NFCS1060L3TT [ONSEMI]

Intelligent Power Module (IPM), PFC Combo, 600V, 10A;
NFCS1060L3TT
型号: NFCS1060L3TT
厂家: ONSEMI    ONSEMI
描述:

Intelligent Power Module (IPM), PFC Combo, 600V, 10A

功率因数校正
文件: 总17页 (文件大小:492K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NFCS1060L3TT  
2-in-1 PFC and Inverter  
Intelligent Power Module  
(IPM), 600 V, 10 A  
The NFCS1060L3TT is a fully−integrated PFC and inverter power  
stage consisting of a high−voltage driver, six motor drive IGBT’s, one  
PFC SJ−MOSFET, one PFC SiC−SBD for rectifier and a thermistor,  
suitable for driving permanent magnet synchronous (PMSM) motors,  
brushless−DC (BLDC) motors and AC asynchronous motors.  
The IGBT’s are configured in a 3−phase bridge with separate  
emitter connections for the lower legs for maximum flexibility in the  
choice of control algorithm.  
www.onsemi.com  
An internal comparator and reference connected to the over−current  
protection circuit allows the designer to set individual over−current  
protection levels for the PFC and the inverter stages. Additionally, the  
power stage has a full range of protection functions including  
cross−conduction protection, external shutdown and under−voltage  
lockout functions.  
SIP35 56x25.8 / SIP2A−2  
CASE 127DT  
Features  
Simple Thermal Design with PFC and Inverter Stage in One Package  
Cross−Conduction Protection  
Integrated Bootstrap Diodes and Resistors  
UL1557 Certification (File Number: E339285)  
MARKING DIAGRAM  
Typical Applications  
Heat Pumps  
Home Appliances  
Industrial Fans  
Industrial Pumps  
NFCS1060L3TT = Specific Device Code  
ZZZ  
A
= Assembly Lot Code  
= Assembly Location  
= Test Location  
= Year  
T
Y
WW  
= Work Week  
Device marking is on package top side  
HIN(U)  
LIN(U)  
HIN(V)  
LIN(V)  
HIN(W)  
LIN(W)  
IN(X)  
HS1  
LS1  
HS2  
LS2  
HS3  
LS3  
HS1  
HS2  
HS3  
Three channel  
halfbridge  
driver  
ORDERING INFORMATION  
+
singleended  
PFC driver  
Shipping  
(Qty / Packing)  
Device  
Package  
with  
protection  
circuits  
LS1  
LS2  
LS3  
NFCS1060L3TT SIP35 56x25.8 /  
8 / Tube  
SIP2A−2  
(Pb-Free)  
Figure 1. Function Diagram  
© Semiconductor Components Industries, LLC, 2019  
1
Publication Order Number:  
April, 2019 − Rev. 0  
NFCS1060L3TT/D  
NFCS1060L3TT  
NFCS 1060L3TT  
X (1)  
P (16)  
RC filtering for  
From Op−amp  
circuit  
+
C1  
CS  
HIN(U, V, W), LIN(U, V, W)  
and IN(X) not shown.  
Recommended  
ITRIP(P) (31)  
RSPFC  
NX (19)  
NU (22)  
ITRIP(I) (32)  
in noisy environments.  
RSU  
RSV  
RSW  
From HV  
Power  
