NTD3055L104-001 [ONSEMI]

单 N 沟道逻辑电平功率 MOSFET 60V,12A,104mΩ;
NTD3055L104-001
型号: NTD3055L104-001
厂家: ONSEMI    ONSEMI
描述:

单 N 沟道逻辑电平功率 MOSFET 60V,12A,104mΩ

开关 脉冲 晶体管
文件: 总9页 (文件大小:97K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NTD3055L104,  
NTDV3055L104  
Power MOSFET  
12 A, 60 V, Logic Level N−Channel  
DPAK/IPAK  
Designed for low voltage, high speed switching applications in power  
supplies, converters and power motor controls and bridge circuits.  
www.onsemi.com  
Features  
Lower R  
DS(on)  
V
R
TYP  
I MAX  
D
(BR)DSS  
DS(on)  
Lower V  
DS(on)  
60 V  
104 mW  
12 A  
Tighter V Specification  
SD  
Lower Diode Reverse Recovery Time  
D
Lower Reverse Recovery Stored Charge  
NTDV and STDV Prefixes for Automotive and Other Applications  
Requiring Unique Site and Control Change Requirements;  
AEC−Q101 Qualified and PPAP Capable  
N−Channel  
G
These Devices are Pb−Free and are RoHS Compliant  
Typical Applications  
Power Supplies  
Converters  
S
4
Power Motor Controls  
Bridge Circuits  
4
1
2
3
2
1
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
J
3
Rating  
Symbol Value  
Unit  
Vdc  
Vdc  
Vdc  
DPAK  
CASE 369C  
STYLE 2  
IPAK  
CASE 369D  
STYLE 2  
Drain−to−Source Voltage  
V
V
60  
60  
DSS  
Drain−to−Gate Voltage (R = 10 MW)  
GS  
DGR  
Gate−to−Source Voltage, Continuous  
V
V
"15  
"20  
GS  
GS  
MARKING DIAGRAMS  
& PIN ASSIGNMENTS  
− Non−Repetitive (t v10 ms)  
p
Drain Current  
− Continuous @ T = 25°C  
I
12  
10  
45  
Adc  
Apk  
A
D
4
4
− Continuous @ T = 100°C  
I
D
A
Drain  
Drain  
− Single Pulse (t v10 ms)  
I
DM  
p
Total Power Dissipation @ T = 25°C  
Derate above 25°C  
P
D
48  
0.32  
2.1  
W
W/°C  
W
A
Total Power Dissipation @ T = 25°C (Note 1)  
A
Total Power Dissipation @ T = 25°C (Note 2)  
1.5  
W
A
Operating and Storage Temperature Range  
T , T  
55 to  
+175  
°C  
2
J
stg  
1
Gate  
3
Drain  
Source  
1
2
3
Single Pulse Drain−to−Source Avalanche  
E
AS  
61  
mJ  
Gate Drain Source  
Energy − Starting T = 25°C  
J
(V = 25 Vdc, V = 5.0 Vdc, L = 1.0 mH  
DD  
GS  
A
= Assembly Location*  
= Device Code  
= Year  
= Work Week  
= Pb−Free Package  
I
= 11 A, V = 60 Vdc)  
DS  
L(pk)  
55L104  
Y
WW  
G
Thermal Resistance, − Junction−to−Case  
− Junction−to−Ambient (Note 1)  
R
R
R
3.13  
71.4  
100  
°C/W  
°C  
q
JC  
JA  
JA  
q
− Junction−to−Ambient (Note 2)  
q
Maximum Lead Temperature for Soldering  
T
260  
L
* The Assembly Location code (A) is front side  
optional. In cases where the Assembly Location is  
stamped in the package, the front side assembly  
code may be blank.  
Purposes, 1/8from case for 10 seconds  
Stresses exceeding those listed in the Maximum Ratings table may damage the  
device. If any of these limits are exceeded, device functionality should not be  
assumed, damage may occur and reliability may be affected.  
1. When surface mounted to an FR4 board using 1pad size,  
2
(Cu Area 1.127 in ).  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 7 of this data sheet.  
2. When surface mounted to an FR4 board using the minimum recommended  
2
pad size, (Cu Area 0.412 in ).  
© Semiconductor Components Industries, LLC, 2016  
1
Publication Order Number:  
September, 2016 − Rev. 10  
NTD3055L104/D  
 
