NL27WZ126_12 [ONSEMI]

Dual Buffer with 3-State Outputs; 双缓冲器,具有三态输出
NL27WZ126_12
型号: NL27WZ126_12
厂家: ONSEMI    ONSEMI
描述:

Dual Buffer with 3-State Outputs
双缓冲器,具有三态输出

文件: 总6页 (文件大小:107K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NL27WZ126  
Dual Buffer with 3-State  
Outputs  
The NL27WZ126 is a high performance dual noninverting buffer  
operating from a 1.65 V to 5.5 V supply.  
Features  
http://onsemi.com  
MARKING  
Extremely High Speed: t 2.6 ns (typical) at V = 5.0 V  
PD  
CC  
Designed for 1.65 V to 5.5 V V Operation  
CC  
DIAGRAM  
Over Voltage Tolerant Inputs and Outputs  
LVTTL Compatible Interface Capability With 5.0 V TTL Logic  
8
with V = 3.0 V  
CC  
M2 M G  
LVCMOS Compatible  
US8  
US SUFFIX  
CASE 493  
G
24 mA Balanced Output Sink and Source Capability  
Near Zero Static Supply Current Substantially Reduces System  
1
Power Requirements  
M2  
M
G
= Device Code  
= Date Code*  
= PbFree Package  
3State OE Input is ActiveHigh  
Replacement for NC7WZ126  
Chip Complexity = 72 FETs  
These Devices are PbFree and are RoHS Compliant  
(Note: Microdot may be in either location)  
*Date Code orientation may vary depending upon  
manufacturing location.  
PIN ASSIGNMENT  
OE  
A
1
2
8
7
V
CC  
1
Pin  
1
Function  
OE  
2
A
1
Y
2
OE  
1
2
3
4
GND  
5
A
Y
2
Y
3
4
6
5
Y
2
1
2
6
1
7
OE  
V
2
GND  
A
8
CC  
FUNCTION TABLE  
Input  
Figure 1. Pinout (Top View)  
Output  
OE  
H
A
Y
n
n
n
H
H
A
1
1
Y
Y
1
H
L
L
Z
OE  
A
EN  
1
2
2
L
X
2
OE  
X = Don’t Care  
n = 1, 2  
Figure 2. Logic Symbol  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 5 of this data sheet.  
© Semiconductor Components Industries, LLC, 2012  
1
Publication Order Number:  
April, 2012 Rev. 8  
NL27WZ126/D  
NL27WZ126  
MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
0.5 to +7.0  
0.5 to +7.0  
0.5 to +7.0  
50  
Units  
V
V
DC Supply Voltage  
DC Input Voltage  
CC  
V
V
I
O
V
DC Output Voltage  
V
I
IK  
DC Input Diode Current  
mA  
V < GND  
I
I
DC Output Diode Current  
50  
mA  
OK  
V
O
< GND  
I
DC Output Sink Current  
50  
mA  
mA  
mA  
°C  
O
I
DC Supply Current per Supply Pin  
DC Ground Current per Ground Pin  
Storage Temperature Range  
100  
CC  
I
100  
GND  
T
65 to +150  
STG  
T
Lead Temperature, 1 mm from Case for 10 Seconds  
Junction Temperature under Bias  
Thermal Resistance (Note 1)  
260  
°C  
L
T
+150  
°C  
J
q
250  
250  
°C/W  
mW  
JA  
P
D
Power Dissipation in Still Air at 85°C  
Moisture Sensitivity  
MSL  
Level 1  
F
R
Flammability Rating  
Oxygen Index: 28 to 34  
UL 94 V0 @ 0.125 in  
V
ESD  
ESD Withstand Voltage  
V
Human Body Model (Note 2)  
Machine Model (Note 3)  
> 2000  
> 200  
N/A  
Charged Device Model (Note 4)  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. Measured with minimum pad spacing on an FR4 board, using 10 mmby1 inch, 2ounce copper trace with no air flow.  
2. Tested to EIA/JESD22A114A.  
3. Tested to EIA/JESD22A115A.  
4. Tested to JESD22C101A.  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
Max  
Units  
V
CC  
Supply Voltage  
Operating  
Data Retention Only  
V
1.65  
1.5  
5.5  
5.5  
V
Input Voltage (Note 5)  
0
0
5.5  
5.5  
V
V
I
V
O
Output Voltage (HIGH or LOW State)  
Operating FreeAir Temperature  
Input Transition Rise or Fall Rate  
T
A
40  
+85  
°C  
Dt/DV  
ns/V  
V
CC  
V
CC  
V
CC  
= 2.5 V 0.2 V  
= 3.0 V 0.3 V  
= 5.0 V 0.5 V  
0
0
0
20  
10  
5
5. Unused inputs may not be left open. All inputs must be tied to a highor lowlogic input voltage level.  
http://onsemi.com  
2
 
