NTBG014N120M3P [ONSEMI]

Silicon Carbide (SiC) MOSFET – EliteSiC, 14 mohm, 1200 V, M3P, D2PAK-7L;
NTBG014N120M3P
型号: NTBG014N120M3P
厂家: ONSEMI    ONSEMI
描述:

Silicon Carbide (SiC) MOSFET – EliteSiC, 14 mohm, 1200 V, M3P, D2PAK-7L

文件: 总8页 (文件大小:290K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Silicon Carbide (SiC)  
MOSFET – EliteSiC,  
14ꢀmohm, 1200ꢀV, M3P,  
D2PAK-7L  
V
R
MAX  
I MAX  
D
(BR)DSS  
DS(ON)  
1200 V  
20 mW @ 18 V  
104 A  
N−CHANNEL MOSFET  
Drain  
(TAB)  
NTBG014N120M3P  
Features  
Typ. R  
= 14 mW  
DS(on)  
Gate  
(Pin 1)  
Low Switching Losses (Typ. E 1331 mJ at 74 A, 800 V)  
ON  
100% Avalanche Tested  
Driver  
Source  
(Pin 2)  
Power Source  
(Pin 3, 4, 5, 6, 7)  
Typical Applications  
Solar Inverters  
Electric Vehicle Charging Stations  
UPS (Uninterruptible Power Supplies)  
Energy Storage Systems  
SMPS (Switch Mode Power Supplies)  
D2PAK−7L  
CASE 418BJ  
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
J
Symbol  
Parameter  
Drain−to−Source Voltage  
Value  
Unit  
V
V
DSS  
1200  
MARKING DIAGRAM  
V
GS  
Gate−to−Source Voltage  
−10  
+22  
V
V
GSop  
Recommended  
Operation Values of  
Gate−Source  
Voltage  
T
C
< 175°C  
−3/+18  
V
BG014N  
120M3P  
I
Continuous Drain  
Steady  
State  
T
T
= 25°C  
104  
454  
73  
A
W
A
D
C
AYWWZZ  
Current R  
(Note 2)  
θ
JC  
P
D
Power Dissipation R  
(Note 2)  
θ
JC  
A
Y
WW  
ZZ  
= Assembly Location  
= Year  
= Work Week  
= Lot Traceability  
I
D
Continuous Drain  
Current R  
Steady  
State  
= 100°C  
C
θ
JC  
(Note 1, 2)  
BG014N120M3P = Specific Device Code  
P
Power Dissipation R  
(Note 1, 2)  
227  
257  
W
A
D
qJC  
I
Pulsed Drain  
Current (Note 3)  
T
A
= 25°C  
DM  
ORDERING INFORMATION  
T , T  
J
Operating Junction and Storage Temperature  
−55 to 175  
92  
°C  
A
STG  
Device  
Package  
Shipping  
I
S
Source Current (Body Diode) T = 25°C, V = −3 V  
C
GS  
NTBG014N120M3P  
D2PAK−7L  
800 /  
Tape & Reel  
E
AS  
Single Pulse Drain−to−Source Avalanche Energy  
(Note 5) (I = 28.9 A , L = 1 mH) (Note 4)  
418  
mJ  
L
pk  
T
Maximum Lead Temperature for Soldering,  
1/8from Case for 10 seconds  
245  
°C  
L
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
Stresses exceeding those listed in the Maximum Ratings table may damage the  
device. If any of these limits are exceeded, device functionality should not be  
assumed, damage may occur and reliability may be affected.  
2
1. Surface mounted on a FR−4 board using 1 in pad of 2 oz copper.  
2. The entire application environment impacts the thermal resistance values  
shown, they are not constants and are only valid for the particular conditions  
noted.  
3. Repetitive rating, limited by max junction temperature.  
4. Peak current might be limited by transconductance.  
5. E of 418 mJ is based on starting T = 25°C; L = 1 mH, I = 28.9 A,  
AS  
DD  
J
AS  
V
= 100 V, V = 18 V.  
GS  
© Semiconductor Components Industries, LLC, 2022  
1
Publication Order Number:  
January, 2023 − Rev. 2  
NTBG014N120M3P/D  
 
