NFA50460R4B [ONSEMI]

Intelligent Power Module, 600V, 4A, DIP;
NFA50460R4B
型号: NFA50460R4B
厂家: ONSEMI    ONSEMI
描述:

Intelligent Power Module, 600V, 4A, DIP

文件: 总13页 (文件大小:880K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Motion SPM) 5 Series  
NFA50460R4B,  
NFA50460R47  
General Description  
The NFA50460R4B/7 is an advanced Motion SPM5 module  
providing a fully featured, high performance inverter output stage for  
AC induction, BLDC and PMSM motors such as refrigerators, fans  
and pumps. These modules integrate optimized gate drive of the  
builtin IGBTs (FS4 RC IGBT technology) to minimize EMI and  
losses, while also providing multiple onmodule protection features  
including undervoltage lockouts and thermal monitoring. The  
builtin high speed Driver IC requires only a single supply voltage and  
translates the incoming logiclevel gate inputs to the high voltage,  
high current drive signals required to properly drive the module’s  
internal IGBTs. Separate open emitter IGBT terminals are available  
for each phase to support the widest variety of control algorithms.  
SPM5P023 / 23LD, PDD STD,  
FULL PACK, DIP TYPE  
CASE MODEJ  
Features  
UL Certified No. E209204 (UL1557)  
600 V FS4 RC IGBT 3Phase Inverter with Gate Drivers and  
Protection  
BuiltIn Bootstrap Diodes Simplify PCB Layout  
Separate OpenEmitter Pins from LowSide IGBTs for ThreePhase  
CurrentSensing  
ActiveHigh Interface, Works with 3.3 / 5 V Logic, SchmittTrigger  
Input  
SPM5Q023 / 23LD, PDD STD,  
SPM23BD (Ver1.5) SMD TYPE  
CASE MODEM  
Optimized for Low Electromagnetic Interference  
MARKING DIAGRAM  
Driver IC Temperature Sensing BuiltIn for Temperature Monitoring  
Driver IC for Gate Driving and UnderVoltage Protection  
$Y  
Isolation Rating: 1500 V /min.  
Moisture Sensitive Level (MSL) 3 for SMD PKG  
RoHS Compliant  
NFA50460R4x  
&Z&K&E&E&E&3  
rms  
$Y  
= onsemi Logo  
NFA50460R4x = Specific Device Code  
Applications  
x = B or 7  
3Phase Inverter Driver for Small Power AC Motor Drives  
&Z  
&K  
&3  
= Assembly Plant Code  
= Lot Traceability Code  
= Date Code (Year & Week)  
Related Source  
AN9080 Motion SPM 5 Series Version 2 User’s Guide  
AN9082 Motion SPM 5 Series Thermal Performance by Contact  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 2 of  
this data sheet.  
Pressure  
Semiconductor Components Industries, LLC, 2020  
1
Publication Order Number:  
June, 2023 Rev. 1  
NFA50460R4/D  
NFA50460R4B, NFA50460R47  
ORDERING INFORMATION  
Device  
Package  
Packing Type  
Reel Size  
Quantity  
Device Marking  
NFA50460R4B  
NFA50460R47  
NFA50460R4B  
NFA50460R47  
SPM5P023  
SPM5Q023  
Rail  
NA  
15  
Tape & Reel  
330 mm  
450  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
ABSOLUTE MAXIMUM RATINGS (V = V = 15 V, T = 25C, unless otherwise noted)  
DD  
BS  
C
Conditions  
Symbol  
Parameter  
Rating  
Unit  
INVERTER PART (Each IGBT Unless Otherwise Specified)  
V
Supply Voltage  
Applied between P N , N , N  
450  
500  
600  
V
V
V
PN  
PN(Surge)  
U
V
W
V
Supply Voltage (Surge)  
Collector Emitter Voltage  
Applied between P N , N , N  
U V  
W
V
CES  
I  
Each IGBT Collector Current  
T
T
= 25C, V = 15 V, T < 150C  
4
8
A
A
C
C
DD  
J
= 25C, V = 15 V, T < 150C,  
I  
CP  
Each IGBT Collector Current, Peak  
C
DD  
J
Under 1 ms Pulse Width (Note 2)  
P
C
Collector Dissipation  
T
C
= 25C per One Chip (Note 2)  
10.3  
W
T
J
Operating Junction Temperature  
40~150  
C  
CONTROL PART (Each IC Unless Otherwise Specified)  
V
Control Supply Voltage  
HighSide Control Bias Voltage  
Input Signal Voltage  
Applied between V and V  
SS  
20  
20  
V
V
V
DD  
DD  
V
Applied between V and V  
B S  
BS  
V
Applied between HIN, LIN and V  
0.3~V + 0.3  
IN  
SS  
DD  
BOOTSTRAP DIODE PART (Each Bootstrap Diode Unless Otherwise Specified)  
V
Maximum Repetitive Reverse Voltage  
Forward Current  
600  
0.5  
1.5  
V
A
A
RRM  
I
F
T = 25C, T < 150C (Note 2)  
C J  
I
Forward Current (Peak)  
T = 25C, T < 150C, Under 1 ms  
C J  
Pulse Width (Note 2)  
FP  
THERMAL RESISTANCE  
R
Junction to Case Thermal Resistance  
Inverter IGBT Part (per 1/6 Module)  
(Note 1)  
12.2  
C/W  
ms  
th(jc)Q  
TOTAL SYSTEM  
t
Short Circuit Withstand Time  
V
= V 16.5 V, V 400 V,  
3
SC  
DD  
BS  
PN  
T = 150C, Nonrepetitive  
J
T
Operating Junction Temperature  
40~150  
C  
C  
J
T
Storage Temperature  
Isolation Voltage  
40~125  
STG  
V
ISO  
60 Hz, Sinusoidal, AC 1 minute,  
Connect Pins to Heat Sink Plate  
1500  
V
rms  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. For the measurement point of case temperature T , Please refer to Figure 4.  
C
2. These values had been made an acquisition by the calculation considered to design factor.  
3. Using continuously under heavy loads or excessive assembly conditions (e.g. the application of high temperature/ current/ voltage and the  
significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions  
(i.e. operating temperature/ current/ voltage, etc.) are within the absolute maximum ratings and the operating ranges.  
www.onsemi.com  
2
 
