NLAS4052QSR [ONSEMI]

Analog Multiplexer/ Demultiplexer; 模拟多路复用器/多路解复用器
NLAS4052QSR
型号: NLAS4052QSR
厂家: ONSEMI    ONSEMI
描述:

Analog Multiplexer/ Demultiplexer
模拟多路复用器/多路解复用器

解复用器 开关 复用器或开关 信号电路 光电二极管
文件: 总16页 (文件大小:130K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NLAS4052  
Analog Multiplexer/  
Demultiplexer  
Double–Pole, 4–Position  
Plus Common Off  
http://onsemi.com  
MARKING DIAGRAMS  
The NLAS4052 is an improved version of the MC14052 and  
MC74HC4052 fabricated in sub–micron Silicon Gate CMOS  
technology for lower R  
resistance and improved linearity with  
DS(on)  
low current. This device may be operated either with a single supply or  
16  
dual supply up to ±3 V to pass a 6 V signal without coupling  
9
PP  
capacitors.  
NLAS4052  
AWLYWW  
When operating in single supply mode, it is only necessary to tie  
SO–16  
D SUFFIX  
CASE 751B  
1
8
V , pin 7 to ground. For dual supply operation, V is tied to a  
EE  
EE  
negative voltage, not to exceed maximum ratings.  
16  
9
Improved R Specifications  
DS(on)  
Pin for Pin Replacement for MAX4052 and MAX4052A  
NLAS  
4052  
ALYW  
– One Half the Resistance Operating at 5.0 Volts  
TSSOP–16  
DT SUFFIX  
CASE 948F  
Single or Dual Supply Operation  
– Single 2.5–5 Volt Operation, or Dual ±3 Volt Operation  
1
8
9
– With V of 3.0 to 3.3 V, Device Can Interface with 1.8 V Logic,  
No Translators Needed  
– Address and Inhibit pins are Logic is Over–Voltage Tolerant and –  
CC  
16  
May Be Driven Up +6 V Regardless of V  
NLAS  
4052  
ALYW  
CC  
Address and Inhibit pins are Standard TTL Compatible  
QSOP–16  
QS SUFFIX  
CASE 492  
– Greatly Improved Noise Margin Over MAX4052 and MAX4052A  
Improved Linearity Over Standard HC4052 Devices  
1
8
Popular SOIC, and Space Saving TSSOP, and QSOP 16 Pin  
A
WL, L  
Y
= Assembly Location  
= Wafer Lot  
= Year  
Packages  
WW, W = Work Week  
ORDERING INFORMATION  
Device  
NLAS4052DR2  
NLAS4052DTR2  
NLAS4052QSR  
Package  
Shipping  
2500 Units/Reel  
SO–16  
TSSOP–16 2500 Units/Reel  
QSOP–16 2500 Units/Reel  
Semiconductor Components Industries, LLC, 2002  
1
Publication Order Number:  
June, 2002 – Rev. 1  
NLAS4052/D  
NLAS4052  
V
CC  
NO  
NO  
COM NO  
NO  
ADD ADD  
3A B A  
1A  
2A  
A
0A  
16  
15  
14  
13  
12  
11  
10  
9
NO  
NO  
0B  
1B  
NO  
NO  
1A  
2A  
COM  
B
COM  
NO  
NO  
A
3B  
2B  
1
2
NO  
3
4
5
6
7
8
NO  
COM NO  
NO  
Inhibit  
V
EE  
GND  
NO  
0B  
1B  
B
3B  
2B  
0A  
3A  
NO  
Figure 1. Pin Connection  
ADD  
ADD  
(Top View)  
B
A
Inhibit  
LOGIC  
Figure 2. Logic Diagram  
TRUTH TABLE  
Address  
B
A
Inhibit  
ON SWITCHES*  
1
X
X
All switches open  
don’t care  
don’t care  
0
0
0
0
0
0
1
0
1
COM –NO ,  
A 0A  
COM –NO  
B
0B  
0
1
1
COM –NO ,  