NTBG014N120M3P  
THERMAL CHARACTERISTICS  
Symbol  
Parameter  
Typ  
0.33  
Max  
Unit  
_C/W  
_C/W  
R
Thermal Resistance Junction−to−Case (Note 2)  
θ
JC  
JA  
R
Thermal Resistance Junction−to−Ambient (Note 1, 2)  
40  
θ
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
J
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
OFF−STATE CHARACTERISTICS  
V
Drain−to−Source Breakdown Voltage  
V
I
= 0 V, I = 1 mA  
1200  
V
(BR)DSS  
GS  
D
V
/ T  
Drain−to−Source Breakdown Voltage  
Temperature Coefficient  
= 1 mA, refer to 25_C  
0.3  
mV/_C  
(BR)DSS  
J
D
I
Zero Gate Voltage Drain Current  
V
= 0 V, V = 1200 V,  
100  
1
mA  
mA  
DSS  
GS  
DS  
T = 25_C  
J
I
Gate−to−Source Leakage Current  
V
GS  
V
GS  
V
GS  
= +22/−10 V, V = 0 V  
GSS  
DS  
ON−STATE CHARACTERISTICS  
V
Gate Threshold Voltage  
= V , I = 37 mA  
2.08  
−3  
3.0  
4.63  
+18  
20  
V
V
GS(TH)  
DS  
D
V
Recommended Gate Voltage  
Drain−to−Source On Resistance  
GOP  
R
= 18 V, I = 74 A,  
14  
29  
16  
27  
29  
mW  
DS(on)  
D
T = 25_C  
J
V
GS  
= 18 V, I = 74 A,  
mW  
mW  
mW  
S
D
T = 175_C  
J
V
GS  
= 15 V, I = 74 A,  
27  
D
T = 25_C  
J
V
GS  
= 15 V, I = 74 A,  
D
T = 150_C  
J
g
Forward Transconductance  
V
DS  
= 10 V, I = 74 A  
FS  
D
CHARGES, CAPACITANCES & GATE RESISTANCE  
C
Input Capacitance  
V
V
= 0 V, f = 1 MHz,  
= 800 V  
6313  
259  
27  
pF  
nC  
ISS  
GS  
DS  
C
Output Capacitance  
Reverse Transfer Capacitance  
Total Gate Charge  
OSS  
RSS  
C
Q
V
V
= −3/18 V,  
= 800 V,  
= 74 A  
337  
43  
G(TOT)  
GS  
DS  
Q
Threshold Gate Charge  
Gate−to−Source Charge  
Gate−to−Drain Charge  
Gate Resistance  
G(TH)  
I
D
Q
78  
GS  
Q
98  
GD  
R
f = 1 MHz  
1.4  
W
G
SWITCHING CHARACTERISTICS  
t
Turn−On Delay Time  
Rise Time  
V
= −3/18 V, V = 800 V  
24  
40  
ns  
d(ON)  
GS  
DS  
I
D
= 74 A, R = 2 W  
G
t
r
Inductive Load (Note 6)  
t
Turn−Off Delay Time  
Fall Time  
74  
d(OFF)  
t
f
14  
E
Turn−On Switching Loss  
Turn−Off Switching Loss  
Total Switching Loss  
1331  
620  
1951  
mJ  
ON  
E
OFF  
E
TOT  
www.onsemi.com  
2
NTBG014N120M3P  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (continued)  
J
Symbol  
DRAIN−SOURCE DIODE CHARACTERISTICS  
Continuous Drain−Source Diode Forward  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
I
V
GS  
V
GS  
V
GS  
= −3 V, T = 25_C  
92  
A
A
V
SD  
C
Current  
I
Pulsed Drain−Source Diode Forward  
Current (Note 3)  
= −3 V, T = 25_C  
257  
SDM  
C
V
SD  
Forward Diode Voltage  
= −3 V, I = 74 A,  
5.1  
SD  
T = 25_C  
GS  
J
t
Reverse Recovery Time  
Reverse Recovery Charge  
Reverse Recovery Energy  
Peak Reverse Recovery Current  
Charge Time  
V
= −3/18 V, I = 74 A,  
37  
347  
12  
ns  
nC  
mJ  
A
RR  
SD  
dI /dt = 1000 A/ms, V,  
S
Q
V
= 800 V  
RR  
DS  
E
REC  
I
19  
RRM  
t
t
19  
ns  
ns  
A
Discharge Time  
17  
B
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
6. E /E  
result is with body diode.  
ON OFF  
www.onsemi.com  
3
NTBG014N120M3P  
TYPICAL CHARACTERISTICS  
2.0  
300  
250  
V
GS  
= 20 V  
= 19 V  
GS  
V
GS  
= 12 V  
V
V
GS  
= 15 V  
1.5  
1.0  
0.5  
0.0  
200  
150  
V
= 20 V  
V
= 18 V  
GS  
GS  
V
GS  
= 15 V  
= 17 V  
= 16 V  
GS  
V
= 19 V  
GS  
V
GS  
V
= 18 V  
GS  
V
100  
50  
0
V
= 17 V  
GS  
V
= 16 V  
GS  
V
GS  
= 12 V  
T
C
= 25°C  
T
C
= 25°C  
0
50  
100  
150  
200  
250  
300  
0
2
4
6
8
10  
V
DS  
, Drain−Source Voltage (V)  
I , Drain Current (A)  
D
Figure 1. On−Region Characteristics  
Figure 2. Normalized On−Resistance vs.  
Drain Current and Gate Voltage  
2.5  
2.0  
I
= 74 A  
= 18 V  
I = 74 A  
D
D
120  
90  
