NCV887100D1R2G [ONSEMI]

Automotive Grade Non-Synchronous Boost Controller;
NCV887100D1R2G
型号: NCV887100D1R2G
厂家: ONSEMI    ONSEMI
描述:

Automotive Grade Non-Synchronous Boost Controller

开关 光电二极管
文件: 总12页 (文件大小:145K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV8871  
Automotive Grade  
Non-Synchronous Boost  
Controller  
The NCV8871 is an adjustable output nonsynchronous boost  
controller which drives an external Nchannel MOSFET. The device  
uses peak current mode control with internal slope compensation. The  
IC incorporates an internal regulator that supplies charge to the gate  
driver.  
http://onsemi.com  
MARKING  
DIAGRAM  
Protection features include internallyset softstart, undervoltage  
lockout, cyclebycycle current limiting, hiccupmode shortcircuit  
protection and thermal shutdown.  
Additional features include low quiescent current sleep mode and  
externallysynchronizable switching frequency.  
8
SOIC8  
D SUFFIX  
CASE 751  
8871xx  
ALYW  
G
8
1
1
8871xx = Specific Device Code  
xx = 00, 01, 02, 03, 04  
Features  
A
L
Y
W
G
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
Peak Current Mode Control with Internal Slope Compensation  
1.2 V 2% Reference voltage  
Fixed Frequency Operation  
Wide Input Voltage Range of 3.2 V to 40 Vdc, 45 V Load Dump  
Input Undervoltage Lockout (UVLO)  
Internal SoftStart  
PIN CONNECTIONS  
Low Quiescent Current in Sleep Mode  
CyclebyCycle Current Limit Protection  
HiccupMode Overcurrent Protection (OCP)  
HiccupMode ShortCircuit Protection (SCP)  
Thermal Shutdown (TSD)  
1
2
3
4
8
7
6
5
EN/SYNC  
ISNS  
VFB  
VC  
GND  
VIN  
GDRV  
VDRV  
This is a PbFree Device  
(Top View)  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NCV887100D1R2G SOIC8  
(PbFree)  
2500 / Tape &  
Reel  
NCV887101D1R2G SOIC8  
(PbFree)  
2500 / Tape &  
Reel  
NCV887102D1R2G SOIC8  
(PbFree)  
2500 / Tape &  
Reel  
NCV887103D1R2G SOIC8  
(PbFree)  
2500 / Tape &  
Reel  
NCV887104D1R2G SOIC8  
(PbFree)  
2500 / Tape &  
Reel  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
© Semiconductor Components Industries, LLC, 2012  
1
Publication Order Number:  
September, 2012 Rev. 3  
NCV8871/D  
NCV8871  
V
g
VIN  
6
TEMP  
C
L
g
VDRV  
C
VDRV  
DRV  
FAULT  
LOGIC  
D
5
4
V
o
CLK  
EN/  
EN/SYNC  
VC  
Q
OSC  
GDRV  
1
7
DRIVE  
LOGIC  
SYNC  
SC  
ISNS  
GND  
2
3
C
o
CL  
R
SNS  
CSA  
+
R
SCP  
F1  
R
C
C
VFB  
8
C
Gm  
R
F2  
SS  
V
ref  
Figure 1. Simplified Block Diagram and Application Schematic  
PACKAGE PIN DESCRIPTIONS  
Pin  
Symbol  
Pin No.  
Function  
1
EN/SYNC  
Enable and synchronization input. The falling edge synchronizes the internal oscillator. The part is disabled  
into sleep mode when this pin is brought low for longer than the enable timeout period.  
2
ISNS  
Current sense input. Connect this pin to the source of the external NMOSFET, through a currentsense  
resistor to ground to sense the switching current for regulation and current limiting.  
3
4
GND  
Ground reference.  
GDRV  