NL27WZ126  
DC ELECTRICAL CHARACTERISTICS  
V
T
= 255C  
Typ  
405C 3 T 3 855C  
CC  
A
A
Symbol  
Parameter  
Condition  
(V)  
Min  
0.75 V  
Max  
Min  
Max  
Units  
V
IH  
HighLevel Input Voltage  
1.65  
2.3 to 5.5  
0.75 V  
V
CC  
CC  
CC  
0.7 V  
0.7 V  
CC  
V
LowLevel Input Voltage  
1.65  
0.25 V  
0.25 V  
V
V
IL  
CC  
CC  
CC  
CC  
2.3 to 5.5  
0.3 V  
0.3 V  
V
OH  
HighLevel Output  
I
= 100 mA  
= 8 mA  
= 12 mA  
= 16 mA  
= 24 mA  
= 32 mA  
1.65 to 5.5  
1.65  
2.7  
V
CC  
0.1  
V
V
CC  
0.1  
OH  
CC  
Voltage  
I
1.9  
2.1  
2.4  
2.7  
2.5  
4.0  
1.9  
OH  
V
IN  
= V  
I
2.2  
2.4  
2.3  
3.8  
2.2  
2.4  
2.3  
3.8  
IH  
OH  
I
3.0  
OH  
I
3.0  
OH  
I
4.5  
OH  
V
OL  
LowLevel Output  
I
OL  
= 100 mA  
= 8 mA  
= 12 mA  
= 16 mA  
= 24 mA  
= 32 mA  
1.65 to 5.5  
1.65  
2.7  
0.1  
0.3  
0.1  
0.3  
V
OL  
Voltage  
I
0.20  
0.22  
0.28  
0.38  
0.42  
V
IN  
= V or V  
I
OL  
0.4  
0.4  
IH  
IL  
OL  
I
3.0  
0.4  
0.55  
0.55  
0.4  
0.55  
0.55  
I
OL  
3.0  
4.5  
OL  
I
I
Input Leakage Current  
V
= 5.5V or GND  
= 5.5V or  
0 to 5.5  
0
0.1  
1
1.0  
10  
mA  
mA  
IN  
IN  
I
Power Off  
Leakage Current  
V
V
OFF  
IN  
OUT  
= 5.5 V  
I
Quiescent Supply Current  
V
V
= 5.5V or GND  
5.5  
1
10  
5
mA  
mA  
CC  
IN  
I
3State Output Leakage  
= V or V  
1.65 to 5.5  
0.5  
OZ  
IN  
IL  
IH  
0 V V  
5.5 V  
OUT  
AC ELECTRICAL CHARACTERISTICS (t = t = 3.0 ns)  
R
F
V
T
A
= 255C  
405C 3 T 3 855C  
CC  
A
Symbol  
Parameter  
Condition  
(V)  
Min  
Typ Max  
Min  
Max  
Units  
t
Propagation Delay  
AN to YN  
1.8 0.15  
2.5 0.2  
2.0  
1.0  
12  
7.5  
2.0  
1.0  
13  
8
ns  
R = 1 MW, C = 15 pF  
PLH  
L
L
t
PHL  
(Figures 3 and 4,  
Table 1)  
R = 1 MW, C = 15 pF  
3.3 0.3  
0.8  
1.2  
5.2  
5.7  
0.8  
1.2  
5.5  
6.0  
L
L
R = 500 W, C = 50 pF  
L
L
R = 1 MW, C = 15 pF  
5.0 0.5  
0.5  
0.8  
4.5  
5.0  
0.5  
0.8  
4.8  
5.3  
L
L
R = 500 W, C = 50 pF  
L
L
t
t
Output to Output Skew  
(Note 6)  
3.3 0.3  
5.0 0.5  
1.0  
0.8  
1.0  
0.8  
ns  
ns  
R = 500 W, C = 50 pF  
OSLH  
OSHL  
L
L
R = 500 W, C = 50 pF  
L
L
t
Output Enable Time  
(Figures 5, 6 and 7,  
Table 1)  
1.8 0.15  
2.5 0.2  
3.0  
1.8  
14  
8.5  
3.0  
1.8  
15  
9.0  
R = 250 W, C = 50 pF  
PZH  
L
L
t
PZL  
3.3 0.3  
5.0 0.5  
1.2  
0.8  
6.2  
5.5  
1.2  
0.8  
6.5  
5.8  
t
Output Enable Time  
(Figures 5, 6 and 7,  
Table 1)  
R & R1 = 500 W, C = 50 pF 1.8 0.15  
2.5  
1.5  
12  
2.5  
1.5  
13  
ns  
PHZ  
PLZ  
L
L
t
2.5 0.2  
3.3 0.3  
5.0 0.5  
8.0  
8.5  
0.8  
0.3  
5.7  
4.7  
0.8  
0.3  
6.0  
5.0  
6. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device.  
This specification applies to any outputs switching in the same direction, either HIGHtoLOW (t  
) or LOWtoHIGH (t  
); parameter  
OSHL  
OSLH  
guaranteed by design.  
http://onsemi.com  
3
 
