NFAQ0860L36T [ONSEMI]

Intelligent Power Module (IPM), 600 V, 8 A, Short lead;
NFAQ0860L36T
型号: NFAQ0860L36T
厂家: ONSEMI    ONSEMI
描述:

Intelligent Power Module (IPM), 600 V, 8 A, Short lead

电动机控制
文件: 总14页 (文件大小:532K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intelligent Power Module (IPM)  
600 V, 8 A  
NFAQ0860L36T  
The NFAQ0860L36T is a fullyintegrated inverter power stage  
consisting of a highvoltage driver, six IGBT’s and a thermistor,  
suitable for driving permanent magnet synchronous motors (PMSM),  
brushlessDC (BLDC) motors and AC asynchronous motors. The  
IGBT’s are configured in a 3phase bridge with separate emitter  
connections for the lower legs for maximum flexibility in the choice of  
control algorithm. The power stage has a full range of protection  
functions including crossconduction protection, external shutdown  
and undervoltage lockout functions. An internal comparator and  
reference connected to the overcurrent protection circuit allows the  
designer to set the overcurrent protection level.  
www.onsemi.com  
Features  
Threephase 8 A / 600 V IGBT Module with Integrated Drivers  
Compact 29.6 mm x 18.2 mm Dual InLine Package  
Builtin Under Voltage Protection  
DIP38 29.6x18.2  
CASE 125BS  
Crossconduction Protection  
MARKING DIAGRAM  
ITRIP Input to Shut Down All IGBT’s  
Integrated Bootstrap Diodes and Resistors  
Thermistor for Substrate Temperature Measurement  
Shut Down Pin  
NFAQ0860L36T  
ZZZATYWW  
UL1557 Certification (File Number: E339285)  
Typical Applications  
Industrial Pumps  
Industrial Fans  
Industrial Automation  
Home Appliances  
NFAQ0860L36T = Specific Device Code  
ZZZ  
A
= Assembly Lot Code  
= Assembly Location  
= Test Location  
= Year  
T
Y
WW  
= Work Week  
Device marking is on package top side  
HIN(U)  
LIN(U)  
HIN(V)  
LIN(V)  
HIN(W)  
LIN(W)  
HS1  
LS1  
HS2  
LS2  
HS3  
LS3  
HS1  
LS1  
HS2  
LS2  
HS3  
LS3  
Three channel  
halfbridge  
driver  
with  
protection  
circuits  
ORDERING INFORMATION  
Shipping  
(Qty / Packing)  
Device  
Package  
NFAQ0860L36T  
DIP38  
400 / Box  
(Pb-Free)  
Figure 1. Function Diagram  
© Semiconductor Components Industries, LLC, 2019  
1
Publication Order Number:  
January, 2020 Rev. 0  
NFAQ0860L36T/D  
NFAQ0860L36T  
NFAQ0860L36T  
RC filtering for  
HINx and LINx  
not shown.  
Recommended  
in noisy  
VPN  
P:38  
From Op amp  
circuit  
+
C1  
CS  
environments.  
ITRIP:10  
HV Ground  
RSU  
NU:17  
NV:18  
NW:19  
HIN(U):3  
HIN(V):4  
HIN(W):5  
LIN(U):6  
LIN(V):7  
LIN(W):8  
From HV  
Power  
Source  
RSV  
RSW  
To Op amp  
circuit  
Vctr  
from external  
regulator  
RSD  
RP RTH  
VB(U):34  
+
+
+
SD:11  
FAULT :9  
TH2:14  
Controller  
VS(U),U:32  
VB(V):28  
VDD:2  
VDD=15V  
from external  
regulator  
VS(V),V:26  
Motor  
RCLR  
CCLR  
CFOD:12  
VB(W):22  
+
TH1:13  
VSS:1  
VS(W),W:20  
LV Ground  
Star connection to HV Ground  
Figure 2. Application Schematic  
www.onsemi.com  
2
 