Gate driver output. Connect to gate of the external NMOSFET. A series resistance can be added from  
GDRV to the gate to tailor EMC performance.  
5
6
7
8
VDRV  
VIN  
Driving voltage. Internallyregulated supply for driving the external NMOSFET, sourced from VIN. Bypass  
with a 1.0 mF ceramic capacitor to ground.  
Input voltage. If bootstrapping operation is desired, connect a diode from the input supply to VIN, in addi-  
tion to a diode from the output voltage to VDRV and/or VIN.  
VC  
Output of the voltage error amplifier. An external compensator network from VC to GND is used to stabilize  
the converter.  
VFB  
Output voltage feedback. A resistor from the output voltage to VFB with another resistor from VFB to GND  
creates a voltage divider for regulation and programming of the output voltage.  
http://onsemi.com  
2
NCV8871  
ABSOLUTE MAXIMUM RATINGS (Voltages are with respect to GND, unless otherwise indicated)  
Rating  
Value  
0.3 to 40  
45  
Unit  
V
Dc Supply Voltage (VIN)  
Peak Transient Voltage (Load Dump on VIN)  
Dc Supply Voltage (VDRV, GDRV)  
V
12  
V
Peak Transient Voltage (VFB)  
0.3 to 6  
0.3 to 3.6  
0.3 to 6  
0.7 to 45  
40 to 150  
65 to 150  
265 peak  
V
Dc Voltage (VC, VFB, ISNS)  
V
Dc Voltage (EN/SYNC)  
V
Dc Voltage Stress (VIN VDRV)*  
V
Operating Junction Temperature  
°C  
°C  
°C  
Storage Temperature Range  
Peak Reflow Soldering Temperature: PbFree, 60 to 150 seconds at 217°C  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
*An external diode from the input to the VIN pin is required if bootstrapping VDRV and VIN off of the output voltage.  
PACKAGE CAPABILITIES  
Characteristic  
Value  
Unit  
ESD Capability (All Pins)  
Moisture Sensitivity Level  
Human Body Model  
Machine Model  
w2.0  
kV  
V
w200  
1
Package Thermal Resistance  
JunctiontoAmbient, R  
(Note 1)  
100  
°C/W  
q
JA  
2
1. 1 in , 1 oz copper area used for heatsinking.  
Device Variations  
The NCV8871 features several variants to better fit a  
multitude of applications. The table below shows the typical  
values of parameters for the parts that are currently  
available.  
TYPICAL VALUES  
Part No.  
D
f
t
S
V
I
I
V
DRV  
SCE  
Y
max  
s
ss  
a
cl  
src  
sink  
NCV887100  
NCV887101  
NCV887102  
NCV887103  
NCV887104  
88%  
86%  
91%  
93%  
93%  
170 kHz  
1000 kHz  
1000 kHz  
340 kHz  
340 kHz  
7.4 ms  
1.25 ms  
1.25 ms  
3.7 ms  
3.7 ms  
53 mV/ms  
16 mV/ms  
53 mV/ms  
53 mV/ms  
53 mV/ms  
400 mV  
400 mV  
400 mV  
200 mV  
200 mV  
800 mA  
575 mA  
800 mA  
575 mA  
800 mA  
600 mA  
350 mA  
600 mA  
350 mA  
600 mA  
10.5 V  
6.3 V  
6.3 V  
8.4 V  
8.4 V  
Y
N
Y
N
DEFINITIONS  
Symbol  
Characteristic  
Symbol  
Characteristic  
Switching Frequency  
Current Limit Trip Voltage  
Drive Voltage  
Symbol  
Characteristic  
D
Maximum Duty Cycle  
f
s
t
ss  
SoftStart Time  
max  
S
Slope Compensating Ramp  
Gate Drive Sinking Current  
V
cl  
I
src  
Gate Drive Sourcing Current  
Short Circuit Enable  
a
I
V
DRV  
SCE  
sink  
http://onsemi.com  
3
 