NL27WZ126  
CAPACITIVE CHARACTERISTICS  
Symbol  
Parameter  
Condition  
Typical  
2.5  
Units  
pF  
C
Input Capacitance  
V
V
= 5.5 V, V = 0 V or V  
I
IN  
CC  
CC  
CC  
C
Output Capacitance  
= 5.5 V, V = 0 V or V  
2.5  
pF  
OUT  
CC  
I
C
Power Dissipation Capacitance (Note 7)  
10 MHz, V = 3.3 V, V = 0 V or V  
9
11  
pF  
PD  
CC  
I
CC  
CC  
10 MHz, V = 5.5 V, V = 0 V or V  
CC  
I
7. C is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.  
PD  
Average operating current can be obtained by the equation: I  
) = C V f + I . C is used to determine the noload dynamic  
CC(OPR  
PD CC in CC PD  
2
power consumption; P = C V  
f + I V  
.
D
PD  
CC  
in  
CC  
CC  
t = 3 ns  
f
t = 3 ns  
f
OE = GND  
V
CC  
90%  
mi  
90%  
INPUT  
OUTPUT  
INPUT  
A and B  
V
V
mi  
10%  
10%  
C *  
L
R
L
GND  
t
t
PHL  
PLH  
V
V
OH  
V
mo  
V
mo  
OUTPUT Y  
*Includes all probe and jig capacitance.  
A 1 MHz square input wave is recommended for  
propagation delay tests.  
OL  
Figure 3. Switching Waveform  
Figure 4. tPLH or tPHL  
2.7 V  
V
mi  
V
mi  
OE  
0 V  
t
t
PHZ  
PZH  
V
CC  
V
0.3 V  
OH  
V
V
On  
mo  
0 V  
t
t
PLZ  
PZL  
3.0 V  
+ 0.3 V  
On  
mo  
V
OL  
GND  
Figure 5. AC Output Enable and Disable Waveform  
http://onsemi.com  
4
 