NFA50460R4B, NFA50460R47  
PIN DESCRIPTION  
Pin No.  
Pin Name  
Description  
1
2
3
4
IC Common Supply Ground  
V
SS  
HighSide Bias Voltage for U phase IGBT Driving  
LowSide Bias Voltage for U phase IC and IGBT Driving  
Signal Input for HighSide U Phase  
V
B(U)  
V
DD(U)  
HIN  
(U)  
5
6
7
Signal Input for LowSide U Phase  
N.C  
LIN  
(U)  
N.C  
HighSide Bias Voltage for V phase IGBT Driving  
V
B(V)  
8
LowSide Bias Voltage for V phase IC and IGBT Driving  
Signal Input for HighSide V Phase  
V
DD(V)  
9
HIN  
(V)  
10  
11  
12  
13  
14  
Signal Input for LowSide V Phase  
LIN  
(V)  
Voltage Output for IC Temperature Sensing Unit  
HighSide Bias Voltage for W phase IGBT Driving  
LowSide Bias Voltage for W phase IC and IGBT Driving  
Signal Input for HighSide W Phase  
VTS  
V
B(W)  
V
DD(W)  
HIN  
(W)  
(W)  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Signal Input for LowSide W Phase  
LIN  
N.C  
N.C  
P
Positive DC–Link Input  
U, V  
Output for U Phase & HighSide Bias Voltage GND for U phase IGBT Driving  
Negative DC–Link Input for U Phase  
S(U)  
U
N
N
Negative DC–Link Input for V Phase  
V
V, V  
Output for V Phase & HighSide Bias Voltage GND for V phase IGBT Driving  
Negative DC–Link Input for W Phase  
S(V)  
W
N
W, V  
Output for W Phase & HighSide Bias Voltage GND for W phase IGBT Driving  
S(W)  
(1) VSS  
(2) VB(U)  
(17) P  
(3) VDD(U)  
(4) HIN(U)  
(5) LIN(U)  
VDD  
HIN  
LIN  
VSS  
VB  
HO  
VS  
(18) U, VS(U)  
LO  
(6) N.C.  
(19) NU  
(20) NV  
(7) VB(V)  
VDD  
HIN  
LIN  
VSS  
VB  
HO  
(8) VDD(V)  
(9) HIN(V)  
(10) LIN(V)  
(21) V, VS(V)  
VS  
LO  
(11) VTS  
VTS  
(12) VB(W)  
(13) VDD(W)  
(14) HIN(W)  
(15) LIN(W)  
VDD  
HIN  
LIN  
VSS  
VB  
HO  
(22) NW  
(23) W, VS(W)  
VS  
LO  
(16) N.C.  
Figure 1. Pin Configuration and Internal Block Diagram (Bottom View)  
NOTE:  
4. Emitter terminal of each lowside IGBT is not connected to supply ground or bias voltage ground inside Motion SPM 5 product. External  
connections should be made as indicated in Figure 3.  
www.onsemi.com  
3
 