NTD3055L104, NTDV3055L104  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
J
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
Drain−to−Source Breakdown Voltage (Note 3)  
(V = 0 Vdc, I = 250 mAdc)  
V
Vdc  
(BR)DSS  
60  
70  
62.9  
GS  
D
Temperature Coefficient (Positive)  
mV/°C  
mAdc  
Zero Gate Voltage Drain Current  
I
DSS  
(V = 60 Vdc, V = 0 Vdc)  
1.0  
10  
DS  
GS  
(V = 60 Vdc, V = 0 Vdc, T = 150°C)  
DS  
GS  
J
Gate−Body Leakage Current (V  
=
15 Vdc, V = 0 Vdc)  
I
100  
nAdc  
Vdc  
GS  
DS  
GSS  
ON CHARACTERISTICS (Note 3)  
Gate Threshold Voltage (Note 3)  
V
GS(th)  
(V = V , I = 250 mAdc)  
Threshold Temperature Coefficient (Negative)  
1.0  
1.6  
4.2  
2.0  
DS  
GS  
D
mV/°C  
mW  
Static Drain−to−Source On−Resistance (Note 3)  
R
V
DS(on)  
(V = 5.0 Vdc, I = 6.0 Adc)  
89  
104  
GS  
D
Static Drain−to−Source On−Voltage (Note 3)  
(V = 5.0 Vdc, I = 12 Adc)  
Vdc  
DS(on)  
0.98  
0.86  
1.50  
GS  
D
(V = 5.0 Vdc, I = 6.0 Adc, T = 150°C)  
GS  
D
J
Forward Transconductance (Note 3) (V = 8.0 Vdc, I = 6.0 Adc)  
g
FS  
9.1  
mhos  
pF  
DS  
D
DYNAMIC CHARACTERISTICS  
Input Capacitance  
C
316  
105  
35  
440  
150  
70  
iss  
(V = 25 Vdc, V = 0 Vdc,  
DS  
GS  
Output Capacitance  
Transfer Capacitance  
C
oss  
f = 1.0 MHz)  
C
rss  
SWITCHING CHARACTERISTICS (Note 4)  
Turn−On Delay Time  
t
9.2  
104  
19  
20  
210  
40  
80  
20  
ns  
d(on)  
Rise Time  
t
r
(V = 30 Vdc, I = 12 Adc,  
= 5.0 Vdc, R = 9.1 W) (Note 3)  
G
DD  
D
V
GS  
Turn−Off Delay Time  
Fall Time  
t
d(off)  
t
f
40.5  
7.4  
2.0  
4.0  
Gate Charge  
Q
T
Q
1
Q
2
nC  
(V = 48 Vdc, I = 12 Adc,  
DS  
D
V
GS  
= 5.0 Vdc) (Note 3)  
SOURCE−DRAIN DIODE CHARACTERISTICS  
Forward On−Voltage  
(I = 12 Adc, V = 0 Vdc) (Note 3)  
V
SD  
0.95  
0.82  
1.2  
Vdc  
ns  
S
GS  
(I = 12 Adc, V = 0 Vdc, T = 150°C)  
S
GS  
J
Reverse Recovery Time  
t
rr  
35  
21  
(I = 12 Adc, V = 0 Vdc,  
S
GS  
t
a
dI /dt = 100 A/ms) (Note 3)  
S
t
b
14  
Reverse Recovery Stored Charge  
Q
0.04  
mC  
RR  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
3. Pulse Test: Pulse Width 300 ms, Duty Cycle 2%.  
4. Switching characteristics are independent of operating junction temperatures.  
www.onsemi.com  
2
 