NFAQ0860L36T  
Bootstrap  
Bootstrap  
Bootstrap  
VB(U) (34)  
VB(V) (28)  
VB(W) (22)  
P (38)  
VDD (2)  
VSS (1)  
Sets latch time.  
VS(W),W (20)  
VS(V),V (26)  
VS(U),U (32)  
MΩ  
For R=2  
,
C=1nF, latch time  
is 1.65ms (typical).  
CFOD(12)  
NU (17)  
NV (18)  
NW (19)  
Level  
Shifter  
Level  
Shifter  
Level  
Shifter  
HIN(U) (3)  
HIN(V) (4)  
HIN(W) (5)  
LIN(U) (6)  
LIN(V) (7)  
LIN(W) (8)  
Logic  
Logic  
Logic  
TH1 (13)  
TH2 (14)  
VDD  
undervoltage  
shutdown  
VDD  
FAULT (9)  
ITRIP (10)  
SD (11)  
Over current  
protection  
Internal Voltage  
reference  
Shutdown  
Figure 3. Simplified Block Diagram  
www.onsemi.com  
3
NFAQ0860L36T  
Table 1. PIN FUNCTION DESCRIPTION  
Pin  
1
Name  
VSS  
Description  
LowSide Common Supply Ground  
2
VDD  
LowSide Bias Voltage for IC and IGBTs Driving  
Signal Input for HighSide U Phase  
3
HIN(U)  
HIN(V)  
HIN(W)  
LIN(U)  
LIN(V)  
LIN(W)  
FAULT  
ITRIP  
SD  
4
Signal Input for HighSide V Phase  
5
Signal Input for HighSide W Phase  
6
Signal Input for LowSide U Phase  
7
Signal Input for LowSide V Phase  
8
Signal Input for LowSide W Phase  
9
Fault output  
10  
11  
12  
13  
14  
17  
18  
19  
20  
22  
26  
28  
32  
34  
38  
Input for Over Current Protection  
Shut Down Input  
CFOD  
TH1  
Capacitor and Resistor for Fault Output Duration Selection  
Thermistor Bias Voltage  
TH2  
Series Resistor for Thermistor  
NU  
Negative DCLink Input for U Phase  
NV  
Negative DCLink Input for V Phase  
NW  
Negative DCLink Input for W Phase  
VS(W), W  
VB(W)  
VS(V), V  
VB(V)  
VS(U), U  
VB(U)  
P
HighSide Bias Voltage GND for W phase IGBT Driving, Output for W Phase  
HighSide Bias Voltage for W phase IGBT Driving  
HighSide Bias Voltage GND for V phase IGBT Driving, Output for V Phase  
HighSide Bias Voltage for V phase IGBT Driving  
HighSide Bias Voltage GND for U phase IGBT Driving, Output for U Phase  
HighSide Bias Voltage for U phase IGBT Driving  
Positive DCLink Input  
NOTE: Pins 15, 16, 21, 23, 24, 25, 27, 29, 30, 31, 33, 35, 36 and 37 are not present  
www.onsemi.com  
4
NFAQ0860L36T  
Table 2. ABSOLUTE MAXIMUM RATINGS at T = 25°C (Note 1)  
C
Parameter  
Supply Voltage  
Symbol  
VPN  
Conditions  
PNU,NV,NW, VPN (surge) < 500 V  
P-U,V,W; U-NU; V-NV; W-NW  
Rating  
Unit  
V
(Note 2)  
450  
Collector Emitter Voltage  
VCES  
IC  
600  
V
Each IGBT Collector Current  
P,U,V,W,NU,NV,NW terminal current  
8
A
P,U,V,W,NU,NV,NW terminal current, Tc = 100°C  
Tc = 25°C, Under 1 ms Pulse Width  
Tc = 25°C, Per One Chip  
4
A
Each IGBT Collector Current (Peak)  
Corrector Dissipation  
ICp  
Pc  
16  
32  
A
W
V
HighSide Control Bias voltage  
VBS  
VB(U)VS(U), VB(V)VS(V),  
VB(W)VS(W)  
(Note 3)  
0.3 to +20.0  
Control Supply Voltage  
Input Signal Voltage  
VDD  
VIN  
VDDVSS  
0.3 to +20.0  
V
V
HIN(U), HIN(V), HIN(W), LIN(U), LIN(V), LIN(W) −  
VSS  
0.3 to V  
DD  
FAULT Terminal Voltage  
CFOD Terminal Voltage  
SD Terminal Voltage  
VFAULT  
VCFOD  
VSD  
VITRIP  
Tj  
FAULTVSS  
CFODVSS  
SDVSS  
0.3 to V  
0.3 to V  
0.3 to V  
V
V
DD  
DD  
DD  
V
Current Sensing Input Voltage  
Operating Junction Temperature  
Storage Temperature  
ITRIPVSS  
0.3 to +10.0  
150  
V
_C  
_C  
_C  
Nm  
Vrms  
Tstg  
40 to +125  
40 to +125  
0.6  
Module Case Operation Temperature  
Tightening Torque  
Tc  
MT  
Case mounting screws  
Isolation Voltage  
Viso  
50 Hz sine wave AC 1 minute  
(Note 4)  
2000  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe  
Operating parameters  
2. This surge voltage developed by the switching operation due to the wiring inductance between P and NU, NV, NW terminal.  
3. VBS=VB(U)VS(U), VB(V)VS(V), VB(W)VS(W)  
4. Test conditions : AC2500V, 1 s  
Table 3. RECOMMENDED OPERATING RANGES  
Rating  
Supply Voltage  
Symbol  
VPN  
Conditions  
P NU, NV, NW  
Min  
0
Typ  
280  
15  
Max  
450  
Unit  
V
HighSide Control Bias  
Voltage  
VBS  
VB(U) VS(U), VB(V) VS(V), VB(W) −  
VS(W)  
13.0  
17.5  
V
Control Supply Voltage  
ONstate Input Voltage  
OFFstate Input Voltage  
PWM Frequency  
VDD  
VIN(ON)  
VIN(OFF)  
fPWM  
VDD VSS  
14.0  
3.0  
0
15  
16.5  
5.0  
0.3  
20  
V
V
HIN(U), HIN(V), HIN(W), LIN(U), LIN(V),  
LIN(W) VSS  
V
1
kHz  
ms  
ms  
Nm  
Dead Time  
DT  
Turnoff to Turnon (external)  
ON and OFF  
1
Allowable Input Pulse Width  
Tightening Torque  
PWIN  
1
‘M3’ Type Screw  
0.4  
0.6  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
www.onsemi.com  
5
 