A 1A  
COM –NO  
B
1B  
COM –NO  
,
A
2A  
COM –NO  
B
2B  
COM –NO  
,
A
3A  
COM –NO  
B
3B  
*NO and COM pins are identical and interchangeable. Either may be  
considered an input or output; signals pass equally well in either direction.  
http://onsemi.com  
2
NLAS4052  
MAXIMUM RATINGS (Note 1)  
Symbol  
Parameter  
Value  
Unit  
V
V
Negative DC Supply Voltage  
(Referenced to GND)  
(Referenced to GND)  
–7.0 to )0.5  
EE  
CC  
V
Positive DC Supply Voltage (Note 2)  
–0.5 to )7.0  
–0.5 to )7.0  
V
(Referenced to V  
)
EE  
V
V
I
Analog Input Voltage  
V
EE  
–0.5 to V )0.5  
V
V
IS  
CC  
Digital Input Voltage  
(Referenced to GND)  
–0.5 to 7.0  
$50  
IN  
DC Current, Into or Out of Any Pin  
Storage Temperature Range  
mA  
°C  
T
T
T
–65 to )150  
260  
STG  
L
Lead Temperature, 1 mm from Case for 10 Seconds  
Junction Temperature under Bias  
Thermal Resistance  
°C  
)150  
°C  
J
q
SOIC  
TSSOP  
QSOP  
143  
164  
164  
°C/W  
JA  
P
D
Power Dissipation in Still Air,  
SOIC  
TSSOP  
QSOP  
500  
450  
450  
mW  
MSL  
Moisture Sensitivity  
Flammability Rating  
ESD Withstand Voltage  
Level 1  
F
R
Oxygen Index: 30% – 35%  
UL 94 V–0 @ 0.125 in  
V
ESD  
Human Body Model (Note 3)  
Machine Model (Note 4)  
u2000  
u200  
V
Charged Device Model (Note 5)  
u1000  
I
Latch–Up Performance  
Above V and Below GND at 125°C (Note 6)  
$300  
mA  
LATCH–UP  
CC  
1. Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Extended exposure to these  
conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum–rated  
conditions is not implied.  
2. The absolute value of V $|V | 7.0.  
CC  
EE  
3. Tested to EIA/JESD22–A114–A.  
4. Tested to EIA/JESD22–A115–A.  
5. Tested to JESD22–C101–A.  
6. Tested to EIA/JESD78.  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
Max  
Unit  
V
V
Negative DC Supply Voltage  
Positive DC Supply Voltage  
(Referenced to GND)  
(Referenced to GND)  
–5.5  
GND  
EE  
CC  
V
2.5  
2.5  
5.5  
6.6  
V
(Referenced to V  
)
EE  
V
V
Analog Input Voltage  
V
V
CC  
V
V
IS  
EE  
Digital Input Voltage  
(Note 7) (Referenced to GND)  
0
5.5  
IN  
T
A
Operating Temperature Range, All Package Types  
–55  
125  
°C  
t , t  
Input Rise/Fall Time  
(Channel Select or Enable Inputs)  
V
V
= 3.0 V $ 0.3 V  
= 5.0 V $ 0.5 V  
0
0
100  
20  
ns/V  
r
f
CC  
CC  
7. Unused digital inputs may not be left open. All digital inputs must be tied to a high–logic voltage level or a low–logic input voltage level.  
http://onsemi.com  
3
NLAS4052  
DC CHARACTERISTICS – Digital Section (Voltages Referenced to GND)  
Guaranteed Max Limit  
–55 to 255C  
<855C  
<1255C  
Symbol  
Parameter  
Condition  
V
Unit  
CC  
V
Minimum High–Level Input Voltage,  
Enable Inputs  
2.5  