Source  
HV Ground  
HIN(U) (23)  
HIN(V) (24)  
HIN(W) (25)  
LIN(U) (26)  
LIN(V) (27)  
LIN(W) (28)  
IN(X) (29)  
NV (21)  
NW (20)  
To Op−amp  
circuit  
To Op−amp  
circuit  
VB(U) (12)  
U (13)  
+
+
RP  
RTH  
Controller  
VB(V) (8)  
V (9)  
FLTEN (30)  
TH (33)  
Motor  
VDD Supply  
+
VB(W) (4)  
W (5)  
VDD (34)  
VSS (35)  
+
From 15V  
Power  
LV Ground  
Source  
Figure 2. Application Schematic − Adjustable Option  
www.onsemi.com  
2
NFCS1060L3TT  
X (1)  
DB  
DB  
DB  
RBS  
RBS  
RBS  
VB(U) (12)  
VB(V) (8)  
VB(W) (4)  
RBC  
VDD (34)  
VSS (35)  
P (16)  
W (5)  
V (9)  
PFC  
Driver  
IN(X) (29)  
U (13)  
NX (19)  
NU (22)  
NV (21)  
NW (20)  
Level  
Shifter  
Level  
Shifter  
Level  
Shifter  
HIN(U) (23)  
HIN(V) (24)  
HIN(W) (25)  
LIN(U) (26)  
LIN(V) (27)  
LIN(W) (28)  
Logic  
Logic  
Logic  
VDD  
undervoltage  
shutdown  
TH (33)  
VDD  
FLTEN (30)  
ITRIP (I) (32)  
VITRIP(I)  
Reset after  
delay  
ITRIP (P) (31)  
VITRIP(P)  
Figure 3. Equivalent Block Diagram  
www.onsemi.com  
3
NFCS1060L3TT  
Table 1. PIN FUNCTION DESCRIPTION  
Pin  
1
Name  
X
Description  
X Phase MOSFET Drain for PFC Inductor Connection  
High−Side Bias Voltage for W Phase IGBT Driving  
Output for W Phase and High−Side Bias Voltage GND for W Phase IGBT Driving  
High−Side Bias Voltage for V Phase IGBT Driving  
Output for V Phase and High−Side Bias Voltage GND for V Phase IGBT Driving  
High−Side Bias Voltage for U Phase IGBT Driving  
Output for U Phase and High−Side Bias Voltage GND for U Phase IGBT Driving  
Positive DC−Link Input / Positive PFC Output Voltage  
X Phase MOSFET Source for PFC  
4
VB(W)  
W
5
8
VB(V)  
V
9
12  
13  
16  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
VB(U)  
U
P
NX  
NW  
Negative DC−Link Input for W Phase  
NV  
Negative DC−Link Input for V Phase  
NU  
Negative DC−Link Input for U Phase  
HIN(U)  
HIN(V)  
HIN(W)  
LIN(U)  
LIN(V)  
LIN(W)  
IN(X)  
FLTEN  
ITRIP(P)  
ITRIP(I)  
TH  
Signal Input for High−Side U Phase  
Signal Input for High−Side V Phase  
Signal Input for High−Side W Phase  
Signal Input for Low−Side U Phase  
Signal Input for Low−Side V Phase  
Signal Input for Low−Side W Phase  
Signal Input for PFC X Phase  
Fault Output / Enable  
Input for Current Protection for PFC  
Input for Current Protection for Inverter  
Thermistor Bias Voltage  
VDD  
VSS  
Low−Side Bias Voltage for IC and IGBTs Driving  
Low−Side Common Supply Ground  
NOTE: Pins 2, 3, 6, 7, 10, 11, 14, 15, 17 and 18 are not present.  
www.onsemi.com  
4
NFCS1060L3TT  