NFAQ0860L36T  
Table 4. ELECTRICAL CHARACTERISTICS at T = 25 _C, V  
(VBS, VDD) = 15 V unless otherwise noted.  
C
BIAS  
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
Power Output Section  
CollectorEmitter Leakage Current  
CollectorEmitter Saturation Voltage  
V
= 600 V  
ICES  
100  
3.0  
mA  
V
CE  
IN = 5 V, IC = 8 A, Tj = 25 _C  
IN = 5 V, IC = 4 A, Tj = 100 _C  
IN = 0 V, IC = 8 A, Tj = 25 _C  
IN = 0 V, IC = 4 A, Tj = 100 _C  
Inverter IGBT Part (per 1/6 Module)  
Inverter FRD Part (per 1/6 Module)  
VCE(sat)  
2.4  
1.9  
2.1  
1.6  
V
2.7  
V
FWDi Forward Voltage  
VF  
V
Rth(jc)Q  
Rth(jc)F  
3.9  
7.3  
_C/W  
_C/W  
Junction to Case Thermal Resistance  
Switching Character  
t
0.4  
0.4  
1.1  
1.1  
ms  
ms  
mJ  
mJ  
mJ  
mJ  
mJ  
mJ  
mJ  
ns  
Switching Time  
IC = 8 A, VPN = 300 V, Tj = 25_C,  
ON  
Inductive Switching  
t
OFF  
Turnon Switching Loss  
Turnoff Switching Loss  
Total Switching Loss  
E
190  
90  
IC = 8 A, VPN = 300 V, Tj = 25_C  
ON  
E
OFF  
E
TOT  
280  
100  
50  
Turnon Switching Loss  
Turnoff Switching Loss  
Total Switching Loss  
E
IC = 4 A, VPN = 300 V, Tj = 100_C  
ON  
OFF  
TOT  
E
E
E
150  
25  
Diode Reverse Recovery Energy  
Diode Reverse Recovery Time  
Reverse Bias Safe Operating Area  
Short Circuit Safe Operating Area  
Driver Section  
IC = 4 A, VPN = 300 V, Tj = 100_C,  
REC  
(di/dt set by internal driver)  
t
140  
Full Square  
RR  
IC = 16 A, V = 450 V  
RBSOA  
CE  
V
CE  
= 400 V, Tj = 100_C  
SCSOA  
4
ms  
Quiescent VBS Supply Current  
Quiescent VDD Supply Current  
ON Threshold Voltage  
VBS = 15 V, HIN = 0 V, per driver  
IQBS  
IQDD  
0.07  
0.95  
0.4  
3.0  
2.5  
mA  
mA  
V
VDD = 15 V, LIN = 0 V, VDDVSS  
VIN(ON)  
VIN(OFF)  
IIN+  
HIN(U), HIN(V), HIN(W), LIN(U), LIN(V),  
LIN(W) VSS  
OFF Threshold Voltage  
Logic 1 Input Current  
0.8  
V
VIN = +3.3 V  
VIN = 0 V  
660  
900  
3
mA  
mA  
W
Logic 0 Input Current  
IIN−  
Bootstrap ON Resistance  
FAULT Terminal Sink Current  
FaultOutput Pulse Width  
CFOD Threshold  
IB = 1 mA  
RB  
500  
2
FAULT: ON / VFAULT = 0.1 V  
FAULTVSS  
CFODVSS  
IoSD  
mA  
ms  
V
tFOD  
1.1  
1.65  
8
2.2  
VCFOD  
VSD+  
2.5  
V
Shut Down Threshold  
SDVSS  
VSD−  
0.8  
0.44  
V
ITRIP Trip Level  
ITRIPVSS  
VITRIP  
tITRIP  
tITRIPBL  
UVBSR  
UVBSD  
UVBSH  
UVDDR  
UVDDD  
UVDDH  
0.49  
1.1  
350  
11.1  
10.9  
0.2  
11.1  
10.9  
0.2  
0.54  
V
ITRIP to Shutdown Propagation Delay  
ITRIP Blanking Time  
ms  
ns  
V
250  
10.3  
10.1  
Reset Level  
Detection Level  
Hysteresis  
11.9  
11.7  
HighSide Control Bias Voltage Under−  
Voltage Protection  