V
GS  
1.5  
1.0  
0.5  
60  
T = 150°C  
J
30  
T = 25°C  
J
0
0
−55 −30  
−5  
20  
45  
70  
95 120 145 170  
5
8
11  
14  
17  
20  
T , Junction Temperature (5C)  
J
V
GS  
, Gate to Source Voltage (V)  
Figure 3. On−Resistance Variation with  
Temperature  
Figure 4. On−Resistance vs.  
Gate−to−Source Voltage  
300  
100  
200  
160  
V
DS  
= 10 V  
V
GS  
= −3 V  
T = 175°C  
J
120  
80  
40  
0
T = −55°C  
J
T = −55°C  
T = 175°C  
J
J
10  
T = 25°C  
J
T = 25°C  
J
1
1
3
5
7
9
3
6
9
12  
15  
V
GS  
, Gate to Source Voltage (V)  
V
SD  
, Body Diode Forward Voltage (V)  
Figure 5. Transfer Characteristics  
Figure 6. Diode Forward Voltage vs. Current  
www.onsemi.com  
4
NTBG014N120M3P  
TYPICAL CHARACTERISTICS (CONTINUED)  
100000  
10000  
18  
15  
I
D
= 74 A  
C
iss  
12  
9
V
= 800 V  
DD  
V
DD  
= 400 V  
C
oss  
1000  
100  
V
DD  
= 600 V  
6
3
C
rss  
10  
1
0
f = 1 MHz  
= 0 V  
V
GS  
−3  
0
50  
100  
150  
200  
250  
300  
350  
0.1  
1
10  
100  
800  
Q , Gate Charge (nC)  
g
V
DS  
, Drain to Source Voltage (V)  
Figure 7. Gate−to−Source Voltage vs. Total  
Charge  
Figure 8. Capacitance vs. Drain to Source  
Voltage  
120  
80  
40  
0
100  
10  
1
V
GS  
= 18 V  
T = 25°C  
J
T = 150°C  
J
R
= 0.33°C/W  
q
JC  
0.001  
0.01  
0.1  
1
25  
50  
75  
100  
125  
150  
175  
t
, Time in Avalanche (ms)  
AV  
T , Case Temperature (5C)  
C
Figure 9. Unclamped Inductive Switching  
Capability  
Figure 10. Maximum Continuous Drain  
Current vs. Case Temperature  
100000  
10000  
1000  
1000  
100  
Single Pulse  
R
= 0.33°C/W  
q
JC  
T
= 25°C  
C
10 ms  
10  
1
100 ms  
1 ms  
10 ms  
Single Pulse  
T = Max Rated  
J
100 ms/  
DC  
0.1  
R
= 0.33°C/W  
= 25°C  
q
JC  
T
C
0.01  
100  
0.00001  
0.1  
1
10  
100  
1000  
0.0001  
0.001  
0.01  
0.1  
1
V
DS  
, Drain−Source Voltage (V)  
Figure 11. Safe Operating Area  
Figure 12. Single Pulse Maximum  
Power Dissipation  
www.onsemi.com  
5
NTBG014N120M3P  
TYPICAL CHARACTERISTICS (CONTINUED)  
2500  
2000  
1500  
1000  
2500  
E
tot  
R
= 2 W  
= 74 A  
= 18/−3 V  
R
V
V
= 2 W  
G
G
I
D
= 800 V  
DD  
GS  
2000  
1500  
1000  
E
tot  
V
GS  
= 18/−3 V  
E
on  
E
on  
E
off  
E
off  
500  
0
500  
0
10  
30  
50  
70  
90  
110  
500  
600  
700  
, DRAIN VOLTAGE (V)  
DD  
800  
900  
1000  
I , DRAIN CURRENT (A)  
V
D
Figure 13. Switching Loss vs. Drain Current  
Figure 14. Switching Loss vs. Drain Voltage  
5000  
4000  
3000  
2000  
2500  
2000  
1500  
1000  
E
tot  
I
V
V
= 74 A  
I = 74 A  
D
D
E
tot  
= 800 V  
R
= 2 W  
DD  
GS  
G
= 18/−3 V  
V
DD  
V
GS  
= 800 V  
= 18/−3 V  
E
on  
E
on  
E
off  
E
off  
1000  
0
500  
0
0
2
4
6
8
10  
0
25  
50  
75  
100  
125  
150  
R , GATE RESISTANCE (W)  
TEMPERATURE (5C)  
Figure 16. Switching Loss vs. Temperature  
G
Figure 15. Switching Loss vs. Gate Resistance  
1
D = 0.5  
0.2  
0.1  
0.1  
0.05  
0.02  
Notes:  
0.01  
Z
q
(t) = r(t) x R  
q
JC  
0.01  
JC  
R
= 0.33°C/W  
q
JC  
Peak T = P  
x Z (t) + T  
q
JC C  
J
DM  
Duty Cycle, D = t / t  
1
2
0.001  
0.00001  
0.0001  
0.001  
t, Pulse Time (s)  
0.01  
0.1  
1
Figure 17. Junction−To−Case Transient Thermal Response Curve  
www.onsemi.com  
6
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
D2PAK7 (TO2637L HV)  
CASE 418BJ  
ISSUE B  
DATE 16 AUG 2019  
GENERIC  
MARKING DIAGRAM*  
XXXXXXXXX  
AYWWG  
XXXX = Specific Device Code  
A
Y
= Assembly Location  
= Year  
WW = Work Week  
G
= PbFree Package  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON84234G  
D2PAK7 (TO2637L HV)  
PAGE 1 OF 1  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