NFA50460R4B, NFA50460R47  
ELECTRICAL CHARACTERISTICS (T = 25C, V = V = 15 V unless otherwise noted)  
J
DD  
BS  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ. Max. Unit  
INVERTER PART (Each IGBT unless otherwise specified)  
BV  
CollectorEmitter Breakdown Voltage  
CollectorEmitter Leakage Current  
CollectorEmitter Saturation Voltage  
V
V
V
V
V
V
= 0 V, I = 1 mA (Note 5)  
600  
1
V
mA  
V
CES  
IN  
D
I
= 0 V, V = 600 V  
CES  
IN  
CE  
V
= V = 15 V, V = 5 V, I = 4 A, T = 25C  
1.75  
2.0  
1.87  
2.0  
370  
2.2  
CE(SAT)  
DD  
DD  
BS  
IN  
C
J
= V = 15 V, V = 5 V, I = 4 A, T = 150C  
BS  
IN  
C
J
V
EmitterCollector Forward Voltage  
= 0 V, I = 4 A, T = 25C  
2.3  
V
F
IN  
F
J
= 0 V, I = 4 A, T = 150C  
IN  
F
J
t
Switching Times  
V
V
= 300 V, V = V = 15 V, I = 4 A  
ON  
PN  
IN  
DD  
BS  
C
ns  
ns  
ns  
mJ  
mJ  
= 0 V 5 V, Inductive Load,  
t
358  
151  
150  
35  
Highand LowSide IGBT Switching (Note 6)  
OFF  
t
rr  
E
ON  
E
OFF  
RBSOA ReverseBias Safe Operating Area  
V
V
= 400 V, V = V = 15 V, I = I ,  
CP  
Full Square  
PN  
CE  
DD  
BS  
C
= BV  
, T = 150C  
CES  
J
Highand LowSide IGBT Switching (Note 7)  
CONTROL PART (Each HVIC Unless Otherwise Specified)  
I
Quiescent V Current  
V
DD  
V
BS  
V
DD  
= 15 V, V = 0 V Applied between V and  
200  
100  
900  
mA  
mA  
mA  
QDD  
DD  
IN  
DD  
V
SS  
I
Quiescent V Current  
= 15 V, V = 0 V Applied between V  
U,  
QBS  
PDD  
BS  
IN  
B(U)  
V
V, V  
W  
B(V)  
B(W)  
I
Operating V Supply Current  
V  
V
DD  
= 15 V, f  
= 20 kHz,  
DD  
SS  
PWM  
duty = 50%, Applied to One  
PWM Signal Input for  
LowSide  
I
Operating V Supply Current  
V
B(U)  
V
B(V)  
V
B(W)  
V  
S(V)  
V  
,
V
PWM  
= V = 15 V,  
800  
mA  
PBS  
BS  
S(U)  
DD  
BS  
V  
,
f
= 20 kHz,  
Duty = 50%, Applied to  
One PWM Signal Input  
for HighSide  
S(W)  
UV  
UV  
UV  
UV  
V
LowSide Undervoltage Protection  
V
V
V
V
V
Undervoltage Protection Detection Level  
Undervoltage Protection Reset Level  
Undervoltage Protection Detection Level  
Undervoltage Protection Reset Level  
7.4  
8.0  
7.4  
8.0  
600  
8.0  
8.9  
8.0  
8.9  
790  
9.4  
9.8  
9.4  
9.8  
980  
2.9  
V
V
DDD  
DDR  
BSD  
BSR  
TS  
DD  
DD  
BS  
BS  
DD  
(Figure 8)  
HighSide Undervoltage Protection  
(Figure 8)  
V
V
IC Temperature Sensing Voltage Output  
ON Threshold Voltage  
= 15 V, T  
= 25C (Note 8)  
mV  
V
driver  
V
Logic HIGH Level  
Logic LOW Level  
Applied between HIN, LIN  
and V  
IH  
SS  
V
OFF Threshold Voltage  
0.8  
V
IL  
BOOTSTRAP DIODE PART (Each bootstrap diode unless otherwise specified)  
V
Forward Voltage  
I = 0.1 A, T = 25C (Note 9)  
2.5  
80  
V
FB  
rrB  
F
C
t
Reverse Recovery Time  
I = 0.1 A, T = 25C  
ns  
F
C
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
4
NFA50460R4B, NFA50460R47  
RECOMMENDED OPERATING CONDITION  
Symbol  
Parameter  
Supply Voltage  
Conditions  
Min.  
> V  
Typ.  
300  
15.0  
15.0  
Max.  
400  
Unit  
V
V
PN  
V
DD  
Applied between P and N  
DD  
Control Supply Voltage  
Applied between V and V  
14.0  
16.5  
18.5  
V
DD  
SS  
V
BS  
HighSide Bias Voltage  
Applied between V and V  
S
13.0  
3.0  
0
V
B
V
IN(ON)  
Input ON Threshold Voltage  
Input OFF Threshold Voltage  
Blanking Time for Preventing ArmShort  
PWM Switching Frequency  
Applied between HIN, LIN and V  
V
DD  
V
SS  
V
0.6  
V
IN(OFF)  
t
V
= V = 13.5~16.5 V, T 150C  
1.0  
ms  
kHz  
dead  
DD  
BS  
J
f
T 150C  
J
20  
PWM  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
Built in Bootstrap Diode V I Characteristic  
F
F
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
V [V]  
F
Figure 2. Builtin Bootstrap Diode Characteristics (Typical)  
NOTES:  
5. BV  
is the absolute maximum voltage rating between collector and emitter terminal of each IGBT inside Motion SPM 5 product. V should  
CES  
PN  
be sufficiently less than this value considering the effect of the stray inductance so that V should not exceed BV  
in any case.  
CE  
CES  
6. t and t  
include the propagation delay time of the internal driver IC. Listed values are measured at the laboratory test condition, and  
ON  
OFF  
they can be different according to the field applications due to the effect of different printed circuit boards and wirings. Please see Figure 6  
for the switching time definition with the switching test circuit of Figure 7.  
7. The peak current and voltage of each IGBT during the switching operation should be included in the Safe Operating Area (SOA). Please  
see Figure 7 for the RBSOA test circuit that is same as the switching test circuit.  
8. VTS is only for sensing temperature of module and cannot shutdown IGBTs automatically.  
9. Built in bootstrap diode includes around 15 W resistance characteristic. Please refer to Figure 2.  
www.onsemi.com  
5
 
