NCV891130PD33R2G [ONSEMI]

1.2 A,2 MHz 低 Iq 双模式步降稳压器,用于汽车;
NCV891130PD33R2G
型号: NCV891130PD33R2G
厂家: ONSEMI    ONSEMI
描述:

1.2 A,2 MHz 低 Iq 双模式步降稳压器,用于汽车

稳压器
文件: 总15页 (文件大小:777K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NCV891130  
Step-Down Regulator -  
Automotive, Low-Iq,  
Dual-Mode  
1.2 A, 2 MHz  
www.onsemi.com  
The NCV891130 is a Dual Mode regulator intended for Automotive,  
batteryconnected applications that must operate with up to a 45 V  
input supply. Depending on the output load, it operates either as a PWM  
Buck Converter or as a Low DropOut Linear Regulator, and is suitable  
for systems with low noise and Low Quiescent Current requirements  
often encountered in automotive driver information systems. A reset  
pin (with fixed delay) simplifies interfacing with a microcontroller.  
The NCV891130 also provides several protection features expected  
in automotive power supply systems such as current limit, short circuit  
protection, and thermal shutdown. In addition, the high switching  
frequency produces low output voltage ripple even when using small  
inductor values and an allceramic output filter capacitor – forming a  
spaceefficient switching regulator solution.  
8
1
SOIC8  
EXPOSED PAD  
CASE 751AC  
MARKING DIAGRAM  
8
891130XX  
ALYW  
G
Features  
30 mA Iq in Light Load Condition  
1.2 A Maximum Output Current in PWM Mode  
Internal Nchannel Power Switch  
1
With XX = 33 for 3.3 V Output  
= 40 for 4.0 V Output  
= 50 for 5.0 V Output  
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Device  
V Operating Range 3.7 V to 36 V  
IN  
A
L
Y
W
G
Withstands Load Dump to 45 V  
Logic Level Enable Pin can be Tied to Battery  
Fixed Output Voltage of 5.0 V, 4.0 V or 3.3 V  
2 MHz Freerunning Switching Frequency  
2 % Output Voltage Accuracy  
PIN CONNECTIONS  
NCV Prefix for Automotive Requiring Site and Control Changes  
These Devices are PbFree and are RoHS Compliant  
1
8
7
6
5
VIN  
SW  
Typical Applications  
Audio  
Infotainment  
Instrumentation  
SafetyVision Systems  
2
3
4
DRV  
BST  
VOUT  
EN  
RSTB  
GND  
(Top View)  
CDRV  
DBST  
NCV891130  
L1  
VOUT  
COUT  
VIN  
VIN  
SW  
BST  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 13 of  
this data sheet.  
CBST  
CIN  
RESET  
DFW  
DRV  
RSTB  
GND  
VOUT  
EN  
EN  
Figure 1. Typical Application  
© Semiconductor Components Industries, LLC, 2016  
1
Publication Order Number:  
August, 2019 Rev. 1  
NCV891130/D  
NCV891130  
CDRV  
SW  
DBST  
VIN  
VIN  
CIN  
L1  
VOUT  
COUT  
3.3 V  
Reg  
DFW  
CBST  
DRV  
BST  
VOUT  
EN  
Low  
ON  
PWM  
Oscillator  
LOGIC  
OFF  
Enable  
+
+
S
+
comp  
EN  
1.2 A  
detector  
+
+
TSD  
SoftStart  
RESET  
VOLTAGES  
MONITORS  
RSTB  
GND  
RESET  
Switcher Supply  
ON  
LINEAR  
REGULATOR  
ON OVLD  
MODE  
+
SELECTION  
+
Logic  
NCV891130  
Figure 2. Simplified Block Diagram  
Table 1. PIN FUNCTION DESCRIPTION  
Pin No.  
Pin Name  
VIN  
Description  
1
2
3
4
5
Input voltage from battery. Place an input filter capacitor in close proximity to this pin.  
Output voltage to provide a regulated voltage to the Power Switch gate driver.  
DRV  
RSTB  
GND  
EN  
Reset function. Open drain output, pulling down to ground when the output voltage is out of regulation.  
Battery return, and output voltage ground reference.  