V
V
Reset Level  
Detection Level  
Hysteresis  
10.3  
10.1  
11.7  
11.5  
V
Supply Voltage UnderVoltage Protection  
V
V
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
6
NFAQ0860L36T  
TYPICAL CHARACTERISTICS  
Figure 4. VCE versus IC for Different Temperatures  
Figure 5. VF versus IF for Different Temperatures  
(VDD = 15 V)  
Figure 6. EON versus IC for Different Temperatures  
Figure 7. EOFF versus IC for Different Temperatures  
Figure 8. Thermal Impedance Plot (IGBT)  
Figure 9. Thermal Impedance Plot (FRD)  
Figure 10. Turnon Waveform Tj = 1005C, VCC = 300 V  
Figure 11. Turnoff Waveform Tj = 1005C, VCC = 300 V  
www.onsemi.com  
7
NFAQ0860L36T  
APPLICATIONS INFORMATION  
Input / Output Timing Chart  
HIN is disabled until LIN receives input (Note 5)  
VBS undervoltage protection reset signal  
HIN  
LIN  
VDD undervoltage protection reset voltage (Note2)  
VBS undervoltage protection reset voltage(Note3)  
VDD  
VB(U), VB(V), VB(W)  
VIT w0.54V  
( Note 4)  
ITRIP  
VIT < 0.44V  
FAULT driven output  
(with pullup)  
SD driven input  
(with pullup)  
Crossconduction prevention period(Note1)  
Upper IGBT  
Gate Drive  
Lower IGBT  
Gate Drive  
Automatic reset after protection(FaultOutput Pulse Width)  
NOTES:  
1. This section of the timing diagram shows the effect of crossconduction prevention.  
2. This section of the timing diagram shows that when the voltage on VDD decreases sufficiently all gate output signals will go  
low, switching off all six IGBTs. When the voltage on VDD rises sufficiently, normal operation will resume.  
3. This section shows that when the bootstrap voltage on VB(U) (VB(V), VB(W)) drops, the corresponding high side output  
U (V, W) is switched off. When the voltage on VB(U) (VB(V), VB(W)) rises sufficiently, normal operation will resume.  
4. This section shows that when the voltage on ITRIP exceeds the threshold, all IGBTs are turned off. Normal operation  
resumes later after the overcurrent condition is removed.  
5. After VDD has risen above the threshold to enable normal operation, the driver waits to receive an input signal on the LIN  
input before enabling the driver for the HIN signal.  
Figure 12. Input / Output Timing Chart  
Table 5. INPUT / OUTPUT LOGIC TABLE  
INPUT  
ITRIP  
OUTPUT  
Low side IGBT  
HIN  
H
LIN  
L
SD  
H
H
H
H
X
High side IGBT  
ON (Note 5)  
OFF  
U,V,W  
FAULT  
OFF  
OFF  
OFF  
OFF  
ON  
L
L
L
L
H
L
OFF  
ON  
P
L
H
L
NU,NV,NW  
L
OFF  
OFF  
OFF  
OFF  
OFF  
High Impedance  
High Impedance  
High Impedance  
High Impedance  
H
H
X
OFF  
X
OFF  
X
X
L
OFF  
OFF  
www.onsemi.com  
8
 