3.0  
4.5  
5.5  
1.75  
2.1  
1.75  
2.1  
1.75  
2.1  
V
IH  
IL  
3.15  
3.85  
3.15  
3.85  
3.15  
3.85  
V
Maximum Low–Level Input Voltage,  
Enable Inputs  
2.5  
3.0  
4.5  
5.5  
0.45  
0.9  
1.35  
1.65  
0.45  
0.9  
1.35  
1.65  
0.45  
0.9  
1.35  
1.65  
V
I
I
Maximum Input Leakage Current,  
Address or Inhibit Inputs  
V
= 6.0 or GND  
0 V to 6.0 V  
$0.1  
$1.0  
$1.0  
m A  
m A  
IN  
IN  
Maximum Quiescent Supply  
Current (per Package)  
Address, Inhibit and  
= V or GND  
6.0  
4.0  
40  
80  
CC  
V
IS  
CC  
DC ELECTRICAL CHARACTERISTICS – Analog Section  
Guaranteed Limit  
V
CC  
V
EE  
–55 to 25°C v85°C v125°C  
V
V
Symbol  
Parameter  
Test Conditions  
= V or V  
Unit  
R
Maximum “ON” Resistance  
(Note 8)  
V
V
S
3.0  
4.5  
3.0  
0
0
–3.0  
86  
37  
26  
108  
46  
120  
55  
W
ON  
IN  
IS  
IL  
IH  
= V to V  
EE  
CC  
|I | = 10 mA  
(Figures 4 thru 9)  
33  
37  
D
R
Maximum Difference in “ON”  
Resistance Between Any  
Two Channels in the Same  
Package  
V
V
= V or V  
= 3.5 V  
V
= 2.0 V  
3.0  
4.5  
3.0  
0
0
–3.0  
15  
13  
10  
20  
18  
15  
20  
18  
15  
W
ON  
IN  
IS  
IL  
IH, IS  
|I | = 10 mA, V = 2.0 V  
S
IS  
R
flat(ON)  
ON Resistance Flatness  
|I | = 10 mA  
S
V 1, 2, 3.5 V 4.5  
com  
4
2
4
2
5
3
W
V
com  
–2, 0, 2 V 3.0  
–3.0  
I
I
Maximum Off–Channel  
Leakage Current  
Switch Off  
6.0  
3.0  
0
–3.0  
0.1  
0.1  
5.0  
5.0  
100  
100  
nA  
NC(OFF)  
V
V
= V or V  
IN  
IL IH  
NO(OFF)  
= V –1.0 V or V +1.0 V  
IO  
CC  
EE  
(Figure 17)  
I
Maximum On–Channel  
Leakage Current, Channel–  
to–Channel  
Switch On  
6.0  
3.0  
0
–3.0  
0.1  
0.1  
5.0  
5.0  
100  
100  
nA  
COM(ON)  
V
IO  
= V –1.0 V or V +1.0 V  
CC EE  
(Figure 17)  
8. At supply voltage (V ) approaching 2.5 V the analog switch on–resistance becomes extremely non–linear. Therefore, for low voltage  
CC  
operation it is recommended that these devices only be used to control digital signals.  
http://onsemi.com  
4
NLAS4052  
AC CHARACTERISTICS (Input t = t = 3 ns)  
r
f
Guaranteed Limit  
–55 to 25°C  
V
CC  
V
EE  
V
V
Min  
Typ*  
Symbol  
Parameter  
Test Conditions  
v85°C v125°C Unit  
t
Minimum Break–Before–Make  
Time  
V
V
= V or V  
3.0  
4.5  
3.0  
0.0  
0.0  
–3.0  
1.0  
1.0  
1.0  
6.5  
5.0  
3.5  
ns  
BBM  
IN  
IS  
IL  
IH  
= V  
CC  
R = 300 WC  
,
= 35 pF  
L
L
(Figure 19)  
*Typical Characteristics are at 25°C.  
AC CHARACTERISTICS (C = 50 pF, Input t = t = 3 ns)  
L
r
f
Guaranteed Limit  
–55 to 25°C  
v85°C  
v125°C  
V
V
V
EE  
V
CC  
Min  
Typ  
Max  
Min  
Max  
Min  
Max  
Symbol  
Parameter  
Transition Time  
(Address Selection Time)  
(Figure 18)  
Unit  
t
t
t
2.5  
3.0  
4.5  
3.0  
0
0
0
22  
20  
16  
16  
40  
28  
23  
23  
45  