NCV8871  
ELECTRICAL CHARACTERISTICS (40°C < T < 150°C, 3.2 V < V < 40 V, unless otherwise specified) Min/Max values are  
J
IN  
guaranteed by test, design or statistical correlation.  
Characteristic Symbol  
GENERAL  
Conditions  
Min  
Typ  
Max  
Unit  
Quiescent Current, Sleep Mode  
Quiescent Current, Sleep Mode  
Quiescent Current, No switching  
I
I
V
= 13.2 V, EN = 0, T = 25°C  
2.0  
2.0  
1.5  
3.0  
mA  
mA  
q,sleep  
q,sleep  
IN  
J
V
IN  
= 13.2 V, EN = 0, 40°C < T < 125°C  
6.0  
2.5  
6.0  
J
I
I
Into VIN pin, EN = 1, No switching  
Into VIN pin, EN = 1, Switching  
mA  
mA  
q,off  
q,on  
Quiescent Current, Switching,  
normal operation  
OSCILLATOR  
Minimum pulse width  
Maximum duty cycle  
t
90  
115  
140  
ns  
%
on,min  
D
NCV887100  
NCV887101  
NCV887102  
NCV887103  
NCV887104  
86  
84  
89  
91  
91  
88  
86  
91  
93  
93  
90  
88  
93  
95  
95  
max  
Switching frequency  
f
NCV887100  
NCV887101  
NCV887102  
NCV887103  
NCV887104  
153  
900  
900  
306  
306  
170  
1000  
1000  
340  
187  
1100  
1100  
374  
kHz  
ms  
s
340  
374  
Softstart time  
t
ss  
From start of switching with V = 0 until  
FB  
reference voltage = V  
NCV887100  
REF  
6.0  
1.0  
1.0  
3.0  
3.0  
7.4  
1.25  
1.25  
3.7  
8.8  
1.5  
1.5  
4.4  
4.4  
NCV887101  
NCV887102  
NCV887103  
NCV887104  
3.7  
Softstart delay  
t
From EN 1 until start of switching with  
= 0  
ms  
ss,dly  
V
240  
280  
FB  
Slope compensating ramp  
S
a
NCV887100  
NCV887101  
NCV887102  
NCV887103  
NCV887104  
46  
13  
46  
46  
46  
53  
16  
53  
53  
53  
60  
19  
60  
60  
60  
mV/ms  
ENABLE/SYNCHRONIZATION  
EN/SYNC pulldown current  
EN/SYNC input high voltage  
EN/SYNC input low voltage  
EN/SYNC timeout ratio  
I
V
= 5 V  
2.0  
0
5.0  
10  
mA  
V
EN/SYNC  
EN/SYNC  
V
s,ih  
5.0  
800  
350  
V
s,il  
mV  
%
%t  
en  
From SYNC falling edge, to oscillator con-  
trol (EN high) or shutdown (EN low), Per-  
cent of typical switching period  
SYNC minimum frequency ratio  
SYNC maximum frequency  
Synchronization delay  
%f  
Percent of f  
1.1  
80  
%
MHz  
ns  
sync,min  
s
f
sync,max  
t
From SYNC falling edge to GDRV falling  
edge  
50  
100  
s,dly  
Synchronization duty cycle  
CURRENT SENSE AMPLIFIER  
Lowfrequency gain  
D
25  
75  
%
sync  
A
Inputtooutput gain at dc, ISNS v 1 V  
0.9  
2.5  
1.0  
1.1  
V/V  
MHz  
mA  
csa  
Bandwidth  
BW  
csa  
sns,bias  
Gain of A  
3 dB  
csa  
ISNS input bias current  
I
Out of ISNS pin  
30  
50  
http://onsemi.com  
4
NCV8871  
ELECTRICAL CHARACTERISTICS (40°C < T < 150°C, 3.2 V < V < 40 V, unless otherwise specified) Min/Max values are  
J
IN  
guaranteed by test, design or statistical correlation.  
Characteristic  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
CURRENT SENSE AMPLIFIER  
Current limit threshold voltage  
V
cl  
Voltage on ISNS pin  
mV  
NCV887100  
NCV887101  
NCV887102  
NCV887103  
NCV887104  
360  
360  
360  
180  
180  
400  
400  
400  
200  
200  
440  
440  
440  
220  
220  
Current limit,  
t
CL tripped until GDRV falling edge,  
ISNS cl  
125  
80  
150  
125  
175  
125  
ns  
%
cl  
Response time  
V
= V + 40 mV  
Overcurrent protection,  
Threshold voltage  
%V  
Percent of V  
cl  
ocp  
Overcurrent protection,  
Response Time  
t
From overcurrent event, Until switching  
stops, V = V + 40 mV  
ns  
ocp  
ISNS  
OCP  
VOLTAGE ERROR OPERATIONAL TRANSCONDUCTANCE AMPLIFIER  
Transconductance  
g
V
– V =  
ref  
20 mV  
0.8  
2.0  
1.2  
1.5  
mS  
MW  
mA  
V
m,vea  
FB  
VEA output resistance  
VFB input bias current  
Reference voltage  
R
o,vea  
I
Current out of VFB pin  
0.5  
1.200  
2.0  
1.224  
vfb,bias  
V
ref  
1.176  
2.5  
VEA maximum output voltage  
VEA minimum output voltage  
VEA sourcing current  
VEA sinking current  
GATE DRIVER  
V
V
c,max  
V
0.3  
V
c,min  
I
VEA output current, Vc = 2.0 V  
VEA output current, Vc = 0.7 V  