This TTL compatible Enable input allows the direct connection of Battery as the enable signal. Grounding  
this input stops switching and reduces quiescent current draw to a minimum.  
6
7
VOUT  
BST  
SW  
Output voltage feedback and LDO output. Feedback of output voltage used for regulation, as well as LDO  
output in LDO mode.  
Bootstrap input provides drive voltage higher than VIN to the Nchannel Power Switch for minimum  
switch Rdson and highest efficiency.  
8
Switching node of the Regulator. Connect the output inductor and cathode of the freewheeling diode to  
this pin.  
EPAD  
Connect to Pin 4 (electrical ground) and to a low thermal resistance path to the ambient temperature  
environment.  
www.onsemi.com  
2
NCV891130  
Table 2. ABSOLUTE MAXIMUM RATINGS  
Rating  
Symbol  
Value  
0.3 to 45  
45  
Unit  
V
Min/Max Voltage VIN  
Max Voltage VIN to SW  
Min/Max Voltage SW  
V
0.7 to 40  
3.0  
V
Min Voltage SW 20 ns  
Min/Max Voltage EN  
V
0.3 to 40  
1.5 to 45  
0.3 to 43  
0.3 to 3.6  
0.3 to 6  
0.3 to 18  
0.3 to 3.6  
30  
V
Min/Max Voltage VIN to EN  
Min/Max Voltage BST  
V
V
Min/Max Voltage BST to SW  
Min/Max Voltage on RSTB  
Min/Max Voltage VOUT  
Min/Max Voltage DRV  
V
V
V
V
Thermal Resistance, SOIC8EP Junction–to–Ambient (Note 1)  
Storage Temperature range  
R
°C/W  
°C  
°C  
kV  
θ
JA  
J
55 to +150  
40 to +150  
2.0  
Operating Junction Temperature Range  
T
ESD withstand Voltage (Note 2)  
Moisture Sensitivity  
Human Body Model  
VESD  
MSL  
Level 2  
Peak Reflow Soldering Temperature (Note 3)  
260  
°C  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
2
2
1. Value based on 4 layers of 645 mm (or 1 in ) of 1 oz copper thickness on FR4 PCB substrate.  
2. This device series incorporates ESD protection and is tested by the following methods:  
ESD Human Body Model tested per AECQ100002 (EIA/JESD22A114)  
Latchup Current Maximum Rating: v150 mA per JEDEC standard: JESD78  
3. For information, please refer to our Soldering and Mounting Techniques Reference Manual, SOLDERRM/D  
Table 3. ELECTRICAL CHARACTERISTICS  
V
= 4.5 to 28 V, V = 5 V, V  
= V  
+ 3 V, C  
= 0.1 mF, for typical values T = 25°C, Min/Max values are valid for the temperature  
IN  
EN  
BST  
SW  
DRV J  
range 40°C v T v 150°C unless noted otherwise, and are guaranteed by test, design or statistical correlation (Notes 4, 5)  
J
Parameter  
QUIESCENT CURRENT  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
Quiescent Current, enabled  
Quiescent Current, shutdown  
UNDERVOLTAGE LOCKOUT – VIN (UVLO)  
UVLO Start Threshold  
V
V
= 13.2 V, I  
= 100 mA, 25°C  
I
q
30  
9
39  
12  
mA  
mA  
IN  
OUT  
= 13.2 V, V = 0 V, 25°C  
I
qSD  
IN  
EN  
V
V
rising  
falling  
V
V
4.1  
3.1  
0.4  
4.5  
3.7  
1.4  
V
V
V
IN  
UVLSTT  
UVLSTP  
UVLOHY  
UVLO Stop Threshold  
IN  
UVLO Hysteresis  
V
SOFTSTART (SS)  
SoftStart Completion Time  
OUTPUT VOLTAGE  
t
0.8  
1.4  
2.0  
ms  
V
SS  
Output Voltage during regulation  
100 mA < I  
< 1.2 A  
V
OUTreg  
OUT  
5.0 V option  
4.0 V option  
3.3 V option  
4.9  
3.92  
3.234  
5.0  
4.0  
3.3  
5.1  
4.08  
3.366  
4. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.  
5. Performance guaranteed over the indicated operating temperature range by design and/or characterization tested at T = T = 25°C. Low  
J
A
duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
www.onsemi.com  
3
 