30  
25  
25  
50  
35  
30  
28  
ns  
TRANS  
–3.0  
Turn–on Time  
(Figures 14, 15, 20, and 21)  
2.5  
3.0  
4.5  
3.0  
0
0
0
22  
20  
16  
16  
40  
28  
23  
23  
45  
30  
25  
25  
50  
35  
30  
28  
ns  
ns  
ON  
Inhibit to N or N  
O
C
–3.0  
Turn–off Time  
2.5  
3.0  
4.5  
3.0  
0
0
0
22  
20  
16  
16  
40  
28  
23  
23  
45  
30  
25  
25  
50  
35  
30  
28  
OFF  
(Figures 14, 15, 20, and 21)  
Inhibit to N or N  
O
C
–3.0  
Typical @ 25°C, V = 5.0 V  
CC  
pF  
C
C
C
C
Maximum Input Capacitance,Select Inputs  
8
IN  
or C  
Analog I/O  
10  
10  
1.0  
NO  
NC  
Common I/O  
Feedthrough  
COM  
(ON)  
http://onsemi.com  
5
NLAS4052  
ADDITIONAL APPLICATION CHARACTERISTICS (GND = 0 V)  
Typ  
V
CC  
V
EE  
V
V
25°C  
Symbol  
Parameter  
Condition  
Unit  
BW  
Maximum On–Channel  
Bandwidth or Minimum  
Frequency Response  
V
= ½ (V – V )  
EE  
3.0  
4.5  
6.0  
3.0  
0.0  
0.0  
0.0  
110  
130  
140  
140  
MHz  
IS  
CC  
Source Amplitude = 0 dBm  
(Figures 10 and 22)  
–3.0  
V
V
Off–Channel Feedthrough  
Isolation  
f = 100 kHz; V = ½ (V – V  
Source = 0 dBm  
(Figures 12 and 22)  
)
3.0  
4.5  
6.0  
3.0  
0.0  
0.0  
0.0  
–93  
–93  
–93  
–93  
dB  
dB  
ISO  
IS  
CC  
EE  
–3.0  
Maximum Feedthrough  
On Loss  
V
IS  
= ½ (V – V )  
EE  
3.0  
4.5  
6.0  
3.0  
0.0  
0.0  
0.0  
–2  
–2  
–2  
–2  
ONL  
CC  
Source = 0 dBm  
(Figures 10 and 22)  
–3.0  
Q
Charge Injection  
V
R
= V to V  
f
= 1 kHz, t = t = 3 ns  
5.0  
3.0  
0.0  
–3.0  
9.0  
12  
pC  
%
IN  
CC  
EE, IS  
r
f
= 0 W, C = 1000 pF, Q = C * D V  
OUT  
IS  
L
L
(Figures 16 and 23)  
f = 1 MHz, R = 10 KW, C = 50 pF,  
IS  
THD  
Total Harmonic Distortion  
THD + Noise  
L
L
V
V
= 5.0 V sine wave  
6.0  
3.0  
0.0  
–3.0  
0.10  
0.05  
IS  
PP  
= 6.0 V sine wave  
IS  
PP  
(Figure 13)  
http://onsemi.com  
6
NLAS4052  
100  
10  
100  
80  
60  
2.0 V  
1
0.1  
V
EE  
= 0 V  
0.01  
40  
20  
0
V
= 3.0 V  
CC  
3.0 V  
4.5 V  
5.5 V  
0.001  
0.0001  
V
CC  
= 5.0 V  
0.00001  
–40  
–20  
0
20  
60  
80  
100  
120  
–4.0  
–2.0  
0
2.0  
(VDC)  
4.0  
6.0  
Temperature (°C)  
V
IS  
Figure 3. ICC versus Temp, VCC = 3 V and 5 V  
Figure 4. RON versus VCC, Temp = 255C  
50  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
125°C  
85°C  
125°C  
25°C  
40  
30  
25°C  
85°C  
20  
10  
–55°C  
–55°C  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
VCom (V)  
VCom (V)  
Figure 5. Typical On Resistance  
VCC = 2.0 V, VEE = 0 V  
Figure 6. Typical On Resistance  
VCC = 3.0 V, VEE = 0 V  
25  
20  
15  
10  
25  
125°C  
125°C  
85°C  
85°C  
20  
15  
25°C  
10  
5
25°C  
–55°C  
–55°C  
5
0
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
VCom (V)  
0
0.5 1.0 1.5 2.0 2.5 3.0  