80  
100  
100  
mA  
mA  
src,vea  
I
80  
snk,vea  
Sourcing current  
I
src  
V
6 V, V  
V = 2 V  
GDRV  
mA  
DRV  
DRV  
NCV887100  
NCV887101  
NCV887102  
NCV887103  
NCV887104  
600  
400  
600  
400  
600  
800  
575  
800  
575  
800  
Sinking current  
I
V
2 V  
mA  
sink  
GDRV  
NCV887100  
NCV887101  
NCV887102  
NCV887103  
NCV887104  
500  
250  
500  
250  
500  
600  
350  
600  
350  
600  
Driving voltage dropout  
Driving voltage source current  
Backdrive diode voltage drop  
Driving voltage  
V
V
V
V
V  
V  
, Iv  
= 25 mA  
35  
0.3  
45  
0.6  
V
mA  
V
drv,do  
IN  
DRV  
DRV  
I
= 1 V  
drv  
IN  
DRV  
V
V , I = 5 mA  
IN d,bd  
0.7  
d,bd  
DRV  
DRV  
V
I
= 0.1 25 mA  
V
VDRV  
NCV887100  
NCV887101  
NCV887102  
NCV887103  
NCV887104  
10  
6.0  
6.0  
8.0  
8.0  
10.5  
6.3  
6.3  
8.4  
8.4  
11  
6.6  
6.6  
8.8  
8.8  
UVLO  
Undervoltage lockout,  
V
V
V
falling  
rising  
3.0  
50  
3.1  
3.2  
V
uvlo  
IN  
Threshold voltage  
Undervoltage lockout,  
Hysteresis  
V
125  
200  
mV  
uvlo,hys  
IN  
http://onsemi.com  
5
NCV8871  
ELECTRICAL CHARACTERISTICS (40°C < T < 150°C, 3.2 V < V < 40 V, unless otherwise specified) Min/Max values are  
J
IN  
guaranteed by test, design or statistical correlation.  
Characteristic  
SHORT CIRCUIT PROTECTION  
Startup blanking period  
Hiccupmode period  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
%t  
%t  
From start of softstart, Percent of t  
100  
70  
120  
85  
150  
100  
%
%
scp,dly  
ss  
From shutdown to start of softstart,  
Percent of t  
hcp,dly  
ss  
Short circuit threshold voltage  
Short circuit delay  
%V  
V
as percent of V  
60  
67  
35  
75  
%
scp  
FB  
ref  
t
From V < V to stop switching  
scp  
100  
ns  
scp  
FB  
THERMAL SHUTDOWN  
Thermal shutdown threshold  
Thermal shutdown hysteresis  
Thermal shutdown delay  
T
T rising  
160  
10  
170  
15  
180  
20  
°C  
°C  
ns  
sd  
J
T
T falling  
J
sd,hys  
sd,dly  
t
From T > T to stop switching  
100  
J
sd  
http://onsemi.com  
6
NCV8871  
TYPICAL PERFORMANCE CHARACTERISTICS  
7
6
5
4
3
2
1
0
5.5  
5.0  
4.5  
4.0  
3.5  
T = 25°C  
J
T = 25°C,  
J
V
IN  
= 13.2 V  
0
10  
20  
30  
40  
0
200  
400  
600  
800  
1000  
V
IN  
, INPUT VOLTAGE (V)  
f , SWITCHING FREQUENCY (kHz)  
s
Figure 2. Sleep Current vs. Input Voltage  
Figure 3. Quiescent Current vs. Switching  
Frequency  
3.30  
6
V
= 13.2 V  
IN  
V
= 13.2 V  
IN  
f = 170 kHz  
s
5
4
3
2
1
0
3.25  
3.20  
3.15  
3.10  
3.05  
3.00  
50  
0
50  
100  
150  
200  
40  
10  
60  
110  
160  
T , JUNCTION TEMPERATURE (°C)  
Figure 5. Quiescent Current vs. Temperature  
J
T , JUNCTION TEMPERATURE (°C)  
Figure 4. Sleep Current vs. Temperature  
J
125  
1.010  
1.005  
1.000  
0.995  
0.990  
123  
121  
119  
117  
115  
40  
10  
60  
110  
160  
40  
10  
60  
110  
160  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 6. Minimum On Time vs. Temperature  
Figure 7. Normalized Current Limit vs.  
Temperature  
http://onsemi.com  
7
NCV8871  
TYPICAL PERFORMANCE CHARACTERISTICS  
1.205  
1.203  
1.201  
1.199  
1.197  
1.195  
7
T = 25°C  
J
6
5
4
3
2
1
0
0
1
2
3
4
5
6
40  
10  
60  
110  
160  
V
enable  
, VOLTAGE (V)  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 8. Reference Voltage vs. Temperature  
Figure 9. Enable Pulldown Current vs. Voltage  
8.0  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
40  
10  
60  
110  
160  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 10. Enable Pulldown Current vs.  
Temperature  
http://onsemi.com  
8
NCV8871  
THEORY OF OPERATION  
VIN  
VOUT  
L
GDRV  
Oscillator  
S
R
Q
Gate  
Drive  
PWM Comparator  
CO  
RL  
+
ISNS  
+
+
CSA  
Slope  
Compensation  
VFB  
Voltage Error  
+
VEA  
NCV8871  
Compensation  
Figure 11. Current Mode Control Schematic  
Current Mode Control  
If the voltage across the current sense resistor exceeds the  