NCV891130  
Table 3. ELECTRICAL CHARACTERISTICS  
V
= 4.5 to 28 V, V = 5 V, V  
= V  
+ 3 V, C  
= 0.1 mF, for typical values T = 25°C, Min/Max values are valid for the temperature  
IN  
EN  
BST  
SW  
DRV J  
range 40°C v T v 150°C unless noted otherwise, and are guaranteed by test, design or statistical correlation (Notes 4, 5)  
J
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
OSCILLATOR  
Frequency  
4.5 < V < 18 V  
F
1.8  
0.9  
2.0  
1.0  
2.2  
1.1  
MHz  
IN  
SW  
20 V <V < 28V  
F
IN  
SW(HV)  
VIN FREQUENCY FOLDBACK MONITOR  
Frequency Foldback Threshold  
V
V
V
IN  
V
IN  
rising  
falling  
V
V
18.4  
18  
20  
FLDUP  
FLDDN  
19.8  
Frequency Foldback Hysteresis  
V
FLDHY  
0.2  
0.3  
0.4  
40  
MODE TRANSITION  
Normal to LowIq mode Current Threshold 8 V < V < 28 V  
I
3
mA  
IN  
NtoL  
Mode Transition Duration  
Switcher to Linear  
ms  
t
t
300  
1
SWtoLIN  
LINtoSW  
Linear to Switcher  
2
Minimum time in Normal Mode before  
starting to monitor output current  
t
500  
ms  
SWblank  
Linear to switcher transition  
at high Vin  
V
OUT  
= 3.3 V  
V
V
19  
3.6  
28  
4.5  
LINtoSW(HV)  
LINtoSW(LV)  
at low Vin  
V
PEAK CURRENT LIMIT  
Current Limit Threshold  
POWER SWITCH  
I
2.1  
2.35  
180  
2.6  
A
LIM  
ON Resistance  
V
V
= V  
+ 3.0 V  
R
360  
10  
mW  
mA  
ns  
BST  
SW  
DSON  
Leakage current VIN to SW  
Minimum ON Time  
= 0, 40°C v T v 85°C  
I
SW  
J
LKSW  
Measured at SW pin  
t
45  
30  
70  
ONMIN  
Minimum OFF Time  
Measured at SW pin  
t
ns  
OFFMIN  
At F  
At F  
= 2 MHz (normal)  
= 500 kHz (max duty cycle)  
30  
50  
SW  
SW  
70  
SLOPE COMPENSATION  
Ramp Slope  
(With respect to switch current)  
4.5 < V < 18 V  
S
1.45  
0.65  
2.0  
1.0  
2.8  
1.3  
A/ms  
IN  
ramp  
20 V <V < 28V  
S
IN  
ramp(HV)  
LOW POWER LINEAR REGULATOR  
Line Regulation  
I
= 5 mA, 6 V < V < 18 V  
V
5
5
25  
35  
mV  
mV  
dB  
OUT  
IN  
REG(line)  
Load Regulation  
V
= 13.2 V, 0.1 mA < I  
< 50 mA  
V
REG(load)  
IN  
OUT  
Power Supply Rejection  
Current Limit  
V
= 0.5 Vpp, F = 100 Hz  
PSRR  
65  
OUT(ripple)  
I
50  
80  
mA  
mA  
LIN(lim)  
Output clamp current  
V
= V  
+ 10%  
I
CL(OUT)  
0.5  
1.0  
1.5  
OUT  
OUTreg(typ)  
SHORT CIRCUIT DETECTOR  
Switching frequency in shortcircuit condi-  
kHz  
tion  
Analog Foldback  
Analog foldback – high V  
Hiccup Mode  
V
OUT  
V
OUT  
= 0 V, 4.5 V < V < 18 V  
F
SWAF  
450  
225  
24  
550  
275  
32  
650  
325  
40  
IN  
= 0 V, 20 V <V < 28 V  
F
IN  
IN  
SWAFHV  
F
SWHIC  
RESET  
Leakage current into RSTB pin  
I
1
uA  
RSTBlk  
4. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.  
5. Performance guaranteed over the indicated operating temperature range by design and/or characterization tested at T = T = 25°C. Low  
J
A
duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
www.onsemi.com  
4
NCV891130  
Table 3. ELECTRICAL CHARACTERISTICS  
V
= 4.5 to 28 V, V = 5 V, V  
= V  
+ 3 V, C  
= 0.1 mF, for typical values T = 25°C, Min/Max values are valid for the temperature  
IN  
EN  
BST  
SW  
DRV J  
range 40°C v T v 150°C unless noted otherwise, and are guaranteed by test, design or statistical correlation (Notes 4, 5)  
J
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
RESET  
Output voltage threshold at which the RSTB  
signal goes low  
V
OUT  
V
OUT  
decreasing  
V
V
RESET  
REShys  
5.0 V option  
4.0 V option  
3.3 V option  
4.50  
3.6  
2.97  
4.625  
3.7  
3.05  
4.75  
3.8  
3.14  
Hysteresis on RSTB threshold  
increasing  
V
mV  
5.0 V option  
4.0 V option  
3.3 V option  
25  
20  
17  
60  
50  
40  
100  
80  
66  
Noisefiltering delay  
From V  
<V  
to RSTB pin  
t
filter  
10  
25  
18  
ms  
ms  
V
OUT  
RESET  
going low  
Restart Delay time  
From V  
>V  
RESET  
+V  
REShys  
to  
t
delay  
14  
16  
OUT  
high RSTB  
Low RSTB voltage  
R
= V  
/1 mA, V  
> 1 V  
V
0.4  
RSTBpullup  
OUTreg  
OUT  
RSTBlow  
GATE VOLTAGE SUPPLY (DRV pin)  
Output Voltage  
V
3.1  
2.7  
2.5  
50  
3.3  
2.9  
2.8  
3.5  
3.05  
3.0  
V
V
DRV  
DRV UVLO START Threshold  
DRV UVLO STOP Threshold  
DRV UVLO Hysteresis  
DRV Current Limit  
V
V
DRVSTT  
DRVSTP  
DRVHYS  
DRVLIM  
V
V
200  
50  
mV  
mA  
V
DRV  
= 0 V  
I
21  
VIN OVERVOLTAGE SHUTDOWN MONITOR  
Overvoltage Stop Threshold  
Overvoltage Start Threshold  
Overvoltage Hysteresis  
ENABLE (EN)  
V
increasing  
decreasing  
V
V
36.5  
36.0  
0.25  
37.7  
37.3  
0.40  
39.0  
38.8  
0.50  
V
V
V
IN  
OVSTP  
V
IN  
OVSTT  
V
OVHY  
Logic low threshold voltage  
Logic high threshold voltage  
EN pin input current  
V
0.8  
0.2  
V
V
ENlow  
ENhigh  
ENbias  
V
2
1
I
mA  
THERMAL SHUTDOWN  
Activation Temperature  
Reset temperature  
TSD  
155  
135  
5
190  
185  
20  
°C  
°C  
°C  
TSD  
restart  
HYS  
Hysteresis  
T
4. Refer to ABSOLUTE MAXIMUM RATINGS and APPLICATION INFORMATION for Safe Operating Area.  
5. Performance guaranteed over the indicated operating temperature range by design and/or characterization tested at T = T = 25°C. Low  
J
A
duty cycle pulse techniques are used during testing to maintain the junction temperature as close to ambient as possible.  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
5
 