Table 2. ABSOLUTE MAXIMUM RATINGS (Note 1)  
T
C
= 25°C unless otherwise noted  
Rating  
Symbol  
Conditions  
Value  
Unit  
PFC Section  
PFC  
MOSFET  
Drain−Source Voltage  
Drain Current (peak)  
Drain Current  
VDSS  
IDP  
ID  
X − NX  
600  
30  
20  
10  
83  
600  
30  
20  
10  
32  
10  
V
A
A
A
W
V
A
A
A
W
A
Pulse Width < 100 ms, VBS, VDD = 15 V  
Tc = 25 _C  
Tc = 100 _C  
Power Dissipation  
PD1  
VRRM  
IFP  
PFC Diode  
Repetitive Reverse Voltage  
Forward Current (peak)  
Forward Current  
P − X  
Pulse Width < 100 ms  
IF  
Tc = 25 _C  
Tc = 100 _C  
Power Dissipation  
Forward Current  
PD2  
ISD  
MOSFET  
Body Diode  
Tc = 25 _C  
Maximum AC Input Voltage  
Maximum Output Voltage  
Input AC Current (steady state)  
Inverter Section  
VAC  
Vo  
Single−Phase Full−Rectified  
277  
450  
10  
Vrms  
V
In the Application Circuit (VAC = 200 V)  
Iin  
Arms  
Supply Voltage  
VPN  
VCES  
IC  
P − NU, NV, NW surge < 500 V (Note 2)  
P − U, V, W or U − NU, V − NV, W − NW  
P, U, V, W, NU, NV, NW Terminal Current  
450  
600  
10  
V
V
A
A
Collector−Emitter Voltage  
Each IGBT Collector Current  
P, U, V, W, NU, NV, NW Terminal Current  
5
at Tc = 100 _C  
Each IGBT Collector Current (peak)  
ICP  
PC  
P, U, V, W, NU, NV, NW Terminal  
Current, Pulse Width 1 ms  
20  
29  
A
Corrector Dissipation  
Driver Section  
IGBT per one chip  
W
High−Side Control Bias Voltage  
Control Supply Voltage  
Input Signal Voltage  
VBS  
VDD  
VIN  
VB(U) − U, VB(V) − V, VB(W) − W,  
VDD − VSS  
0.3 to +20.0  
0.3 to +20.0  
0.3 to VDD  
V
V
V
HIN(U), HIN(V), HIN(W), LIN(U), LIN(V),  
LIN(W), IN(X)  
Fault Output Supply Voltage and Enable  
Input  
VFLTEN  
FLTEN Terminal  
0.3 to VDD  
V
ITRIP(I) Terminal Voltage  
ITRIP(P) Terminal Voltage  
Intelligent Power Module Total  
Operating Junction Temperature  
Storage Temperature  
VITRIP(I)  
VITRIP(P)  
ITRIP(I) Terminal  
ITRIP(P) Terminal  
0.3 to +10.0  
1.5 to +2.0  
V
V
Tj  
Tstg  
Tc  
150  
40 to +125  
40 to +100  
0.9  
_C  
_C  
Module Case Operation Temperature  
Tightening Torque  
IPM Case Temperature  
Case Mounting Screws  
_C  
MT  
Viso  
Nm  
Isolation Voltage  
60 Hz, Sinusoidal, AC 1 minute, Connec-  
tion Pins to Heat Sink Plate (Note 4)  
2000  
Vrms  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe  
Operating parameters  
2. This surge voltage developed by the switching operation due to the wiring inductance between P and NU, NV, NW terminals.  
3. VBS = VB(U) − U, VB(V) − V, VB(W) − W  
4. Test conditions : AC 2500 V, 1 sec  
www.onsemi.com  
5
 
