4 mA and D pin voltage in  
of 1.3 V. The  
Vin(max)  
+
DU  
Iout ) Iq  
D
NOTE: Items containing I can be neglected if I >> I .  
steady state is typically 0 V. By using typical IC parameters  
with a 47 nF capacitor on the D Pin, the following time delay  
is derived:  
q
out  
q
www.onsemi.com  
11  
NCV8775C  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1 oz, Single Layer  
2 oz, Single Layer  
1 oz, Single Layer  
2 oz, Single Layer  
1 oz, 4 Layer  
400  
1 oz, 4 Layer  
400  
0
200  
600  
800  
1000  
0
200  
600  
800  
1000  
2
2
COPPER HEAT SPREADER AREA (mm )  
Figure 33. Thermal Resistance vs. PCB Copper  
Area (DPAK−5)  
COPPER HEAT SPREADER AREA (mm )  
Figure 34. Thermal Resistance vs. PCB Copper  
Area (D2PAK−5)  
Hints  
The NCV8775C is not developed in compliance with  
ISO26262 standard. If application is safety critical then the  
above application example diagram shown in Figure 35 can  
be used.  
V
and GND printed circuit board traces should be as  
in  
wide as possible. When the impedance of these traces is  
high, there is a chance to pick up noise or cause the regulator  
to malfunction. Place external filter components, especially  
the output capacitor, as near as possible to the device to  
increase EMC performance.  
Vout  
VBAT  
Vin  
Vout  
VDD  
Cout  
Cin  
VCC  
I/O  
RESET  
Voltage  
NCV8775C  
Microprocessor  
Supervisor  
(e.g. NCV30X, NCV809)  
GND  
I/O  
D
RO  
CD  
GND  
Figure 35. NCV8775C Application Diagram  
ORDERING INFORMATION  
Device  
Output Voltage  
Package  
Shipping  
NCV8775CDT33RKG  
3.3 V  
DPAK−5  
(Pb−Free)  
2500 / Tape & Reel  
2500 / Tape & Reel  
800 / Tape & Reel  
800 / Tape & Reel  
NCV8775CDT50RKG  
NCV8775CDS33R4G  
NCV8775CDS50R4G  
5.0 V  
3.3 V  
5.0 V  
DPAK−5  
(Pb−Free)  
D2PAK−5  
(Pb−Free)  
D2PAK−5  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
12  
 
NCV8775C  
PACKAGE DIMENSIONS  
DPAK−5, CENTER LEAD CROP  
CASE 175AA  
ISSUE B  
NOTES:  
SEATING  
−T−  
1. DIMENSIONING AND TOLERANCING  
PER ANSI Y14.5M, 1982.  
PLANE  
C
2. CONTROLLING DIMENSION: INCH.  
B
R
INCHES  
DIM MIN MAX  
MILLIMETERS  
E
V
R1  
MIN  
5.97  
6.35  
2.19  
0.51  
0.46  
0.61  
MAX  
6.22  
6.73  
2.38  
0.71  
0.58  
0.81  
A
B
C
D
E
F
G
H
J
0.235 0.245  
0.250 0.265  
0.086 0.094  
0.020 0.028  
0.018 0.023  
0.024 0.032  
0.180 BSC  
0.034 0.040  
0.018 0.023  
0.102 0.114  
0.045 BSC  
Z
A
K
S
1 2 3 4  
5
4.56 BSC  
U
0.87  
0.46  
2.60  
1.01  
0.58  
2.89  
K
L
F
1.14 BSC  
J
R
0.170 0.190  
4.32  
4.70  
0.63  
0.51  
0.89  
3.93  
4.83  
5.33  
1.01  
−−−  
1.27  
4.32  
R1 0.185 0.210  
L
H
S
U
V
Z
0.025 0.040  
0.020 −−−  
0.035 0.050  
0.155 0.170  
D 5 PL  
M
G
0.13 (0.005)  
T
RECOMMENDED  
SOLDERING FOOTPRINT*  
6.4  
0.252  
2.2  
0.086  
0.34  
0.013  
5.8  
0.228  
5.36  
0.217  
10.6  
0.417  
0.8  
0.031  
mm  
inches  
ǒ
Ǔ
SCALE 4:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
13  
NCV8775C  
PACKAGE DIMENSIONS  
D2PAK 5−LEAD  
CASE 936A−02  
ISSUE D  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. TAB CONTOUR OPTIONAL WITHIN DIMENSIONS A  
AND K.  
4. DIMENSIONS U AND V ESTABLISH A MINIMUM  
MOUNTING SURFACE FOR TERMINAL 6.  
5. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
FLASH OR GATE PROTRUSIONS. MOLD FLASH  
AND GATE PROTRUSIONS NOT TO EXCEED 0.025  
(0.635) MAXIMUM.  
−T−  
TERMINAL 6  
OPTIONAL  
CHAMFER  
A
E
U
S
K
V
B
H
1
2
3
4 5  
INCHES  
MILLIMETERS  
M
L
DIM  
A
B
C
D
E
MIN  
MAX  
0.403  
0.368  
0.180  
0.036  
0.055  
MIN  
9.804  
9.042  
4.318  
0.660  
1.143  
MAX  
10.236  
9.347  
4.572  
0.914  
1.397  
0.386  
0.356  
0.170  
0.026  
0.045  
D
P
N
M
0.010 (0.254)  
T
G
R
G
H
K
L
M
N
P
0.067 BSC  
1.702 BSC  
14.707  
1.270 REF  
0.539  
0.579 13.691  
0.050 REF  
0.000  
0.088  
0.018  
0.058  
0_  
0.010  
0.102  
0.026  
0.078  
8_  
0.000  
2.235  
0.457  
1.473  
0_  
0.254  
2.591  
0.660  
1.981  
8_  
C
R
S
0.116 REF  
2.946 REF  
U
V
0.200 MIN  
0.250 MIN  
5.080 MIN  
6.350 MIN  
SOLDERING FOOTPRINT  
8.38  
0.33  
1.702  
0.067  
10.66  
0.42  
1.016  
0.04  
3.05  
0.12  
16.02  
0.63  
mm  
inches  
ǒ
Ǔ
SCALE 3:1  
2
5−LEAD D PAK  
www.onsemi.com  
14  
NCV8775C  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCV8775C/D  

相关型号:

NCV8775CDT50RKG

Ultra Low Iq 350 mA LDO Regulator with Reset
ONSEMI

NCV8800

Synchronous Buck Regulator with 1.0 Amp Switch
ONSEMI

NCV8800/D

Synchronous Buck Regulator with 1.0 Amp Switch
ETC

NCV8800DW2HR2

IC 2.5 A SWITCHING REGULATOR, 230 kHz SWITCHING FREQ-MAX, PDSO16, SO-16, Switching Regulator or Controller
ONSEMI

NCV8800HDW26

Synchronous Buck Regulator with 1.0 Amp Switch
ONSEMI

NCV8800HDW26G

Synchronous Automotive Buck Regulator
ONSEMI

NCV8800HDW26R2

Synchronous Buck Regulator with 1.0 Amp Switch
ONSEMI

NCV8800HDW26R2G

Synchronous Automotive Buck Regulator
ONSEMI

NCV8800HDW33

Synchronous Buck Regulator with 1.0 Amp Switch
ONSEMI

NCV8800HDW33G

Synchronous Automotive Buck Regulator, SO-16 WB, 47-TUBE
ONSEMI

NCV8800HDW33R2

Synchronous Buck Regulator with 1.0 Amp Switch
ONSEMI

NCV8800HDW33R2G

Synchronous Automotive Buck Regulator
ONSEMI