over current threshold voltage the device enters over current  
hiccup mode. The device will remain off for the hiccup time  
and then go through the softstart procedure.  
The NCV8871 incorporates a current mode control  
scheme, in which the PWM ramp signal is derived from the  
power switch current. This ramp signal is compared to the  
output of the error amplifier to control the ontime of the  
power switch. The oscillator is used as a fixedfrequency  
clock to ensure a constant operational frequency. The  
resulting control scheme features several advantages over  
conventional voltage mode control. First, derived directly  
from the inductor, the ramp signal responds immediately to  
line voltage changes. This eliminates the delay caused by the  
output filter and the error amplifier, which is commonly  
found in voltage mode controllers. The second benefit  
comes from inherent pulsebypulse current limiting by  
merely clamping the peak switching current. Finally, since  
current mode commands an output current rather than  
voltage, the filter offers only a single pole to the feedback  
loop. This allows for a simpler compensation.  
Short Circuit Protection  
If the short circuit enable bit is set (SCE = Y) the device  
will attempt to protect the power MOSFET from damage.  
When the output voltage falls below the short circuit trip  
voltage, after the initial short circuit blanking time, the  
device enters short circuit latch off. The device will remain  
off for the hiccup time and then go through the softstart.  
EN/SYNC  
The Enable/Synchronization pin has three modes. When  
a dc logic high (CMOS/TTL compatible) voltage is applied  
to this pin the NCV8871 operates at the programmed  
frequency. When a dc logic low voltage is applied to this pin  
the NCV8871 enters a low quiescent current sleep mode.  
The NCV8871 also includes a slope compensation  
scheme in which a fixed ramp generated by the oscillator is  
added to the current ramp. A proper slope rate is provided to  
improve circuit stability without sacrificing the advantages  
of current mode control.  
When a square wave of at least %f  
of the free running  
sync,min  
switching frequency is applied to this pin, the switcher  
operates at the same frequency as the square wave. If the  
signal is slower than this, it will be interpreted as enabling  
and disabling the part. The falling edge of the square wave  
corresponds to the start of the switching cycle. If device is  
disabled, it must be disabled for 7 clock cycles before being  
reenabled.  
Current Limit  
The NCV8871 features two current limit protections,  
peak current mode and over current latch off. When the  
current sense amplifier detects a voltage above the peak  
current limit between ISNS and GND after the current limit  
leading edge blanking time, the peak current limit causes the  
power switch to turn off for the remainder of the cycle. Set  
the current limit with a resistor from ISNS to GND, with R  
UVLO  
Input Undervoltage Lockout (UVLO) is provided to  
ensure that unexpected behavior does not occur when VIN  
is too low to support the internal rails and power the  
controller. The IC will start up when enabled and VIN  
surpasses the UVLO threshold plus the UVLO hysteresis  
= V / I  
.
CL limit  
http://onsemi.com  
9
NCV8871  
and will shut down when VIN drops below the UVLO  
threshold or the part is disabled.  
voltage is higher than the output voltage, the minimum duty  
cycle will be negative. This is because a boost converter  
cannot have an output lower than the input. In situations  
where the input is higher than the output, the output will  
follow the input, minus the diode drop of the output diode  
and the converter will not attempt to switch.  
Internal SoftStart  
To insure moderate inrush current and reduce output  
overshoot, the NCV8871 features a soft start which charges a  