NFCS1060L3TT  
Table 3. THERMAL CHARACTERISTICS  
Rating  
Symbol  
Rth(j−c) M  
Rth(j−c) R  
Rth(j−c) Q  
Rth(j−c) F  
Conditions  
Min  
Typ  
1.3  
3.2  
3.5  
6.8  
Max  
1.5  
3.9  
4.2  
8.2  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
Junction to Case Thermal  
Resistance  
PFC MOSFET  
PFC Diode  
Inverter IGBT Part (per 1/6 Module)  
Inverter FRD Part (per 1/6 Module)  
5. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for Safe  
Operating parameters  
Table 4. RECOMMENDED OPERATING RANGES  
Rating  
Supply Voltage  
Symbol  
VPN  
Conditions  
P − NX, NU, NV, NW  
Min  
0
Typ  
280  
15  
Max  
400  
Unit  
V
High−Side Control Bias  
Voltage  
VBS  
VB(U) − U, VB(V) − V, VB(W) − W  
13.0  
17.5  
V
Control Supply Voltage  
ON Threshold Voltage  
OFF Threshold Voltage  
PWM Frequency (PFC)  
VDD  
VDD − VSS (see table note below)  
14.0  
2.5  
0
15  
16.5  
5.0  
0.3  
125  
300  
20  
V
V
VIN(ON)  
VIN(OFF)  
fPWMp  
HIN(U), HIN(V), HIN(W), LIN(U), LIN(V),  
LIN(W), IN(X)  
V
1
kHz  
kHz  
kHz  
ms  
No load, Duty = 0.5, Tc = 25 _C  
1
PWM Frequency (Inverter)  
Dead Time  
fPWMi  
DT  
1
Turn−off to Turn−on (external)  
ON and OFF  
1
Allowable Input Pulse Width  
Tightening Torque  
PWIN  
1
ms  
‘M3’ Type Screw  
0.6  
0.9  
Nm  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
Table 5. ELECTRICAL CHARACTERISTICS  
T
C
= 25 _C, VBIAS (VBS, VDD) = 15 V unless otherwise noted.  
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
PFC Section  
Drain−Source Leakage Current  
Reverse Leakage Current (PFC Diode)  
Drain−Source On Resistance  
VDSS = 600 V  
IDSS  
IR  
100  
500  
0.18  
mA  
mA  
W
VRRM = 600 V  
ID = 20 A, Tj = 25 _C  
ID = 10 A, Tj = 100 _C  
IF = 20 A, Tj = 25 _C  
IF = 10 A, Tj = 100 _C  
IF = 10 A, Tj = 25 _C  
ID = 20 A, VPN = 300 V, Tj = 25 _C  
0.125  
0.23  
1.85  
1.55  
1.0  
RDS(on)  
W
Diode Forward Voltage (PFC Diode)  
VF  
2.6  
V
V
MOSFET Body Diode Forward Voltage  
Switching Time  
VSD  
ton  
1.5  
0.9  
1.1  
V
0.4  
ms  
ms  
toff  
0.6  
Inverter Section  
Collector−Emitter Leakage Current  
Bootstrap Diode Leakage Current  
Collector−Emitter Saturation Voltage  
VCES = 600 V  
ICES  
IR(DB)  
100  
100  
2.65  
mA  
mA  
V
VRRM(DB) = 600 V  
VCE(sat)  
2.0  
1.7  
1.8  
1.4  
0.5  
0.6  
IC = 10 A, Tj = 25 _C  
IC = 5 A, Tj = 100 _C  
IF = 10 A, Tj = 25 _C  
IF = 5 A, Tj = 100 _C  
IC = 10 A, VPN = 300 V, Tj = 25 _C  
V
FWDi Forward Voltage  
Switching Times  
VF  
2.4  
V
V
ton  
toff  
1.0  
1.1  
ms  
ms  
www.onsemi.com  
6
 