VCom (V)  
3.5 4.0 4.5  
Figure 7. Typical On Resistance  
Figure 8. Typical On Resistance  
VCC = 5.5 V, VEE = 0 V  
V
CC = 4.5 V, VEE = 0 V  
http://onsemi.com  
7
NLAS4052  
25  
20  
15  
10  
5
125°C  
85°C  
–55°C  
25°C  
0
–4  
–2  
0
2
4
VCom (V)  
Figure 9. Typical On Resistance  
VCC = 3.3 V, VEE = –3.3 V  
90  
72  
54  
36  
50  
40  
30  
20  
10  
0
18  
0
PHASE SHIFT  
BANDWIDTH (ON–RESPONSE)  
–18  
–36  
–54  
–10  
–20  
–30  
–40  
–50  
–72  
–90  
0.1  
1.0  
10  
100  
0.1  
1.0  
10  
100  
FREQUENCY (mHz)  
FREQUENCY (mHz)  
Figure 10. Bandwidth, VCC = 5.0 V  
Figure 11. Phase Shift, VCC = 5.0 V  
0
0
–10  
–20  
3.0  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
5.5  
4.5  
0.1  
$3.3  
0.01  
0.1  
1.0  
10  
100  
10  
100  
1000  
10000  
10000  
FREQUENCY (mHz)  
FREQUENCY (mHz)  
Figure 12. Off Isolation, VCC = 5.0 V  
Figure 13. Total Harmonic Distortion  
http://onsemi.com  
8
NLAS4052  
30  
25  
20  
15  
10  
30  
25  
20  
15  
10  
5
T = 25°C  
V
CC  
= 4.5 V  
A
t
(ns)  
ON  
t
ON  
t
t
(ns)  
3.5  
OFF  
5
0
OFF  
0
–55  
2.5  
3
4
4.5  
5
–40  
25  
Temperature (°C)  
85  
125  
V
CC  
(VOLTS)  
Figure 14. tON and tOFF versus VCC  
Figure 15. tON and tOFF versus Temp  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
100  
10  
1
V
= 5 V  
CC  
I
COM(ON)  
0.1  
I
COM(OFF)  
V
CC  
= 3 V  
0.01  
0
V
CC  
= 5.0 V  
85  
I
NO(OFF)  
–0.5  
0.001  
0
1
2
3
4
5
–55  
–20  
25  
70  
125  
TEMPERATURE (°C)  
V
COM  
(V)  
Figure 16. Charge Injection versus COM Voltage  
Figure 17. Switch Leakage versus Temperature  
http://onsemi.com  
9
NLAS4052  
V
CC  
V
Output  
CC  
Input  
50%  
50%  
V
OUT  
0.1 m F  
0 V  
V
EE  
300  
W
35 pF  
V
CC  
90%  
Output  
Address Select Pin  
10%  
V
EE  
t
t
trans  
trans  
Figure 18. Channel Selection Propagation Delay  
V
CC  
DUT  
Input  
GND  
V
CC  
Output  
V
OUT  
0.1 m F  
t
BMM  
300  
W
35 pF  
90%  
90% of V  
OH  
Output  
Address Select Pin  
GND  
Figure 19. tBBM (Time Break–Before–Make)  
V
CC  
DUT  
Input  
50%  
50%  
V
CC  
0 V  
Output  
V
OUT  
0.1 m F  
V
OH  
Open  
300  
W
35 pF  
90%  
90%  
Output  
GND  
Enable  
Input  
t
t
OFF  
ON  
Figure 20. tON/tOFF  
http://onsemi.com  
10  
NLAS4052  
V
CC  
V
CC  
Input  
50%  
50%  
DUT  
0 V  
300  
W
Output  
V
OUT  
V
CC  
Open  
35 pF  
Output  
V
10%  
10%  
OL  
Enable  
Input  
t
t
ON  
OFF  
Figure 21. tON/tOFF  
50  
W
DUT  
Reference  
Input  
50 W Generator  
Transmitted  
Output  
50  
W
Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is  
the bandwidth of an On switch. V , Bandwidth and V are independent of the input signal direction.  
ISO  
ONL  
V
V
OUT  
IN  
= Off Channel Isolation = 20 Log ǒ Ǔ for V  
V
V
at 100 kHz  
IN  