capacitor with a fixed current to ramp up the reference voltage.  
This fixed current is based on the switching frequency, so  
that if the NCV8871 is synchronized to twice the default  
switching frequency the soft start will last half as long.  
If the calculated D  
is higher the D  
of the NCV8871,  
max  
max  
the conversion will not be possible. It is important for a boost  
converter to have a restricted D , because while the ideal  
max  
conversion ration of a boost converter goes up to infinity as  
D approaches 1, a real converter’s conversion ratio starts to  
decrease as losses overtake the increased power transfer. If  
the converter is in this range it will not be able to regulate  
properly.  
VDRV  
An internal regulator provides the drive voltage for the  
gate driver. Bypass with a ceramic capacitor to ground to  
ensure fast turn on times. The capacitor should be between  
0.1 mF and 1 mF, depending on switching speed and charge  
requirements of the external MOSFET.  
If the following equation is not satisfied, the device will  
skip pulses at high V :  
IN  
D
fs  
min w ton(min)  
APPLICATION INFORMATION  
Where: f : switching frequency [Hz]  
Design Methodology  
s
This section details an overview of the component selection  
process for the NCV8871 in continuous conduction mode  
boost. It is intended to assist with the design process but does  
not remove all engineering design work. Many of the  
equations make heavy use of the small ripple approximation.  
This process entails the following steps:  
1. Define Operational Parameters  
2. Select Current Sense Resistor  
3. Select Output Inductor  
4. Select Output Capacitors  
5. Select Input Capacitors  
t
: minimum on time [s]  
on(min)  
2. Select Current Sense Resistor  
Current sensing for peak current mode control and current  
limit relies on the MOSFET current signal, which is  
measured with a ground referenced amplifier. The easiest  
method of generating this signal is to use a current sense  
resistor from the source of the MOSFET to device ground.  
The sense resistor should be selected as follows:  
VCL  
RS  
+
ICL  
6. Select Feedback Resistors  
7. Select Compensator Components  
8. Select MOSFET(s)  
Where: R : sense resistor [W]  
S
V : current limit threshold voltage [V]  
CL  
I
: desire current limit [A]  
CL  
9. Select Diode  
3. Select Output Inductor  
1. Define Operational Parameters  
The output inductor controls the current ripple that occurs  
over a switching period. A high current ripple will result in  
excessive power loss and ripple current requirements. A low  
current ripple will result in a poor control signal and a slow  
current slew rate in case of load steps. A good starting point  
for peak to peak ripple is around 10% of the inductor current  
Before beginning the design, define the operating  
parameters of the application. These include:  
V
V
V
: minimum input voltage [V]  
IN(min)  
maximum input voltage [V]  
IN(max):  
: output voltage [V]  
OUT  
I
I
: maximum output current [A]  
: desired typical cycle-by-cycle current limit [A]  
OUT(max)  
at the maximum load at the worst case V , but operation  
IN  
CL  
should be verified empirically. The worst case V is half of  
IN  
V
, or whatever V is closest to half of V . After  
OUT  
IN IN  
From this the ideal minimum and maximum duty cycles  
can be calculated as follows:  
choosing a peak current ripple value, calculate the inductor  
value as follows:  
VIN(max)  
2
VIN(WC) DWC  
D
D
min + 1 *  
max + 1 *  
VOUT  
L +  
DIL,max fsVOUT  
VIN(min)  
VOUT  
Where: V  
: V value as close as possible to  
IN  
IN(WC)  
half of V  
[V]  
OUT  
Both duty cycles will actually be higher due to power loss  
in the conversion. The exact duty cycles will depend on  
conduction and switching losses. If the maximum input  
D
DI  
: duty cycle at V  
WC  
IN(WC)  