NCV891130  
TYPICAL CHARACTERISTICS  
80  
70  
60  
50  
40  
30  
20  
1000  
800  
600  
400  
200  
0
10  
0
0
5
10  
15  
20  
0
200  
400  
600  
800  
1000  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
Figure 3. Noload Input Current at TJ = 255C  
Figure 4. Input Current at TJ = 255C vs. Output  
vs. Input Voltage  
Current  
100  
80  
13  
12  
11  
60  
10  
9
40  
20  
0
8
7
50  
0
50  
100  
150  
50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 5. LowIq Mode Quiescent Current vs.  
Figure 6. Shutdown Mode Quiescent Current  
vs. Junction Temperature  
Junction Temperature  
3.36  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
1.6  
1.5  
1.4  
Switcher Mode  
LowIq Mode  
1.3  
1.2  
3.25  
3.24  
50  
0
50  
100  
150  
50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 7. Switching Mode Quiescent Current  
vs. Junction Temperature  
Figure 8. 3.3 V Output Voltage vs. Junction  
Temperature  
www.onsemi.com  
6
NCV891130  
TYPICAL CHARACTERISTICS  
4.05  
4.04  
4.03  
4.02  
4.01  
4.00  
3.99  
3.98  
3.97  
3.96  
5.05  
5.04  
5.03  
5.02  
5.01  
Switcher Mode  
Switcher Mode  
5.00  
4.99  
4.98  
4.97  
4.96  
LowIq Mode  
LowIq Mode  
4.95  
4.94  
3.95  
3.94  
50  
0
50  
100  
150  
150  
150  
50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 9. 4.0 V Output Voltage vs. Junction  
Temperature  
Figure 10. 5.0 V Output Voltage vs. Junction  
Temperature  
2.2  
2.1  
57  
56  
55  
54  
2.0  
1.9  
1.8  
53  
52  
50  
0
50  
100  
50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 11. Switching Frequency vs. Junction  
Temperature  
Figure 12. Minimum On Time vs. Junction  
Temperature  
2.5  
2.4  
2.3  
4.7  
4.6  
4.5  
4.4  
2.2  
2.1  
4.3  
4.2  
50  
0
50  
100  
50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. Peak Current Limit vs. Junction  
Temperature  
Figure 14. Peak Current Limit vs. Junction  
Temperature  
www.onsemi.com  
7
NCV891130  
TYPICAL CHARACTERISTICS  
4.6  
4.4  
4.2  
4.0  
3.8  
3.6  
3.4  
40  
Startup Threshold  
39  
38  
37  
36  
Overvoltage Threshold  
Restart Threshold  
UVLO Threshold  
100  
35  
34  
3.2  
3.0  
50  
0
50  
150  
150  
150  
50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 15. UVLO Thresholds vs. Junction  
Temperature  
Figure 16. Input Overvoltage Thresholds vs.  
Junction Temperature  
1.60  
1.55  
1.50  
3.5  
3.4  
3.3  
3.2  
I
= 0 mA  
DRV  
I
= 21 mA  
DRV  
1.45  
1.40  
3.1  
3.0  
50  
0
50  
100  
50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 17. Softstart Duration vs. Junction  
Figure 18. DRV Voltage vs. Junction  
Temperature  
Temperature  
3.0  
2.9  
2.8  
19.8  
19.6  
19.4  
19.2  
19.0  
18.8  
18.6  
18.4  
DRV Startup Threshold  
V
Rising  
Falling  
IN  
V
IN  
DRV UVLO Threshold  
2.7  
2.6  
18.2  
18.0  
50  
0
50  
100  
50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 19. DRV Voltage UVLO Tresholds vs.  
Junction Temperature  
Figure 20. Frequency Foldback Voltage  
Tresholds vs. Junction Temperature  
www.onsemi.com  
8
NCV891130  
TYPICAL CHARACTERISTICS  
3.3  
1.10  
1.05  
1.00  
3.2  
3.1  
3.0  
RSTB Toggles High (V  
Rising)  
Falling)  
OUT  
RSTB Toggles Low (V  
OUT  
0.95  
0.90  
2.9  
2.8  
50  
0
50  
100  
150  
50  
0
50  
TEMPERATURE (°C)  
100  
150  
TEMPERATURE (°C)  
Figure 21. Foldback Frequency vs. Junction  
Temperature  
Figure 22. 3.3 V Version RESET Thresholds vs.  
Junction Temperature  
4.0  
3.9  
3.8  
3.7  
3.6  
5.0  
4.9  
4.8  
4.7  
4.6  
4.5  
RSTB Toggles High (V  
Rising)  
Falling)  
OUT  
RSTB Toggles High (V  
Rising)  
Falling)  
OUT  
RSTB Toggles Low (V  
OUT  
RSTB Toggles Low (V  
OUT  
3.5  
3.4  
4.4  
4.3  
50  
0
50  
TEMPERATURE (°C)  
100  
150  
50  
0
50  
TEMPERATURE (°C)  
100  
150  
Figure 23. 4.0 V Version RESET Thresholds vs.  
Junction Temperature  
Figure 24. 5.0 V Version RESET Thresholds vs.  
Junction Temperature  
17.0  
16.8  
16.6  
16.4  
16.2  
16.0  
15.8  
71  
69  
67  
65  
63  
61  
59  
15.6  
15.4  
57  
55  
50  
0
50  
100  
150  
50  
0
50  
100  
150  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 25. RESET Delay vs. Junction  
Temperature  
Figure 26. LowIq to Switcher Mode Transition  