NFAQ0860L36T  
Table 6. THERMISTOR CHARACTERISTICS  
Parameter  
Resistance  
Symbol  
Condition  
Min  
99  
Typ  
100  
5.38  
4250  
Max  
101  
Unit  
kW  
kW  
K
R
Tth = 25_C  
Tth = 100_C  
25  
R
5.18  
4208  
40  
5.60  
4293  
+125  
100  
BConstant (25 to 50_C)  
B
Temperature Range  
_C  
Figure 13. Thermistor Resistance versus Thermistor Temperature  
Figure 14. Thermistor Voltage versus Thermistor Temperature  
Conditions: RTH = 39 kW, Pullup Voltage 5.0 V (see Figure 2)  
www.onsemi.com  
9
NFAQ0860L36T  
FAULT Pin  
Calculation of Bootstrap Capacitor Value  
The bootstrap capacitor value CB is calculated using the  
following approach. The following parameters influence the  
choice of bootstrap capacitor:  
VBS: Bootstrap power supply.  
15 V is recommended.  
QG: Total gate charge of IGBT at VBS = 15 V.  
8 nC  
UVLO: Falling threshold for UVLO.  
Specified as 12 V.  
IDMAX: High side drive power dissipation.  
Specified as 0.4 mA  
TONMAX: Maximum ON pulse width of high side  
IGBT.  
The FAULT output is an open drain output requiring a  
pullup resistor. If the pullup voltage is 5 V, use a pullup  
resistor with a value of 6.8 kW or higher. If the pullup  
voltage is 15 V, use a pullup resistor with a value of 20 kW  
or higher. The FAULT output is triggered if there is a VDD  
undervoltage or an overcurrent condition.  
Undervoltage Protection  
If VDD goes below the VDD supply undervoltage  
lockout falling threshold, the FAULT output is switched on.  
The FAULT output stays on until VDD rises above the VDD  
supply undervoltage lockout rising threshold. After VDD  
has risen above the threshold to enable normal operation, the  
driver waits to receive an input signal on the LIN input  
before enabling the driver for the HIN signal.  
Capacitance calculation formula:  
Overcurrent Protection  
CB = (QG + IDMAX * TONMAX) / (VBS UVLO)  
An overcurrent condition is detected if the voltage on the  
ITRIP pin is larger than the reference voltage. There is a  
blanking time of typically 350 ns to improve noise  
immunity. After a shutdown propagation delay of typically  
1.1 ms, the FAULT output is switched on. The FAULT output  
is held on for a time determined by the resistor and capacitor  
connected to the CFOD pin. If RCLR = 2 MW and CCLR =  
1 nF, the FAULT output is switched on for 1.65 ms (typ.)  
because the FAULT pin goes back to high impedance when  
CFOD is higher than 8 V (typ.).  
CB is recommended to be approximately 3 times the value  
calculated above. The recommended value of CB is in the  
range of 1 to 47 mF, however, the value needs to be verified  
prior to production. When not using the bootstrap circuit,  
each high side driver power supply requires an external  
independent power supply.  
The internal bootstrap circuit uses a MOSFET. The turn  
on time of this MOSFET is synchronized with the turn on of  
the low side IGBT. The bootstrap capacitor is charged by  
turning on the low side IGBT.  
The overcurrent protection threshold should be set to be  
equal or lower to 2 times the module rated current (Io).  
An additional fuse is recommended to protect against  
system level or abnormal overcurrent fault conditions.  
If the low side IGBT is held on for a long period of time  
(more than one second for example), the bootstrap voltage  
on the high side MOSFET will slowly discharge.  
Capacitors on High Voltage and VDD Supplies  
Both the high voltage and VDD supplies require an  
electrolytic capacitor and an additional high frequency  