: maximum peak to peak ripple [A]  
L,max  
http://onsemi.com  
10  
NCV8871  
7. Select Compensator Components  
The maximum average inductor current can be calculated  
as follows:  
Current Mode control method employed by the NCV8871  
allows the use of a simple, Type II compensation to optimize  
the dynamic response according to system requirements.  
V
OUTIOUT(max)  
IL,avg  
+
VIN(min)  
8. Select MOSFET(s)  
The Peak Inductor current can be calculated as follows:  
2
In order to ensure the gate drive voltage does not drop out  
the MOSFET(s) chosen must not violate the following  
inequality:  
VIN(min) Dmax  
I
L,peak + IL,avg )  
LfsVOUT  
Where: I  
: Peak inductor current value [A]  
L,peak  
Idrv  
fs  
Q
g(total) v  
4. Select Output Capacitors  
The output capacitors smooth the output voltage and  
reduce the overshoot and undershoot associated with line  
transients. The steady state output ripple associated with the  
output capacitors can be calculated as follows:  
Where: Q  
: Total Gate Charge of MOSFET(s) [C]  
g(total)  
I
: Drive voltage current [A]  
drv  
f : Switching Frequency [Hz]  
s
The maximum RMS Current can be calculated as follows:  
VOUT(ripple)  
+
Ǹ
D
ID(max) + I  
ǒV  
Ǔ
IOUT(max) OUT * VIN(min)  
out DȀ  
I
OUT(max)VOUTRESR  
)
ǒC fǓ2  
VIN(min)  
The maximum voltage across the MOSFET will be the  
maximum output voltage, which is the higher of the  
maximum input voltage and the regulated output voltaged:  
OUT  
The capacitors need to survive an RMS ripple current as  
follows:  
V
Q(max) + VOUT(max)  
V
OUT * VIN(min)  
Ǹ
I
Cout(RMS) + IOUT  
VIN(min)  
9. Select Diode  
The output diode rectifies the output current. The average  
current through diode will be equal to the output current:  
The use of parallel ceramic bypass capacitors is strongly  
encouraged to help with the transient response.  
I
D(avg) + IOUT(max)  
5. Select Input Capacitors  
Additionally, the diode must block voltage equal to the  
higher of the output voltage and the maximum input voltage:  
The input capacitor reduces voltage ripple on the input to  
the module associated with the ac component of the input  
current.  
V
D(max) + VOUT(max)  
2
The maximum power dissipation in the diode can be  
calculated as follows:  
VIN(WC) DWC  
ICin(RMS)  
+
Ǹ
LfsVOUT2 3  
P
D + Vf(max) IOUT(max)  
6. Select Feedback Resistors  
Where: P : Power dissipation in the diode [W]  
d
The feedback resistors form a resistor divider from the  
output of the converter to ground, with a tap to the feedback  
V
: Maximum forward voltage of the diode [V]  
f(max)  
Low Voltage Operation  
pin. During regulation, the divided voltage will equal V .  
ref  
If the input voltage drops below the UVLO or MOSFET  
threshold voltage, another voltage may be used to power the  
device. Simply connect the voltage you would like to boost  
to the inductor and connect the stable voltage to the VIN pin  
of the device. In boost configuration, the output of the  
converter can be used to power the device. In some cases it  
may be desirable to connect 2 sources to VIN pin, which can  
be accomplished simply by connecting each of the sources  
through a diode to the VIN pin.  
The lower feedback resistor can be chosen, and the upper  
feedback resistor value is calculated as follows:  
ǒ
refǓ  
V
out * V  
R
upper + Rlower  
Vref  
The total feedback resistance (R  
+ R  
) should be in  
upper  
lower  
the range of 1 kW – 100 kW.  
http://onsemi.com  
11  
NCV8871  
PACKAGE DIMENSIONS  
SOIC8 NB  
CASE 75107  
ISSUE AK  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
X−  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
B
0.25 (0.010)  
Y
1
K
Y−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
1.27 BSC  
0.050 BSC  
Z−  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
0.10 (0.004)  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NCV8871/D  