NFCS1060L3TT  
Table 5. ELECTRICAL CHARACTERISTICS (continued)  
T
C
= 25 _C, VBIAS (VBS, VDD) = 15 V unless otherwise noted.  
Parameter  
Test Conditions  
Symbol  
Min  
Typ  
295  
Max  
Unit  
mJ  
Turn−on Switching Loss  
Turn−off Switching Loss  
IC = 10 A, VPN = 300 V, Tj = 25 _C  
E
ON  
E
OFF  
E
TOT  
155  
mJ  
Total Switching Loss  
450  
mJ  
Turn−on Switching Loss  
Turn−off Switching Loss  
IC = 5 A, VPN = 300 V, Tj = 100 _C  
IC = 5 A, VPN = 300 V, Tj = 100 _C  
E
195  
mJ  
ON  
OFF  
TOT  
E
E
E
115  
mJ  
Total Switching Loss  
310  
mJ  
Diode Reverse Recovery Energy  
Diode Reverse Recovery Time  
Reverse Bias Safe Operating Area  
Short Circuit Safe Operating Area  
Allowable Offset Voltage Slew Rate  
Driver Section  
50  
mJ  
REC  
trr  
200  
ns  
IC = 20 A, VCES = 450 V  
VCES = 400 V, Tj = 150 _C  
U − NU, V − NV, W − NW  
RBSOA  
SCSOA  
dv/dt  
Full Square  
5
ms  
50  
50  
V/ns  
Quiescent VBS Supply Current  
Quiescent VDD Supply Current  
ON Threshold Voltage  
VBS = 15 V, per driver  
VDD = 15 V  
IQBS  
IQDD  
0.08  
0.85  
0.4  
2.4  
mA  
mA  
V
HIN(U), HIN(V), HIN(W), LIN(U),  
LIN(V), LIN(W), IN(X) − VSS  
VIN(ON)  
VIN(OFF)  
2.5  
OFF Threshold Voltage  
0.8  
143  
2
V
Logic Input Current  
VIN = +3.3 V  
VIN = 0 V  
I
100  
mA  
mA  
V
IN+  
Logic Input Current  
I
IN−  
Bootstrap Diode Forward Voltage  
Bootstrap Circuit Resistance  
IF(DB) = 0.1 A  
VF(DB)  
RBC  
0.8  
2
Resistor Value for Common Boot  
Charge Line  
W
Resister Values for Separate Boot  
Charge Lines  
RBS  
10  
W
FLTEN Terminal Sink Current  
FLTEN Output Pulse Width  
FLTEN Threshold  
VFLTEN : ON / VFAULT = 0.1 V  
IoSD  
tFO  
2
3.0  
mA  
ms  
V
1.0  
VEN ON−state Voltage  
VEN OFF−state Voltage  
ITRIP(I) − VSS  
VEN(ON)  
VEN(OFF)  
VITRIPth(I)  
VITRIPth(P)  
tITRIP(I)  
tITRIP(P)  
tITRIPBL  
2.5  
0.8  
0.54  
0.25  
850  
800  
V
ITRIP(I) Threshold Voltage  
0.44  
0.37  
490  
440  
290  
10.5  
0.49  
0.31  
600  
550  
350  
11.1  
V
ITRIP(P) Threshold Voltage  
ITRIP(P) − VSS  
V
Shutdown Propagation Delay for INV  
Shutdown Propagation Delay for PFC  
ITRIP Blanking Time  
ns  
ns  
ns  
V
Supply Circuit Under−voltage Protection  
Reset Level  
UVBSR  
UVDDR  
11.7  
Supply Circuit Under−voltage Protection  
Detection Level  
UVBSD  
UVDDD  
10.3  
0.14  
10.9  
0.2  
11.5  
V
V
Supply Circuit Under−voltage Protection  
Hysteresis  
UVBSHYS  
UVDDHYS  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
7
NFCS1060L3TT  
TYPICAL CHARACTERISTICS − PFC SECTION  
T
J
= 25 °C  
Figure 4. VDS versus ID for Different Temperatures  
(VDD = 15 V)  
Figure 5. PFC Diode VF versus IF for Different  
Temperatures  
Figure 6. EON versus ID for Different Temperatures  
Figure 7. EOFF versus ID for Different Temperatures  