NL27WZ126  
Table 1. Output Enable and Disable Times  
tR = tF = 2.5 ns, 10% to 90%; f = 1 MHz; tW = 500 nsv  
V
CC  
3.3 V + 0.3 V  
1.5 V  
2.7 V  
1.5 V  
1.5 V  
2.5 V + 0.2 V  
Symbol  
V
mi  
V
2
CC/  
V
mo  
1.5 V  
V
CC/  
2
2   V  
CC  
INPUT  
INPUT  
R = 500 W  
1
V
CC  
OUTPUT  
R = 500 W  
OUTPUT  
R = 250 W  
C = 50 pF  
L
C = 50 pF  
L
L
L
A 1 MHz square input wave is recommended for  
propagation delay tests.  
A 1 MHz square input wave is recommended for  
propagation delay tests.  
Figure 6. tPZL or tPLZ  
Figure 7. tPZH or tPHZ  
DEVICE ORDERING INFORMATION  
Device Order Number  
Package Type  
Shipping  
NL27WZ126USG  
US8  
(PbFree)  
3000 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
5
NL27WZ126  
PACKAGE DIMENSIONS  
US8  
CASE 49302  
ISSUE B  
X−  
NOTES:  
A
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
J
8
5
Y−  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION “A” DOES NOT INCLUDE MOLD  
FLASH, PROTRUSION OR GATE BURR. MOLD  
FLASH. PROTRUSION AND GATE BURR SHALL  
NOT EXCEED 0.140 MM (0.0055”) PER SIDE.  
4. DIMENSION “B” DOES NOT INCLUDE INTER  
LEAD FLASH OR PROTRUSION. INTERLEAD  
FLASH AND PROTRUSION SHALL NOT  
E3XCEED 0.140 (0.0055”) PER SIDE.  
DETAIL E  
B
L
5. LEAD FINISH IS SOLDER PLATING WITH  
THICKNESS OF 0.00760.0203 MM. (300800 “).  
6. ALL TOLERANCE UNLESS OTHERWISE  
SPECIFIED 0.0508 (0.0002 “).  
1
4
R
S
MILLIMETERS  
INCHES  
G
P
DIM  
A
B
C
D
F
G
H
J
K
L
M
N
P
MIN  
1.90  
2.20  
0.60  
0.17  
0.20  
0.50 BSC  
0.40 REF  
0.10  
MAX  
2.10  
2.40  
0.90  
0.25  
0.35  
MIN  
MAX  
0.083  
0.094  
0.035  
0.010  
0.014  
U
0.075  
0.087  
0.024  
0.007  
0.008  
0.020 BSC  
0.016 REF  
H
N
C
T−  
0.10 (0.004)  
T
K
SEATING  
PLANE  
D
R 0.10 TYP  
M
0.18  
0.10  
3.20  
6
0.004  
0.007  
0.004  
0.126  
6
M
0.10 (0.004)  
T
X Y  
0.00  
3.00  
0
0.000  
0.118  
0
V
_
_
_
_
5
10  
5
10  
_
_
_
_
0.23  
0.23  
0.37  
0.60  
0.34  
0.33  
0.47  
0.80  
0.010  
0.009  
0.015  
0.024  
0.013  
0.013  
0.019  
0.031  
R
S
U
V
F
DETAIL E  
0.12 BSC  
0.005 BSC  
SOLDERING FOOTPRINT*  
3.8  
0.15  
1.8  
0.07  
0.50  
0.0197  
0.30  
0.012  
1.0  
0.0394  
mm  
inches  
ǒ
Ǔ
SCALE 8:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NL27WZ126/D  

相关型号:

NL27WZ14

Dual Schmitt-Trigger Inverter
ONSEMI

NL27WZ14/D

Dual Schmitt-Trigger Inverter
ETC

NL27WZ14DBVT1G

Dual Inverter with Schmitt Trigger Input
ONSEMI

NL27WZ14DFT2

Dual Schmitt-Trigger Inverter
ONSEMI

NL27WZ14DFT2G

Dual Schmitt−Trigger Inverter
ONSEMI

NL27WZ14DFT2G-L22348

Dual Inverter with Schmitt Trigger Input
ONSEMI

NL27WZ14DFT4

DUAL 1-INPUT INVERT GATE, PDSO6, SC-70, SC-88, SOT-363, 6 PIN
ONSEMI

NL27WZ14DFT4G

Dual Inverter with Schmitt Trigger Input
ONSEMI

NL27WZ14DTT1

Dual Schmitt-Trigger Inverter
ONSEMI

NL27WZ14DTT1G

Dual Schmitt−Trigger Inverter
ONSEMI

NL27WZ14DTT3

DUAL 1-INPUT INVERT GATE, PDSO6, SC-59, SOT-23, TSOP-6
ONSEMI

NL27WZ14MU1TCG

Dual Inverter with Schmitt Trigger Input
ONSEMI