相关型号:

NCV887101

Automotive Grade Non-Synchronous Boost Controller
ONSEMI

NCV887101D1R2G

Automotive Grade Non-Synchronous Boost Controller
ONSEMI

NCV887101DR2G

SWITCHING CONTROLLER, 1100kHz SWITCHING FREQ-MAX, PDSO8, LEAD FREE, SOIC-8
ONSEMI

NCV887102

Automotive Grade Non-Synchronous Boost Controller
ONSEMI

NCV887102D1R2G

Automotive Grade Non-Synchronous Boost Controller
ONSEMI

NCV887103

Automotive Grade Non-Synchronous Boost Controller
ONSEMI

NCV887103D1R2G

Automotive Grade Non-Synchronous Boost Controller
ONSEMI

NCV887103DR2G

SWITCHING CONTROLLER, 374kHz SWITCHING FREQ-MAX, PDSO8, LEAD FREE, SOIC-8
ONSEMI

NCV887104

Automotive Grade Non-Synchronous Boost Controller
ONSEMI

NCV887104D1R2G

Automotive Grade Non-Synchronous Boost Controller
ONSEMI

NCV887105D1R2G

非同步升压控制器,汽车级
ONSEMI

NCV8871_16

Automotive Grade Non-Synchronous Boost Controller
ONSEMI