vs. Junction Temperature  
www.onsemi.com  
9
NCV891130  
TYPICAL CHARACTERISTICS  
30  
20  
30  
20  
10  
0
10  
0
5
10  
15  
18  
5
10  
15  
18  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 27. Switcher to LowIq Mode Transition  
(3.3 V Version, 2.2 mH) vs. Input Voltage  
Figure 28. Switcher to LowIq Mode Transition  
(5.0 V Version, 2.2 mH) vs. Input Voltage  
www.onsemi.com  
10  
NCV891130  
APPLICATION INFORMATION  
Hybrid LowPower Mode  
A highfrequency switchmode regulator is not very  
efficient in light load conditions, making it difficult to  
achieve lowIq requirements for sleepmode operation. To  
remedy this, the NCV891130 includes a lowIq linear  
regulator that turns on at light load, while the PWM  
regulator turns off, ensuring a highefficiency lowpower  
operation. Another advantage of the lowpower mode is the  
tight regulation free of voltage ripple usually associated with  
lowIq switchers in light load conditions. In either mode, the  
NCV891130 meets the 2% output voltage regulation  
specification.  
At initial startup the NCV891130 will softstart into  
PWM converter mode regardless of output current. During  
a 300 s period, the NCV891130 will assess the level of  
output current. The NCV891130 will not make the  
assessment if RSTB is low. If the output current is above the  
V
, it will not transition to lowpower mode even if the  
FLDUP  
output current becomes lower than I  
At low input voltage, the NCV891130 stays in lowpower  
mode down to V if it entered this mode while in  
normal battery range. However it may not enter lowpower  
mode below 8 V depending on the charge of the bootstrap  
capacitor (see Bootstrap section for details).  
.
NtoL  
LINtoSW(LV)  
Input Voltage  
An Undervoltage Lockout (UVLO) circuit monitors the  
input, and can inhibit switching and reset the Softstart  
circuit if there is insufficient voltage for proper regulation.  
Depending on the output conditions (voltage option and  
loading), the NCV891130 may lose regulation and run in  
dropout mode before reaching the UVLO threshold: refer  
to the Minimum Vin calculation tool for details. When the  
input voltage drops low enough that the part cannot regulate  
because it reaches its maximum duty cycle, the switching  
frequency is divided down by up to 4 (down to 500 kHz).  
This helps lowering the minimum voltage at which the  
regulator loses regulation.  
I
threshold, the NCV891130 will stay in PWM mode.  
NtoL  
Otherwise, the NCV891130 will transition to low power  
mode.  
It will stay in this lowpower mode until the output current  
exceeds the I  
limit: it then transitions back to PWM  
LIN(lim)  
An overvoltage monitoring circuit automatically  
converter mode. This lowpower mode to PWM mode  
transition happens within 2 s. The transient response is not  
affected by the mode change.  
Once the NCV891130 has transitioned to switcher mode,  
a 500 s blanking period will occur. After the blanking period,  
the NCV891130 will reassess the output current level. If the  
terminates switching if the input voltage exceeds V  
(see Figure 29), but the NCV891130 can withstand input  
voltages up to 45 V.  
To avoid skipping switching pulses and entering an  
uncontrolled mode of operation, the switching frequency is  
reduced by a factor of 2 when the input voltage exceeds the  
OVSTP  
output current level is below the I  
threshold, the  
NtoL  
V
IN  
Frequency Foldback threshold (see Figure 29).  
NCV891130 will enter lowIq mode. If the NCV891130 is  
in lowpower mode and in normal battery range, it will  
Frequency reduction is automatically terminated when the  
input voltage drops back below the V Frequency Foldback  
threshold. This also helps to limit the power lost in switching  
and generating the drive voltage for the Power Switch.  
IN  
transition to switcher mode when V increases above  
IN  
V , regardless of the output current. Similarly, if  
LINtoSW(HV)  
the NCV891130 is in PWM mode and V is higher than  
IN  
FSW  
(MHz)  
2
Frequency  
folds back  
if dropout  
mode  
1
3.5  
18 20  
36  
39  
45  
VIN (V)  
Figure 29. NCV891130 Switching Frequency Profile vs. Input Voltage  
www.onsemi.com  
11  
 