NTBG015N065SC1

Silicon Carbide (SiC) MOSFET - EliteSiC, 12 mohm, 650 V, M2, D2PAK-7L
ONSEMI

NTBG020N090SC1

Silicon Carbide (SiC) MOSFET - EliteSiC, 20 mohm, 900 V, M2, D2PAK-7L
ONSEMI

NTBG020N120SC1

Silicon Carbide (SiC) MOSFET - EliteSiC, 20 mohm, 1200 V, M1, D2PAK-7L
ONSEMI

NTBG022N120M3S

Silicon Carbide (SiC) MOSFET - EliteSiC, 22 mohm, 1200 V, M3S, D2PAK-7L
ONSEMI

NTBG025N065SC1

Silicon Carbide (SiC) MOSFET - EliteSiC, 19 mohm, 650 V, M2, D2PAK-7L
ONSEMI

NTBG028N170M1

Silicon Carbide (SiC) MOSFET – EliteSiC, 28 mohm, 1700 V, M1, D2PAK-7L
ONSEMI

NTBG030N120M3S

Silicon Carbide (SiC) MOSFET - EliteSiC, 29 mohm, 1200 V, M3S, D2PAK-7L
ONSEMI

NTBG040N120M3S

Silicon Carbide (SiC) MOSFET - EliteSiC, 40 mohm, 1200 V, M3S, D2PAK-7L
ONSEMI

NTBG040N120SC1

Silicon Carbide (SiC) MOSFET - EliteSiC, 40 mohm, 1200 V, M1, D2PAK−7L
ONSEMI

NTBG045N065SC1

Power Field-Effect Transistor
ONSEMI

NTBG060N065SC1

Silicon Carbide (SiC) MOSFET - EliteSiC, 44 mohm, 650 V, M2, D2PAK-7L
ONSEMI

NTBG060N090SC1

Silicon Carbide (SiC) MOSFET - EliteSiC, 60 mohm, 900 V, M2, D2PAK-7L
ONSEMI