NTD3055L104, NTDV3055L104  
TYPICAL CHARACTERISTICS  
24  
24  
5 V  
V
8 V  
6 V  
= 10 V  
GS  
V
DS  
10 V  
20  
16  
12  
8
20  
16  
4.5 V  
4 V  
12  
8
3.5 V  
3 V  
T = 25°C  
J
4
4
0
T = 100°C  
J
T = −55°C  
J
0
0
1
2
3
4
5
6
7
8
1
1.5  
2
2.5  
, GATE−TO−SOURCE VOLTAGE (VOLTS)  
GS  
3
3.5  
4
4.5  
5
5.5  
6
V
DS  
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
V
Figure 1. On−Region Characteristics  
Figure 2. Transfer Characteristics  
0.32  
0.28  
0.24  
0.20  
0.16  
0.12  
0.08  
0.32  
0.28  
0.24  
0.20  
0.16  
0.12  
0.08  
V
GS  
= 10 V  
V
GS  
= 5 V  
T = 100°C  
J
T = 100°C  
J
T = 25°C  
J
T = 25°C  
J
T = −55°C  
J
T = −55°C  
J
0.04  
0
0.04  
0
0
4
8
12  
16  
20  
24  
0
4
8
12  
16  
20  
24  
I , DRAIN CURRENT (AMPS)  
D
I , DRAIN CURRENT (AMPS)  
D
Figure 3. On−Resistance versus  
Gate−to−Source Voltage  
Figure 4. On−Resistance versus Drain Current  
and Gate Voltage  
2
1.8  
1.6  
1.4  
1.2  
1
10,000  
1000  
100  
V
GS  
= 0 V  
I
V
= 6 A  
D
= 5 V  
GS  
T = 150°C  
J
T = 100°C  
J
10  
1
0.8  
0.6  
−50 −25  
0
25  
50  
75 100 125 150 175  
0
10  
20  
30  
40  
50  
60  
T , JUNCTION TEMPERATURE (°C)  
J
V
DS  
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
Figure 5. On−Resistance Variation with  
Temperature  
Figure 6. Drain−to−Source Leakage Current  
versus Voltage  
www.onsemi.com  
3
NTD3055L104, NTDV3055L104  
POWER MOSFET SWITCHING  
Switching behavior is most easily modeled and predicted  
by recognizing that the power MOSFET is charge  
controlled. The lengths of various switching intervals (Dt)  
are determined by how fast the FET input capacitance can  
be charged by current from the generator.  
The capacitance (C ) is read from the capacitance curve at  
iss  
a voltage corresponding to the off−state condition when  
calculating t  
and is read at a voltage corresponding to the  
d(on)  
on−state when calculating t  
.
d(off)  
At high switching speeds, parasitic circuit elements  
complicate the analysis. The inductance of the MOSFET  
source lead, inside the package and in the circuit wiring  
which is common to both the drain and gate current paths,  
produces a voltage at the source which reduces the gate drive  
current. The voltage is determined by Ldi/dt, but since di/dt  
is a function of drain current, the mathematical solution is  
complex. The MOSFET output capacitance also  
complicates the mathematics. And finally, MOSFETs have  
finite internal gate resistance which effectively adds to the  
resistance of the driving source, but the internal resistance  
is difficult to measure and, consequently, is not specified.  
The resistive switching time variation versus gate  
resistance (Figure 9) shows how typical switching  
performance is affected by the parasitic circuit elements. If  
the parasitics were not present, the slope of the curves would  
maintain a value of unity regardless of the switching speed.  
The circuit used to obtain the data is constructed to minimize  
common inductance in the drain and gate circuit loops and  