NFA50460R4B, NFA50460R47  
These values depend on PWM  
control algorithm  
* Example circuit: Vphase  
15V  
Line  
C1  
P
VDC  
HIN  
0
LIN  
0
Output  
Note  
VB  
HO  
VS  
VDD  
HIN  
LIN  
Inverter  
Output  
Z
0
Both IGBT Off  
R
5
0
1
Lowside IGBT On  
Highside IGBT On  
Shootthrough  
Same as (0,0)  
Micom  
1
0
V
DC  
C
3
C
VSS  
LO  
1
1
Forbidden  
Z
5
R3  
VTS  
N
Open Open  
Leg Diagram of SPM  
One  
C4  
C
2
10mF  
*
Example of bootstrap paramt:ers  
C1 =C2 =1mF ceramic capacito,r  
Figure 3. Recommended CPU Interface and Bootstrap Circuit with Parameters  
NOTES:  
10.Parameters for bootstrap circuit elements are dependent on PWM algorithm. Typical example of parameters is shown above.  
11. RC coupling (R and C ) and C at each input of SPM and Micom (Indicated as dotted lines) may be used to prevent improper signal due  
5
5
4
to surge noise.  
12.Bold lines should be short and thick in PCB pattern to have small stray inductance of circuit, which results in the reduction of surge voltage.  
Bypass capacitors such as C , C and C should have good highfrequency characteristics to absorb highfrequency ripple current.  
1
2
3
Figure 4. Case Temperature Measurement  
NOTE:  
13.Attach the thermocouple on top of the heatsinkside of SPM (between SPM and heatsink if applied) to get the correct temperature  
measurement.  
4.0  
Min  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Typ  
Max  
0
20  
40  
60  
80  
100  
[C]  
120  
140  
160  
T
driver  
Figure 5. Temperature Profile of VTS  
www.onsemi.com  
6
NFA50460R4B, NFA50460R47  
ton  
toff  
trr  
VIN  
Vce  
VIN  
Vce  
100% IC  
90% IC  
10% IC  
10% VCE  
10% VCE  
10% IC  
Ic  
Ic  
tc(off)  
tc(on)  
(a) Turnon  
(b) Turnoff  
Figure 6. Switching Time Definitions  
CBS  
V
DD  
IC  
VDD  
HIN  
LIN  
VSS  
VB  
HO  
VS  
L
VDC  
+
VCE  
LO  
Oneleg Diagram of SPM  
Figure 7. Switching and RBSOA (Singlepulse) Test Circuit (Lowside)  
Input Signal  
UV Protection  
RESET  
DETECTION  
RESET  
Status  
Highside Supply, V  
UV  
UV  
BS  
BSR  
DDR  
Lowside Supply, V  
DD  
UV  
UV  
BSD  
DDD  
IGBT Current  
Figure 8. UnderVoltage Protection (Highside and Lowside)  
www.onsemi.com  
7
NFA50460R4B, NFA50460R47  
C
1
(1) VSS  
(17) P  
(2) VB(U)  
(3) VDD(U)  
VDD  
HIN  
LIN  
VSS  
VB  
HO  
VS  
R
5
(4) HIN  
(U)  
(18) U, VS(U)  
(5) LIN  
(U)  
C
3
VDC  
LO  
C
5
C
2
(6) N.C.  
(19) NU  
(20) NV  
(7) VB(V)  
(8) VDD(V)  
VB  
HO  
VS  
VDD  
HIN  
LIN  
(9) HIN  
(V)  
(21) V, VS(V)  
(10) LIN(V)  
M
LO  
VSS  
(11) VTS  
VTS  
(12) VB(W)  
(22) NW  
(13) VDD(W)  
VDD  
HIN  
LIN  
VSS  
VB  
(14) HIN  
(W)  
HO  
(23) W, VS(W)  
(15) LIN(W)  
(16) N.C.  
VS  
LO  
C
6
R
4
For current sensing and protection  
15V  
Supply  
C
4
R
3
Figure 9. Example of Application Circuit  
NOTES:  
14.About pin position, refer to Figure 1.  
15.RC coupling (R and C , R and C ) and C at each input of Motion SPM 5 product and Micom are useful to prevent improper input signal  
5
5
4
4
6
caused by surge noise.  
16.The voltage drop across R affects the low side switching performance and the bootstrap characteristics since it is placed between V and  
3
SS  
the emitter terminal of the low side IGBT. For this reason, the voltage drop across R should be less than 1 V in the steadystate.  
3
17.Ground wires and output terminals, should be thick and short in order to avoid surge voltage and malfunction of IC.  
18.All the filter capacitors should be connected close to Motion SPM 5 product, and they should have good characteristics for rejecting  
highfrequency ripple current.  
www.onsemi.com  
8
NFA50460R4B, NFA50460R47  