capacitor. The recommended value of the high frequency  
capacitor is between 100 nF and 10 mF.  
100  
10  
1
SD Pin  
The SD terminal pin is used to enable or shut down the  
builtin driver. If the voltage on the SD pin rises above the  
VSD+ voltage, the output drivers are enabled. If the voltage  
on the SD pin falls below the VSDvoltage, the drivers are  
disabled.  
0.1  
0.01  
0.1  
1
10  
100  
1000  
Tonmax (ms)  
Minimum Input Pulse Width  
When input pulse width is less than 1 ms, an output may  
not react to the pulse. (Both ON signal and OFF signal)  
Figure 15. Bootstrap Capacitance versus Tonmax  
www.onsemi.com  
10  
NFAQ0860L36T  
TEST CIRCUITS  
ICES  
34  
32  
ICE  
VBS=15V  
VBS=15V  
VBS=15V  
VDD=15V  
U+  
38  
32  
V+  
38  
26  
W+  
38  
U−  
32  
17  
V−  
26  
18  
W−  
20  
A
A
A
B
28  
26  
20  
19  
VCE  
U+, V+, W+ : High side phase  
U, V, W: Low side phase  
22  
20  
2,9,11,12  
B
1,10,17,18,19  
Figure 16. Test Circuit for ICE  
VCE(sat) (Test by pulse)  
U+  
38  
32  
3
V+  
38  
26  
4
W+  
38  
20  
5
U−  
32  
17  
6
V−  
26  
18  
7
W−  
20  
19  
8
34  
VBS=15V  
VBS=15V  
VBS=15V  
A
B
C
A
32  
28  
26  
V
IC  
22  
20  
VCE(sat)  
2,9,11,12  
VDD=15V  
5V  
C
B
1,10,17,18,19  
Figure 17. Test Circuit for VCE(SAT)  
VF (Test by pulse)  
U+  
38  
32  
V+  
W+  
38  
U−  
32  
17  
V−  
26  
18  
W−  
20  
A
B
38  
26  
A
20  
19  
V
VF  
B
Figure 18. Test Circuit for VF  
www.onsemi.com  
11  
NFAQ0860L36T  
RB (Test by pulse)  
U+  
2
V+  
2
W+  
2
A
B
A
B
C
34  
6
28  
7
22  
8
V
IB  
VB  
2,9,11,12  
VDD=15V  
5V  
(RB)  
C
1,10,17,18,19  
Figure 19. Test Circuit for RB  
IQBS, IQDD  
VBS U+  
VBS V+  
28  
VBS W+  
22  
V
DD  
IQBS  
A
B
34  
32  
2
A
A
A
B
VBSx=15V  
26  
20  
1
IQDD  
VDD=15V  
2
9,11,12  
1,10  
Figure 20. Test Circuit for ID  
Switching Time (The circuit is a representative example of the Inverter Low side U phase.)  
34  
32  
VBS=15V  
VBS=15V  
VBS=15V  
VDD=15V  
38  
32  
Input Signal  
(0 to 5V)  
28  
26  
CS  
22  
20  
90%  
lo  
10%  
2,9,11,12  
6
17  
Input Signal  
tON  
tOFF  
Io  
1,10,17,18,19  
Figure 21. Test Circuit for Switching Time  
www.onsemi.com  
12  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
DIP38, 29.60x18.20x7.70, 1.00P (EP4)  
CASE 125BS  
ISSUE B  
DATE 26 APR 2023  
GENERIC  
MARKING DIAGRAM*  
XXXX = Specific Device Code  
ZZZ = Lot ID  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
XXXXXXXXXXXXXXXXX  
ZZZATYWW  
AT  
Y
= Assembly & Test Location  
= Year  
WW = Work Week  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON92315G  
DIP38, 29.60x18.20x7.70, 1.00P (EP4)  
PAGE 1 OF 1  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NFAQ1060L33T

Intelligent Power Module (IPM), 600 V, 10 A, Long lead
ONSEMI

NFAQ1060L36T

Intelligent Power Module (IPM), 600 V, 10 A
ONSEMI

NFAQ1060L36TB

Intelligent Power Module (IPM), 600 V, 10 A
ONSEMI

NFAQ1560R43T

Intelligent Power Module (IPM), 600V, 15A
ONSEMI

NFAQ1560R43TL

Intelligent Power Module (IPM), 600V, 15A, EMI optimized version
ONSEMI

NFC

Near Field Communication LSI
PANASONIC

NFC10

Single and dual output 10 Watt Wide input DC/DC converters
ARTESYN

NFC10-12D12

Single and dual output 10 Watt Wide input DC/DC converters
ARTESYN

NFC10-12D12-4

Analog IC
ETC

NFC10-12D15

Single and dual output 10 Watt Wide input DC/DC converters
ARTESYN

NFC10-12D15-4

Analog IC
ETC

NFC10-12S05

Single and dual output 10 Watt Wide input DC/DC converters
ARTESYN