NCV891130  
SoftStart  
compensation signal requires the inductor to be greater than  
a minimum value, depending on output voltage, in order to  
avoid subharmonic oscillations. The recommended inductor  
values are 2.2 or 3.3 mH, although higher values are possible.  
Upon being enabled or released from a fault condition,  
and after the DRV voltage is established, a softstart circuit  
ramps the switching regulator error amplifier reference  
voltage to the final value. During softstart, the average  
switching frequency is lower until the output voltage  
approaches regulation.  
Current Limiting  
Due to the ripple on the inductor current, the average  
output current of a buck converter is lower than the peak  
current setpoint of the regulator. Figure 30 shows – for a  
2.2 mH inductor – how the variation of inductor peak current  
with input voltage affects the maximum DC current the  
NCV891130 can deliver to a load.  
Slope Compensation  
A fixed slope compensation signal is generated internally  
and added to the sensed current to avoid increased output  
voltage ripple due to bifurcation of inductor ripple current  
at duty cycles above 50%. The fixed amplitude of the slope  
Figure 30. NCV891130 Load Current Capability with a 2.2 mH Inductor  
Short Circuit Protection  
The RSTB pin is also pulled low immediately in case of VIN  
overvoltage, Thermal shutdown, VIN UVLO or DRV UVLO.  
During severe output overloads or short circuits, the  
NCV891130 automatically reduces its switching frequency.  
This creates duty cycles small enough to limit the peak  
current in the power components, while maintaining the  
ability to automatically reestablish the output voltage if the  
overload is removed.  
In more severe shortcircuit conditions where the inductor  
current is still too high after the switching frequency has fully  
folded back, the regulator enters a hiccup mode that further  
reduces the power dissipation and protects the system.  
Feedback Loop  
All components of the feedback loop (output voltage  
sensing, error amplifier and compensation) are integrated  
inside the NCV891130, and are optimized to ensure  
regulation and sufficient phase and gain margin for the  
recommended conditions of operation.  
Recommended conditions and components:  
Input: car battery  
Output: 3.3 V, 4 V or 5 V, with output current up to  
RESET Function  
1.2 A  
The RSTB pin is pulled low when the output voltage falls  
below 7.5% of the nominal regulation level, and floats when  
the output is properly regulated. A pullup resistor tied to the  
output is needed to generate a logic high signal on this open  
drain pin. The pin can be left unconnected when not used.  
When the output voltage drops out of regulation, the pin  
Output capacitor: one to three parallel ceramic 10 mF  
capacitors  
Inductor: 2.2 mH to 3.3 mH  
With these operating conditions and components, the  
open loop transfer function has a phase margin greater than  
50°.  
goes low after a short noisefiltering delay (t ). It stays low  
for a 16 ms delay time after the output goes back to regulation,  
filter  
simplifying the connection to a microcontroller.  
www.onsemi.com  
12  
 