Figure 8. Thermal Impedance Plot (PFC MOSFET)  
Figure 9. Thermal Impedance Plot (PFC Diode)  
Figure 10. Turn−on Waveform Tj = 1005C, VPN = 300 V  
Figure 11. Turn−off Waveform Tj = 1005C, VPN = 300 V  
www.onsemi.com  
8
NFCS1060L3TT  
TYPICAL CHARACTERISTICS − INVERTER SECTION  
T
J
= 25 °C  
Figure 12. VCE versus IC for Different Temperatures  
(VDD/VBS = 15 V)  
Figure 13. VF versus IF for Different Temperatures  
Figure 14. EON versus IC for Different Temperatures  
Figure 15. EOFF versus IC for Different Temperatures  
Figure 16. Thermal Impedance Plot (IGBT)  
Figure 17. Thermal Impedance Plot (FRD)  
Figure 18. Turn−on Waveform Tj = 1005C, VPN = 300 V  
Figure 19. Turn−off Waveform Tj = 1005C, VPN = 300 V  
www.onsemi.com  
9
NFCS1060L3TT  
APPLICATIONS INFORMATION  
Input / Output Timing Chart  
VBS undervoltage protection reset signal  
HIN  
LIN  
VDD undervoltage protection reset voltage (Note 2)  
VBS undervoltage protection reset voltage (Note 3)  
VDD  
VBS  
Voltage w0.54 V  
(Note 4)  
Voltage < 0.44 V  
ITRIP(I)  
ITRIP(P)  
Voltage v0.39 V  
FLTEN  
(with pull−up)  
Crossconduction prevention period (Note 1)  
Upper IGBT  
Gate Drive  
Lower IGBT  
Gate Drive  
Automatic reset after protection (FAULT output pulse width)  
NOTES:  
1. This section of the timing diagram shows the effect of cross−conduction prevention.  
2. This section of the timing diagram shows that when the voltage on VDD decreases sufficiently all gate output signals will go  
low, switching off all six IGBTs and PFC MOSFET. When the voltage on VDD rises sufficiently, normal operation will resume.  
3. This section shows that when the bootstrap voltage on VBS drops, the corresponding high side output U (V, W) is switched  
off. When the voltage on VBS rises sufficiently, normal operation will resume.  
4. This section shows that when the voltage on ITRIP(I) exceeds the threshold, all IGBTs and PFC MOSFET are turned off.  
Normal operation resumes later after the over−current condition is removed. Similarly, when the voltage on ITRIP(P) ex-  
ceeds the threshold, all IGBTs and PFC MOSFET are turned off. Normal operation resumes later after the over−current  
condition is removed  
5. After VDD has risen above the threshold to enable normal operation, the driver waits to receive an input signal on the LIN  
input before enabling the driver for the HIN signal.  
Figure 20. Input / Output Timing Chart  
Table 6. INPUT / OUTPUT LOGIC TABLE  
INPUT  
ITRIP(I)  
OUTPUT  
Low side IGBT  
HIN  
H
LIN  
L
ITRIP(P)  
High side IGBT  
ON (Note 5)  
OFF  
U,V,W  
VFLTEN  
OFF  
OFF  
OFF  
OFF  
ON  
L
L
L
L
OFF  
ON  
P
L
H
L
NU,NV,NW  
L
L
L
OFF  
OFF  
OFF  
OFF  
OFF  
High Impedance  
High Impedance  
High Impedance  
High Impedance  
H
H
X
L
L
OFF  
X
H
X
X
H
OFF  
X
X
OFF  
ON  
www.onsemi.com  
10  
 