ISO  
V
OUT  
= On Channel Loss = 20 Log ǒ Ǔ for V  
at 100 kHz to 50 MHz  
ONL  
IN  
V
IN  
Bandwidth (BW) = the frequency 3 dB below V  
ONL  
Figure 22. Off Channel Isolation/On Channel Loss (BW)/Crosstalk  
(On Channel to Off Channel)/VONL  
http://onsemi.com  
11  
NLAS4052  
DUT  
V
CC  
V
IN  
Output  
Open  
GND  
C
L
Output  
Off  
D V  
OUT  
Off  
On  
V
IN  
Figure 23. Charge Injection: (Q)  
TYPICAL OPERATION  
+5.0 V  
+3.0 V  
V
CC  
V
CC  
16  
16  
V
V
EE  
EE  
7
7
8
GND  
GND  
8
–3.0 V  
Figure 24. 5.0 Volts Single Supply  
CC = 5.0 V, VEE = 0  
Figure 25. Dual Supply  
VCC = 3.0 V, VEE = –3.0 V  
V
DEVICE ORDERING INFORMATION  
Device Nomenclature  
Circuit  
Indicator  
Device  
Function  
Package Tape & Reel  
Device Order  
Number  
Suffix  
Suffix  
Technology  
Package Type  
SO  
Tape & Reel Size  
2500 Unit Reel  
2500 Unit Reel  
2500 Unit Reel  
NLAS4052DR2  
NLAS4052DTR2  
NLAS4052QSR  
NL  
NL  
NL  
AS  
AS  
AS  
4052  
4052  
4052  
D
R2  
DT  
R2  
TSSOP  
QSOP  
QS  
R
http://onsemi.com  
12  
NLAS4052  
PACKAGE DIMENSIONS  
SOIC–16  
D SUFFIX  
CASE 751B–05  
ISSUE J  
–A–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
16  
9
8
–B–  
P 8 PL  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
M
S
B
0.25 (0.010)  
1
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
G
MILLIMETERS  
INCHES  
MIN  
DIM MIN  
MAX  
10.00  
4.00  
1.75  
0.49  
1.25  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
F
A
B
C
D
F
9.80  
3.80  
1.35  
0.35  
0.40  
0.386  
0.150  
0.054  
0.014  
0.016  
R X 45  
K
_
C
G
J
1.27 BSC  
0.050 BSC  
–T–  
SEATING  
PLANE  
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
J
M
K
M
P
R
D
16 PL  
_
_
_
_
5.80  
0.25  
6.20  
0.50  
0.229  
0.010  
0.244  
0.019  
M
S
S
0.25 (0.010)  
T B  
A
http://onsemi.com  
13  
NLAS4052  
PACKAGE DIMENSIONS  
TSSOP–16  
DT SUFFIX  
CASE 948F–01  
ISSUE O  
16X KREF  
M
S
S
0.10 (0.004)  
T U  
V
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
S
0.15 (0.006) T U  
K
K1  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.  
PROTRUSIONS OR GATE BURRS. MOLD FLASH OR  
GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER  
SIDE.  
16  
9
2X L/2  
J1  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED  
0.25 (0.010) PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION  
SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
B
–U–  
SECTION N–N  
L
J
PIN 1  
IDENT.  
8
1
N
0.25 (0.010)  
7. DIMENSION A AND B ARE TO BE DETERMINED AT  
DATUM PLANE -W-.  
S
0.15 (0.006) T U  
A
M
MILLIMETERS  
INCHES  
MIN  
–V–  
DIM MIN  
MAX  
5.10  
4.50  
1.20  
0.15  
0.75  
MAX  
0.200  
0.177  
0.047  
0.006  
0.030  
N
A
B
4.90  
4.30  
---  
0.193  
0.169  
---  
F
C
D
0.05  
0.50  