TYPICAL PERFORMANCE CHARACTERISTICS  
8
8
7
6
5
4
3
2
1
0
=25  
TJ  
V
V
V
=13V  
=15V  
=20V  
DD  
DD  
DD  
7
=150℃  
TJ  
6
5
4
3
2
1
=25℃  
T
VDD =15V  
J
0
0.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
V , CollectorEmitter Voltage [V]  
CE(sat)  
V , CollectorEmitter Voltage [V]  
CE(sat)  
Figure 10. Typ. CollectorEmitter Saturation  
Figure 11. Typ. CollectorEmitter Saturation  
Voltage  
Voltage  
1000  
8
=25℃  
=25  
TJ  
High side @TJ  
7
=150℃  
High side @TJ  
Low side @TJ  
Low side @TJ  
=150℃  
TJ  
=25℃  
800  
600  
400  
200  
6
5
4
3
2
1
0
=150℃  
VDC =300V  
V
DD =15V  
0
0
1
2
3
4
5
6
7
8
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
V , EmitterCollector Voltage [V]  
F
I , Collector Current [A]  
C
Figure 12. Typ. EmitterCollector Forward  
Figure 13. Typ. Turn On Switching Energy Loss  
Voltage  
100  
=25℃  
High side @T J  
High side @T J  
Low side @T J  
Low side @T J  
V DC =300V  
V DD =15V  
140  
120  
100  
80  
J=25℃  
=150℃  
High side @T  
90  
80  
70  
60  
50  
40  
30  
20  
10  
=150℃  
=25℃  
High side @TJ  
Low side @TJ  
Low side @TJ  
=25℃  
=150℃  
=150℃  
60  
40  
VDC =300V  
20  
V
DD =15V  
0
0
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
I , Collector Current [A]  
C
I , Collector Current [A]  
C
Figure 14. Typ. Turn Off Switching Energy Loss  
Figure 15. Typ. Reverse Recovery Energy Loss  
www.onsemi.com  
9
NFA50460R4B, NFA50460R47  
TYPICAL PERFORMANCE CHARACTERISTICS  
600  
550  
500  
450  
400  
350  
300  
250  
500  
=25℃  
=150℃  
=25℃  
High side @TJ  
High side @TJ  
Low side @TJ  
Low side @TJ  
=25℃  
=150℃  
=25℃  
High side @TJ  
450  
High side @TJ  
Low side @TJ  
400  
=150℃  
=150℃  
Low side @TJ  
350  
300  
250  
200  
150  
VDC =300V  
VDC =300V  
VDD =15V  
100  
VDD =15V  
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
I , Collector Current [A]  
C
I , Collector Current [A]  
C
Figure 16. Typ. Turn On Propagation Delay Time  
Figure 17. Typ. Turn On Switching Time  
1100  
500  
High side @TJ=25℃  
High side @TJ=150℃  
Low side @TJ=25℃  
Low side @TJ=150℃  
VDC =300V  
VDD =15V  
High side @TJ=25℃  
High side @TJ=150℃  
Low side @TJ=25℃  
Low side @TJ=150℃  
VDC =300V  
VDD =15V  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
400  
300  
200  
100  
0
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
I , Collector Current [A]  
C
I , Collector Current [A]  
C
Figure 18. Typ. Turn Off Propagation Delay Time  
Figure 19. Typ. Turn Off Switching Time  
400  
10  
=25  
High side @T  
J
360  
=150℃  
High side @T  
J
=25℃  
Low side @T  
J
320  
=150℃  
Low side @T  
J
280  
1
240  
200  
160  
0.1  
120  
VDC =300V  
VDD =15V  
80  
40  
0.01  
0
1
2
3
4
5
6
7
8
1E6  
1E5  
1E4  
1E3  
0.01  
0.1  
1
10  
100  
I , Collector Current [A]  
C
t , Pulse Width [s]  
p
Figure 20. Typ. Reverse Recovery Time  
Figure 21. RCIGBT Transient Thermal Resistance  
SPM is registered trademark of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or  
other countries.  
www.onsemi.com  
10  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SPM5E023 / 23LD, PDD STD, FULL PACK, DIP TYPE  
CASE MODEJ  
ISSUE O  
DATE 31 JAN 2017  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13543G  
SPM5E023 / 23LD, PDD STD, FULL PACK, DIP TYPE  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SPM5H023 / 23LD, PDD STD, SPM23BD (Ver1.5) SMD TYPE  
CASE MODEM  
ISSUE O  
DATE 31 JAN 2017  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13546G  
SPM5H023 / 23LD, PDD STD, SPM23BD (Ver1.5) SMD TYPE  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NFA62R00C101B1