NFCS1060L3TT  
Table 7. THERMISTOR CHARACTERISTICS  
Parameter  
Resistance  
Symbol  
Condition  
Min  
44.65  
1.29  
Typ  
47  
Max  
49.35  
1.53  
Unit  
kW  
kW  
K
R
Tc = 25_C  
25  
R
Tc = 125_C  
1.41  
4050  
125  
B−Constant (25−50_C)  
B
4009.5  
40  
4090.5  
+125  
Temperature Range  
_C  
Figure 21. Thermistor Resistance − Thermistor Temperature  
www.onsemi.com  
11  
NFCS1060L3TT  
Signal Inputs  
Minimum Input Pulse Width  
Each signal input has a pull−down resistor internally. An  
additional pull−down resistor of between 2.2 kW and 3.3 kW  
is recommended on each input to improve noise immunity.  
When input pulse width is less than 1 ms, an output may  
not react to the pulse. (Both ON signal and OFF signal)  
Calculation of Bootstrap Capacitor Value  
The bootstrap capacitor value CB is calculated using the  
following approach. The following parameters influence the  
choice of bootstrap capacitor:  
VBS: Bootstrap power supply.  
15 V is recommended.  
FLTEN pin  
The FLTEN pin is connected internally to an open−drain  
FAULT output and an ENABLE input requiring a pull−up  
resistor. If the pull−up voltage is 5 V, use a pull−up resistor  
with a value of 6.8 kW or higher. If the pull−up voltage is  
15 V, use a pull−up resistor with a value of 20 kW or higher.  
The pulled up voltage in normal operation for the FLTEN  
pin should be above 2.5 V, noting that it is connected to an  
internal ENABLE input. The FAULT output is triggered if  
there is a VDD under−voltage or an overcurrent condition on  
either the PFC or inverter stages.  
Driving the FLTEN terminal pin is used to enable or shut  
down the built−in driver. If the voltage on the FLTEN pin  
rises above the positive going FLTEN threshold, the output  
drivers are enabled. If the voltage on the FLTEN pin falls  
below the negative going FLTEN threshold, the drivers are  
disabled.  
QG: Total gate charge of IGBT at VBS = 15 V.  
12.7 nC  
UVLO: Falling threshold for UVLO.  
Specified as 12 V.  
IDMAX: High side drive power dissipation.  
Specified as 0.4 mA  
TONMAX: Maximum ON pulse width of high side  
IGBT.  
Capacitance calculation formula:  
CB = (QG + IDMAX * TONMAX)/(VBS − UVLO)  
Under−voltage Protection  
CB is recommended to be approximately 3 times the value  
calculated above. The recommended value of CB is in the  
range of 1 to 47 mF, however, the value needs to be verified  
prior to production. When not using the bootstrap circuit,  
each high side driver power supply requires an external  
independent power supply.  
If VDD goes below the VDD supply undervoltage lockout  
falling threshold, the FAULT output is switched on. The  
FAULT output stays on until VDD rises above the VDD  
supply under−voltage lockout rising threshold. The  
hysteresis is approximately 200 mV.  
Overcurrent Protection  
An over−current condition is detected if the voltage on the  
ITRIP(I) or ITRIP(P) pins are exceed the reference voltage  
(Refer to Table 6 − Input / Output Logic Table). There is a  
blanking time of typically 350 ns to improve noise  
immunity. After a shutdown propagation delay of typically  
0.6 ms, the FAULT output is switched on.  
The over−current protection threshold should be set to be  
equal or lower to 2 times the module rated current (Io).  
An additional fuse is recommended to protect against  
system level or abnormal over−current fault conditions.  
Capacitors on High Voltage and VDD supplies  
Both the high voltage and VDD supplies require an  
electrolytic capacitor and an additional high frequency  
capacitor. The recommended value of the high frequency  
capacitor is between 100 nF and 10 mF.  
Figure 22. Bootstrap Capacitance versus Ton−max  
www.onsemi.com  
12  
NFCS1060L3TT  
Table 8. MOUNTING INSTRUCTIONS  
Item  
Recommended Condition  
Pitch  
56.0 0.1 mm (Please refer to MECHANICAL CASE OUTLINE)  
Screw  
Diameter : M3  
Screw head types: pan head, truss head, binding head  
Washer  
Plane washer  
The size is D: 7 mm, d: 3.2 mm and t: 0.5 mm JIS B 1256  
Heat sink  
Material: Aluminum or Copper  
Warpage (the surface that contacts IPM ) : 50 to 100 mm  