is believed readily achievable with board mounted  
components. Most power electronic loads are inductive; the  
data in the figure is taken with a resistive load, which  
approximates an optimally snubbed inductive load. Power  
MOSFETs may be safely operated into an inductive load;  
however, snubbing reduces switching losses.  
The published capacitance data is difficult to use for  
calculating rise and fall because drain−gate capacitance  
varies greatly with applied voltage. Accordingly, gate  
charge data is used. In most cases, a satisfactory estimate of  
average input current (I  
) can be made from a  
G(AV)  
rudimentary analysis of the drive circuit so that  
t = Q/I  
G(AV)  
During the rise and fall time interval when switching a  
resistive load, V remains virtually constant at a level  
GS  
known as the plateau voltage, V . Therefore, rise and fall  
SGP  
times may be approximated by the following:  
t = Q x R /(V − V )  
GSP  
r
2
G
GG  
t = Q x R /V  
f
2
G
GSP  
where  
= the gate drive voltage, which varies from zero to V  
V
GG  
GG  
R = the gate drive resistance  
G
and Q and V  
are read from the gate charge curve.  
2
GSP  
During the turn−on and turn−off delay times, gate current is  
not constant. The simplest calculation uses appropriate  
values from the capacitance curves in a standard equation for  
voltage change in an RC network. The equations are:  
t
t
= R C In [V /(V − V )]  
G iss GG GG GSP  
d(on)  
d(off)  
= R C In (V /V )  
GG GSP  
G
iss  
1000  
V
DS  
= 0 V  
V
GS  
= 0 V  
T = 25°C  
J
C
C
800  
600  
400  
iss  
rss  
C
C
iss  
200  
0
oss  
C
5
rss  
10  
5
0
10  
15  
20  
25  
V
GS  
V
DS  
GATE−TO−SOURCE OR DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
Figure 7. Capacitance Variation  
www.onsemi.com  
4
NTD3055L104, NTDV3055L104  
6
1000  
Q
T
5
4
3
2
Q
Q
2
1
100  
t
r
t
f
V
GS  
t
d(off)  
10  
1
t
d(on)  
V
= 30 V  
= 12 A  
= 5 V  
DS  
I
= 12 A  
D
1
0
I
D
T = 25°C  
J
V
GS  
0
2
4
6
8
1
10  
R , GATE RESISTANCE (OHMS)  
100  
Q , TOTAL GATE CHARGE (nC)  
G
G
Figure 8. Gate−To−Source and Drain−To−Source  
Voltage versus Total Charge  
Figure 9. Resistive Switching Time  
Variation versus Gate Resistance  
DRAIN−TO−SOURCE DIODE CHARACTERISTICS  
16  
V
GS  
= 0 V  
14  
12  
10  
8
T = 150°C  
J
T = 25°C  
J
6
4
2
0
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
V
SD  
, SOURCE−TO−DRAIN VOLTAGE (VOLTS)  
Figure 10. Diode Forward Voltage versus Current  
SAFE OPERATING AREA  
The Forward Biased Safe Operating Area curves define  
the maximum simultaneous drain−to−source voltage and  
drain current that a transistor can handle safely when it is  
forward biased. Curves are based upon maximum peak  
reliable operation, the stored energy from circuit inductance  
dissipated in the transistor while in avalanche must be less  
than the rated limit and adjusted for operating conditions  
differing from those specified. Although industry practice is  
to rate in terms of energy, avalanche energy capability is not  