NCV891130  
Bootstrap  
mode for input voltages below 8 V, and the 4 V version for  
input voltages below 6.5 V (see typical characteristics  
curves for details).  
At the DRV pin an internal regulator provides a ground−  
referenced voltage to an external capacitor (C ), to allow  
fast recharge of the external bootstrap capacitor (C ) used  
to supply power to the power switch gate driver. If the  
voltage at the DRV pin goes below the DRV UVLO  
Threshold V  
DRV  
BST  
Enable  
The NCV891130 is designed to accept either a logic level  
signal or battery voltage as an Enable signal. However if  
voltages above 40 V are expected, EN should be tied to VIN  
through a 10 kW resistor in order to limit the current flowing  
into the overvoltage protection of the pin.  
EN low induces a shutdown mode which shuts off the  
regulator and minimizes its supply current to 9 mA typical by  
disabling all functions.  
, switching is inhibited and the  
DRVSTP  
Softstart circuit is reset, until the DRV pin voltage goes  
back up above V  
.
DRVSTT  
The NCV891130 permanently monitors the bootstrap  
capacitor, and always ensures it stays charged no matter  
what the operating conditions are. As a result, the additional  
charging current for the bootstrap capacitor may prevent the  
regulator from entering LowIq mode at low input voltage.  
Practically, the 5 V output version does not enter LowIq  
Upon enabling, voltage is established at the DRV pin,  
followed by a softstart of the switching regulator output.  
ORDERING INFORMATION  
Device  
Output  
5.0 V  
Package  
Shipping  
NCV891130PD50R2G  
NCV891130PD40R2G  
NCV891130PD33R2G  
4.0 V  
SOIC8 EP  
2500 / Tape & Reel  
3.3 V  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
www.onsemi.com  
13  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC8 EP  
CASE 751AC  
ISSUE E  
8
1
DATE 05 OCT 2022  
SCALE 1:1  
GENERIC  
MARKING DIAGRAM*  
8
*This information is generic. Please refer to  
XXXXXX = Specific Device Code  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “ G”, may  
or may not be present and may be in either  
location. Some products may not follow the  
Generic Marking.  
XXXXX  
AYWWG  
G
A
Y
= Assembly Location  
= Year  
WW  
G
= Work Week  
= PbFree Package  
1
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON14029D  
SOIC8 EP  
PAGE 1 OF 1  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NCV891130PD40R2G

1.2 A,2 MHz 低 Iq 双模式步降稳压器,用于汽车
ONSEMI

NCV891234

2 MHz Low-IQ Dual-Mode Step-Down Regulator for Automotive
ONSEMI

NCV891234MW33R2G

2 MHz Low-IQ Dual-Mode Step-Down Regulator
ONSEMI

NCV891234MW50R2G

2 MHz Low-IQ Dual-Mode Step-Down Regulator
ONSEMI

NCV891330

Dual- Mode Step-Down Regulator
ONSEMI

NCV891330PD33R2G

Dual- Mode Step-Down Regulator
ONSEMI

NCV891330PD38R2G

Dual- Mode Step-Down Regulator
ONSEMI

NCV891330PD40R2G

Dual- Mode Step-Down Regulator
ONSEMI

NCV891330PD50R2G

Dual- Mode Step-Down Regulator
ONSEMI

NCV891334

2 MHz Low-IQ Dual-Mode Step-Down Regulator
ONSEMI

NCV891334MW33R2G

2 MHz Low-IQ Dual-Mode Step-Down Regulator
ONSEMI

NCV891334MW50R2G

2 MHz Low-IQ Dual-Mode Step-Down Regulator
ONSEMI