Screw holes must be countersunk.  
No contamination on the heat sink surface that contacts IPM.  
Torque  
Grease  
Temporary tightening : 20 to 30 % of final tightening on first screw  
Temporary tightening : 20 to 30 % of final tightening on second screw  
Final tightening : 0.6 to 0.9 Nm on first screw  
Final tightening : 0.6 to 0.9 Nm on second screw  
Silicone grease.  
Thickness : 100 to 200 mm  
Uniformly apply silicone grease to whole back.  
Thermal foils are only recommended after careful evaluation. Thickness, stiffness and compressibility  
parameters have a strong influence on performance.  
Figure 23. Mount IPM on a Heat Sink  
Figure 24. Size of Washer  
Figure 25. Uniform Application of Grease Recommended  
Steps to mount an IPM on a heat sink  
st  
1 : Temporarily tighten maintaining a left/right balance.  
nd  
2
: Finally tighten maintaining a left/right balance.  
www.onsemi.com  
13  
NFCS1060L3TT  
TEST CIRCUITS  
ICES,  
IDSS,  
IR  
ICES, IDSS, IR, IR(DB)  
4
5
VBS=15V  
A
A
Inverter High Side  
Inverter Low Side  
PFC  
MOSFET  
VBS=15V  
VBS=15V  
8
U
V
16  
9
W
16  
5
U
V
9
W
5
VCES,  
9
VDSS,  
VRRM  
A
B
16  
13  
13  
22  
1
12  
13  
34  
21  
20  
19  
VDD=15V  
B
Boot Strap Diode  
V
PFC  
Diode  
35,19,20,21,22  
U
W
4
A
12  
35  
8
16  
1
Figure 26. Test Circuit for ICES, IDSS, IR  
B
35  
35  
VCE(sat), RDS(on) (Test by pulse)  
VBS=15V  
Inverter High Side  
Inverter Low Side  
4
5
PFC  
MOSFET  
U
V
16  
9
W
16  
5
U
V
9
W
5
A
VBS=15V  
VBS=15V  
8
A
B
C
16  
13  
23  
13  
22  
26  
1
9
21  
27  
20  
28  
19  
29  
12  
13  
34  
30  
C
24  
25  
IC,  
ID  
V
VCE(sat),  
RDS(on)  
VDD=15V  
5V  
B
35,19,20,21,22  
Figure 27. Test Circuit for VCE(sat)  
VF, VF(DB), VSD (Test by pulse)  
Inverter High Side  
Inverter Low Side  
U
V
16  
9
W
16  
5
U
V
9
W
5
A
A
B
16  
13  
13  
22  
V
21  
20  
IF  
B
MOSFET  
Body  
Diode  
Boot Strap Diode  
PFC  
Diode  
U
V
8
W
4
Figure 28. Test Circuit for VF  
A
12  
34  
16  
1
1
B
34  
34  
19  
IQBS, IQDD  
IQBS,  
IQDD  
A
A
VBS U  
VBS V  
VBS W  
VDD  
A
B
12  
13  
8
9
4
5
34  
35  
VBS,  
VDD  
B
Figure 29. Test Circuit for IQBS, IQDD  
www.onsemi.com  
14  
NFCS1060L3TT  
VITRIP(I), VITRIP(P)  
A
B
VITRIP(I) (U−)  
VITRIP(P)  
34  
30  
VDD=15V  
A
B
C
D
13  
22  
26  
32  
1
V
Io  
19  
29  
31  
Input Signal  
VSC  
C
D
35, 19, 20, 21, 22  
Input Signal  
(0 to 5 V)  
Figure 31. Test Circuit for VITRIP(I), VITRIP(P)  
VSC  
I
O
Figure 30.  
Switching Time (The circuit is a representative example of the Inverter Low side U phase.)  
Inverter High Side  
Inverter Low Side  
VBS=15V  
VBS=15V  
VBS=15V  
4
5
PFC  
MOSFET  
A
C
U
V
W
16  
20  
5
U
V
W
16  
20  
5
8
A
B
C
D
E
16  
22  
13  
22  
23  
16  
21  
9
16  
22  
13  
16  
26  
16  
21  
9
16  
19  
1
9
12  
13  
34  
VPN  
CS  
D
B
21  
24  
20  
25  
16  
27  
16  
28  
16  
29  
VDD=15V  
30  
E
Input Signal  
Input Signal  
(0 to 5 V)  
35,19,20,21,22  
IC  
Figure 33. Test Circuit for Switching Time  
90%  
10%  
IC  
ton  
toff  
Figure 32.  
www.onsemi.com  
15  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SIP35 56x25.8 / SIP2A2  
CASE 127DT  
ISSUE A  
DATE 05 MAR 2019  
GENERIC  
MARKING DIAGRAM*  
XXXX = Specific Device Code  
ZZZ = Assembly Lot Code  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
XXXXXXXXXXXXXXXXX  
ZZZATYWW  
AT  
Y
= Assembly & Test Location  
= Year  
WW = Work Week  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON04875G  
SIP35 56X25.8 / SIP2A2  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NFCT22

TRUNKING PVCU WHITE
ETC

NFCT32

TRUNKING PVCU WHITE
ETC

NFCT33

TRUNKING PVCU WHITE
ETC

NFCT42

TRUNKING PVCU WHITE
ETC

NFCT44

TRUNKING PVCU WHITE
ETC

NFD100

TRANSISTOR | MOSFET | MATCHED PAIR | N-CHANNEL | 100V V(BR)DSS | 30A I(D) | SIP
ETC

NFD15

Shockley Diode, 152V V(BO) Max, TO-92,
NEC

NFD15A

Shockley Diode, 115V V(BO) Max, TO-92,
NEC

NFD15B

Shockley Diode, 128V V(BO) Max, TO-92,
NEC

NFD15B

128V, SHOCKLEY DIODE, TO-92
RENESAS

NFD15C

Shockley Diode, 138V V(BO) Max, TO-92,
NEC

NFD15D

Shockley Diode, 146V V(BO) Max, TO-92,
NEC