a constant. The energy rating decreases non−linearly with an  
increase of peak current in avalanche and peak junction  
temperature.  
junction temperature and a case temperature (T ) of 25°C.  
C
Peak repetitive pulsed power limits are determined by using  
the thermal response data in conjunction with the procedures  
discussed in AN569, “Transient Thermal Resistance −  
General Data and Its Use.”  
Although many E−FETs can withstand the stress of  
drain−to−source avalanche at currents up to rated pulsed  
Switching between the off−state and the on−state may  
traverse any load line provided neither rated peak current  
current (I ), the energy rating is specified at rated  
DM  
(I ) nor rated voltage (V ) is exceeded and the  
continuous current (I ), in accordance with industry custom.  
DM  
DSS  
D
transition time (t ,t ) do not exceed 10ms. In addition the total  
power averaged over a complete switching cycle must not  
The energy rating must be derated for temperature as shown  
in the accompanying graph (Figure 12). Maximum energy at  
r f  
currents below rated continuous I can safely be assumed to  
exceed (T  
− T )/(R ).  
D
J(MAX)  
C
qJC  
equal the values indicated.  
A Power MOSFET designated E−FET can be safely used  
in switching circuits with unclamped inductive loads. For  
www.onsemi.com  
5
NTD3055L104, NTDV3055L104  
SAFE OPERATING AREA  
100  
10  
70  
V
= 15 V  
I
D
= 11 A  
GS  
10 ms  
SINGLE PULSE  
60  
T
C
= 25°C  
50  
40  
30  
100 ms  
1 ms  
1
10 ms  
dc  
20  
R
LIMIT  
DS(on)  
THERMAL LIMIT  
PACKAGE LIMIT  
10  
0
0.1  
0.1  
1
10  
100  
25  
50  
75  
100  
125  
150  
175  
V
DS  
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
T , STARTING JUNCTION TEMPERATURE (°C)  
J
Figure 11. Maximum Rated Forward Biased  
Safe Operating Area  
Figure 12. Maximum Avalanche Energy versus  
Starting Junction Temperature  
1.0  
D = 0.5  
0.2  
0.1  
P
(pk)  
0.1  
0.05  
0.02  
R
(t) = r(t) R  
q
JC  
q
JC  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
t
READ TIME AT t  
1
0.01  
1
t
2
T
- T = P  
C
R (t)  
q
JC  
J(pk)  
(pk)  
SINGLE PULSE  
DUTY CYCLE, D = t /t  
1 2  
0.01  
0.00001  
0.0001  
0.001  
0.01  
t, TIME (s)  
0.1  
1
10  
Figure 13. Thermal Response  
di/dt  
I
S
t
rr  
t
a
t
b
TIME  
0.25 I  
t
p
S
I
S
Figure 14. Diode Reverse Recovery Waveform  
www.onsemi.com  
6
NTD3055L104, NTDV3055L104  
ORDERING INFORMATION  
Device  
Package  
Shipping  
NTD3055L104G  
DPAK  
(Pb−Free)  
75 Units / Rail  
75 Units / Rail  
NTD3055L104−1G  
NTD3055L104T4G  
NTDV3055L104−1G  
IPAK  
(Pb−Free)  
DPAK  
(Pb−Free)  
2500 / Tape & Reel  
75 Units / Rail  
IPAK  
(Pb−Free)  
NTDV3055L104T4G*  
STDV3055L104T4G*  
DPAK  
(Pb−Free)  
2500 / Tape & Reel  
2500 / Tape & Reel  
DPAK  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*NTDV and STDV Prefixes for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q101  
Qualified and PPAP Capable.  
www.onsemi.com  
7
NTD3055L104, NTDV3055L104  
PACKAGE DIMENSIONS  
DPAK (SINGLE GAUGE)  
CASE 369C  