Feed Through Capacitor, 6 Function(s), 50V, 0.2A
MURATA

NFA62R00C101T1

Feed Through Capacitor, 6 Function(s), 50V, 0.2A
MURATA

NFA62R00C102B1

Feed Through Capacitor, 6 Function(s), 50V, 0.2A
MURATA

NFA62R00C102T1

Feed Through Capacitor, 6 Function(s), 50V, 0.2A
MURATA

NFA62R00C220B1

Feed Through Capacitor, 6 Function(s), 50V, 0.2A
MURATA

NFA62R00C220T1

Feed Through Capacitor, 6 Function(s), 50V, 0.2A
MURATA

NFA62R00C221B1

Feed Through Capacitor, 6 Function(s), 50V, 0.2A
MURATA

NFA62R00C221T1

Feed Through Capacitor, 6 Function(s), 50V, 0.2A
MURATA

NFA62R00C470B1

Feed Through Capacitor, 6 Function(s), 50V, 0.2A
MURATA

NFA62R00C470T1

Feed Through Capacitor, 6 Function(s), 50V, 0.2A
MURATA

NFA62R00C471B1

Feed Through Capacitor, 6 Function(s), 50V, 0.2A
MURATA

NFA62R00C471T1

Feed Through Capacitor, 6 Function(s), 50V, 0.2A
MURATA