0.002  
0.020  
F
DETAIL E  
G
H
0.65 BSC  
0.026 BSC  
0.18  
0.09  
0.09  
0.19  
0.19  
0.28  
0.20  
0.16  
0.30  
0.25  
0.007  
0.004  
0.004  
0.007  
0.007  
0.011  
0.008  
0.006  
0.012  
0.010  
J
J1  
K
–W–  
C
K1  
L
6.40 BSC  
0.252 BSC  
0
0.10 (0.004)  
M
0
8
8
_
_
_
_
H
DETAIL E  
SEATING  
PLANE  
–T–  
D
G
http://onsemi.com  
14  
NLAS4052  
PACKAGE DIMENSIONS  
QSOP–16  
QS SUFFIX  
CASE 492–01  
ISSUE O  
–A–  
Q
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
R
2. CONTROLLING DIMENSION: INCH.  
3. THE BOTTOM PACKAGE SHALL BE BIGGER THAN  
THE TOP PACKAGE BY 4 MILS (NOTE: LEAD SIDE  
ONLY). BOTTOM PACKAGE DIMENSION SHALL  
FOLLOW THE DIMENSION STATED IN THIS  
DRAWING.  
4. PLASTIC DIMENSIONS DOES NOT INCLUDE MOLD  
FLASH OR PROTRUSIONS. MOLD FLASH OR  
PROTRUSIONS SHALL NOT EXCEED 6 MILS PER  
SIDE.  
H x 45  
_
U
RAD.  
0.013 X 0.005  
DP. MAX  
–B–  
5. BOTTOM EJECTOR PIN WILL INCLUDE THE  
COUNTRY OF ORIGIN (COO) AND MOLD CAVITY I.D.  
MOLD PIN  
MARK  
INCHES  
MIN  
MILLIMETERS  
DIM  
A
B
C
D
F
MAX  
0.196  
0.157  
0.068  
0.012  
0.035  
MIN  
4.80  
3.81  
1.55  
0.20  
0.41  
MAX  
4.98  
3.99  
1.73  
0.31  
0.89  
0.189  
0.150  
0.061  
0.008  
0.016  
RAD.  
0.005–0.010  
TYP  
G
G
H
J
0.025 BSC  
0.64 BSC  
L
0.008 0.018  
0.0098 0.0075  
0.20  
0.249  
0.10  
5.84  
0
0.46  
0.191  
0.25  
6.20  
8
P
DETAIL E  
M
0.25 (0.010)  
T
K
L
0.004  
0.230  
0
0.010  
0.244  
8
M
N
P
_
_
_
_
0
0.007  
7
0.011  
0
0.18  
7
0.28  
_
_
_
_
Q
R
U
V
0.020 DIA  
0.51 DIA  
V
K
0.025  
0.025  
0
0.035  
0.035  
8
0.64  
0.64  
0
0.89  
0.89  
8
C
N 8 PL  
_
_
_
_
–T–  
D16 PL  
0.25 (0.010)  
SEATING  
PLANE  
M
S
S
A
T
B
J
M
F
DETAIL E  
http://onsemi.com  
15  
NLAS4052  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make  
changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death  
may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
Literature Fulfillment:  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local  
Sales Representative.  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
NLAS4052/D  

相关型号:

NLAS4053

Analog Multiplexer/ Demultiplexer
ONSEMI

NLAS4053/D

Analog Multiplexer/Demultiplexer
ONSEMI

NLAS4053D

Analog Multiplexer/ Demultiplexer
ONSEMI

NLAS4053DG

Analog Multiplexer/Demultiplexer
ONSEMI

NLAS4053DR2

Analog Multiplexer/ Demultiplexer
ONSEMI

NLAS4053DR2G

Analog Multiplexer/Demultiplexer
ONSEMI

NLAS4053DT

Analog Multiplexer/ Demultiplexer
ONSEMI

NLAS4053DTG

Analog Multiplexer/Demultiplexer
ONSEMI

NLAS4053DTR2

Analog Multiplexer/ Demultiplexer
ONSEMI

NLAS4053DTR2G

Analog Multiplexer/Demultiplexer
ONSEMI

NLAS4053QS

Analog Multiplexer/ Demultiplexer
ONSEMI

NLAS4053QSR

Analog Multiplexer/ Demultiplexer
ONSEMI