ISSUE F  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: INCHES.  
3. THERMAL PAD CONTOUR OPTIONAL WITHIN DI-  
MENSIONS b3, L3 and Z.  
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD  
FLASH, PROTRUSIONS, OR BURRS. MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS SHALL  
NOT EXCEED 0.006 INCHES PER SIDE.  
5. DIMENSIONS D AND E ARE DETERMINED AT THE  
OUTERMOST EXTREMES OF THE PLASTIC BODY.  
6. DATUMS A AND B ARE DETERMINED AT DATUM  
PLANE H.  
A
D
E
C
A
b3  
B
c2  
4
2
L3  
L4  
Z
DETAIL A  
H
1
3
7. OPTIONAL MOLD FEATURE.  
INCHES  
DIM MIN MAX  
0.086 0.094  
A1 0.000 0.005  
0.025 0.035  
MILLIMETERS  
NOTE 7  
MIN  
2.18  
0.00  
0.63  
0.72  
4.57  
0.46  
0.46  
5.97  
6.35  
2.29 BSC  
9.40 10.41  
1.40 1.78  
2.90 REF  
0.51 BSC  
0.89 1.27  
MAX  
2.38  
0.13  
0.89  
1.14  
5.46  
0.61  
0.61  
6.22  
6.73  
c
b2  
e
BOTTOM VIEW  
A
SIDE VIEW  
b
b
b2 0.028 0.045  
b3 0.180 0.215  
M
0.005 (0.13)  
C
TOP VIEW  
c
0.018 0.024  
c2 0.018 0.024  
Z
Z
D
E
e
0.235 0.245  
0.250 0.265  
0.090 BSC  
H
GAUGE  
PLANE  
SEATING  
PLANE  
H
L
L1  
L2  
0.370 0.410  
0.055 0.070  
0.114 REF  
L2  
C
0.020 BSC  
L3 0.035 0.050  
L
BOTTOM VIEW  
A1  
L4  
Z
−−− 0.040  
0.155 −−−  
−−−  
3.93  
1.01  
−−−  
L1  
ALTERNATE  
CONSTRUCTIONS  
DETAIL A  
ROTATED 905 CW  
STYLE 2:  
PIN 1. GATE  
2. DRAIN  
SOLDERING FOOTPRINT*  
3. SOURCE  
4. DRAIN  
6.20  
0.244  
3.00  
0.118  
2.58  
0.102  
5.80  
0.228  
1.60  
0.063  
6.17  
0.243  
mm  
inches  
ǒ
Ǔ
SCALE 3:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
www.onsemi.com  
8
NTD3055L104, NTDV3055L104  
PACKAGE DIMENSIONS  
IPAK  
CASE 369D  
ISSUE C  
C
B
R
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
V
S
E
INCHES  
DIM MIN MAX  
MILLIMETERS  
4
2
MIN  
5.97  
6.35  
2.19  
0.69  
0.46  
0.94  
MAX  
6.35  
6.73  
2.38  
0.88  
0.58  
1.14  
Z
A
B
C
D
E
F
G
H
J
K
R
S
V
Z
0.235 0.245  
0.250 0.265  
0.086 0.094  
0.027 0.035  
0.018 0.023  
0.037 0.045  
0.090 BSC  
0.034 0.040  
0.018 0.023  
0.350 0.380  
0.180 0.215  
0.025 0.040  
0.035 0.050  
A
K
1
3
−T−  
SEATING  
PLANE  
2.29 BSC  
0.87  
0.46  
8.89  
4.45  
0.63  
0.89  
3.93  
1.01  
0.58  
9.65  
5.45  
1.01  
1.27  
−−−  
J
F
H
0.155  
−−−  
D 3 PL  
STYLE 2:  
PIN 1. GATE  
G
M
T
0.13 (0.005)  
2. DRAIN  
3. SOURCE  
4. DRAIN  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5817−1050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
NTD3055L104/D  

相关型号:

NTD3055L104-1

Power MOSFET
ONSEMI

NTD3055L104-1G

Power MOSFET
ONSEMI

NTD3055L104/D

Power MOSFET 12 Amps, 60 Volts, Logic Level
ETC

NTD3055L104G

Power MOSFET
ONSEMI

NTD3055L104T4

Power MOSFET
ONSEMI

NTD3055L104T4G

Power MOSFET
ONSEMI

NTD3055L170

9.0 Amps, 60 Volts, Logic Level, N−Channel DPAK
ONSEMI

NTD3055L170-1

9.0 Amps, 60 Volts, Logic Level, N−Channel DPAK
ONSEMI

NTD3055L170-1G

9.0 Amps, 60 Volts, Logic Level, N−Channel DPAK
ONSEMI

NTD3055L170.1G

Power MOSFET
ONSEMI

NTD3055L170G

9.0 Amps, 60 Volts, Logic Level, N−Channel DPAK
ONSEMI

NTD3055L170T4

9.0 Amps, 60 Volts, Logic Level, N−Channel DPAK
ONSEMI