NTHC5513T1G [ONSEMI]

Power MOSFET 20 V, +3.9 A / −3.0 A, Complementary ChipFET-TM; 功率MOSFET的20 V , 3.9 A / -3.0 A,互补ChipFET -TM
NTHC5513T1G
型号: NTHC5513T1G
厂家: ONSEMI    ONSEMI
描述:

Power MOSFET 20 V, +3.9 A / −3.0 A, Complementary ChipFET-TM
功率MOSFET的20 V , 3.9 A / -3.0 A,互补ChipFET -TM

文件: 总10页 (文件大小:86K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NTHC5513  
Power MOSFET  
20 V, +3.9 A / −3.0 A,  
Complementary ChipFETt  
Features  
Complementary N−Channel and P−Channel MOSFET  
Small Size, 40% Smaller than TSOP−6 Package  
Leadless SMD Package Featuring Complementary Pair  
http://onsemi.com  
V
R
TYP  
I MAX  
D
(BR)DSS  
DS(on)  
ChipFET Package Provides Great Thermal Characteristics Similar to  
60 mW @ 4.5 V  
80 mW @ 2.5 V  
N−Channel  
20 V  
Larger Packages  
3.9 A  
Low R  
in a ChipFET Package for High Efficiency Performance  
DS(on)  
130 mW @ −4.5 V  
200 mW @ −2.5 V  
P−Channel  
−20 V  
Low Profile (< 1.10 mm) Allows Placement in Extremely Thin  
Environments Such as Portable Electronics  
Pb−Free Package is Available  
−3.0 A  
S
D
2
1
Applications  
Load Switch Applications Requiring Level Shift  
DC−DC Conversion Circuits  
Drive Small Brushless DC Motors  
G
2
G
1
Designed for Power Management Applications in Portable, Battery  
Powered Products  
D
2
S
1
MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
J
N−Channel MOSFET  
P−Channel MOSFET  
Parameter  
Drain−to−Source Voltage  
Symbol Value  
Unit  
V
V
20  
±12  
2.9  
DSS  
ChipFET  
CASE 1206A  
STYLE 2  
Gate−to−Source Voltage  
V
V
GS  
Continuous Drain  
Current (Note 1)  
N−Ch  
Steady  
State  
T = 25°C  
I
D
A
A
T = 85°C  
A
2.1  
PIN  
MARKING  
DIAGRAM  
t v 5  
P−Ch  
Steady  
State  
T = 25°C  
A
3.9  
CONNECTIONS  
T = 25°C  
A
I
−2.2  
−1.6  
−3.0  
12  
A
D
8
7
6
5
1
2
3
4
D
D
D
D
S
1
2
3
4
8
7
6
5
1
1
2
2
1
T = 85°C  
A
G
S
1
t v 5  
N−Ch  
P−Ch  
T = 25°C  
A
Pulsed Drain Current  
(Note 1)  
t = 10 ms  
t = 10 ms  
I
A
DM  
2
−9.0  
1.1  
G
2
Power Dissipation  
(Note 1)  
Steady  
State  
P
D
W
T = 25°C  
A
C1 = Specific Device Code  
M = Month Code  
t v 5  
T = 25°C  
2.1  
A
Operating Junction and Storage  
Temperature  
T ,  
−55 to  
150  
°C  
°C  
J
T
STG  
ORDERING INFORMATION  
Lead Temperature for Soldering Purposes  
(1/8” from case for 10 seconds)  
T
L
260  
Device  
Package  
Shipping  
NTHC5513T1  
ChipFET  
3000/Tape & Reel  
3000/Tape & Reel  
Maximum ratings are those values beyond which device damage can occur.  
Maximum ratings applied to the device are individual stress limit values (not  
normal operating conditions) and are not valid simultaneously. If these limits are  
exceeded, device functional operation is not implied, damage may occur and  
reliability may be affected.  
ChipFET  
(Pb−Free)  
NTHC5513T1G  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specifications  
Brochure, BRD8011/D.  
1. Surface Mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq  
[1 oz] including traces).  
Semiconductor Components Industries, LLC, 2004  
1
Publication Order Number:  
October, 2004 − Rev. 4  
NTHC5513/D  
 
NTHC5513  
THERMAL RESISTANCE RATINGS  
Parameter  
Symbol  
Max  
110  
60  
Unit  
Junction−to−Ambient (Note 1)  
Steady State  
R
°C/W  
q
JA  
T = 25°C  
A
t v 5  
2. Surface Mounted on FR4 board using 1 in sq pad size (Cu area = 1.127 in sq [1 oz] including traces).  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
J
Parameter  
Symbol  
N/P  
Test Conditions  
Min  
Typ  
Max  
Unit  
V
OFF CHARACTERISTICS (Note 3)  
Drain−to−Source Breakdown Voltage  
V
N
P
N
P
N
P
I
= 250 mA  
20  
(BR)DSS  
D
V
= 0 V  
GS  
I
D
= −250 mA  
−20  
Zero Gate Voltage Drain Current  
I
V
= 0 V, V = 16 V  
1.0  
−1.0  
5
mA  
DSS  
GS  
DS  
V
= 0 V, V = −16 V  
DS  
GS  
V
= 0 V, V = 16 V, T = 85 °C  
DS J  
GS  
V
= 0 V, V = −16 V, T = 85 °C  
−5  
GS  
DS  
J
Gate−to−Source Leakage Current  
ON CHARACTERISTICS (Note 3)  
Gate Threshold Voltage  
I
V
= 0 V, V = ±12 V  
±100  
nA  
V
GSS  
DS  
GS  
V
R
N
P
N
P
N
P
N
P
I
= 250 mA  
0.6  
1.2  
GS(TH)  
D
V
GS  
= V  
DS  
I
D
= −250 mA  
−0.6  
−1.2  
Drain−to−Source On Resistance  
(on)  
V
= 4.5 V , I = 2.9 A  
0.058 0.080  
0.130 0.155  
0.077 0.115  
0.200 0.240  
6.0  
DS  
GS  
D
V
GS  
= −4.5 V , I = −2.2 A  
D
W
V
= 2.5 V , I = 2.3 A  
D
GS  
V
GS  
= −2.5 V, I = 1.7 A  
D
Forward Transconductance  
g
V
= 10 V, I = 2.9A  
S
FS  
DS  
D
V
DS  
= −10 V , I = −2.2 A  
6.0  
D
CHARGES AND CAPACITANCES  
Input Capacitance  
C
N
P
N
P
N
P
N
P
N
P
N
P
V
= 10 V  
= −10 V  
= 10 V  
180  
185  
80  
pF  
ISS  
DS  
V
V
V
DS  
Output Capacitance  
C
V
OSS  
DS  
DS  
f = 1 MHz, V = 0 V  
GS  
= −10 V  
= 10 V  
95  
Reverse Transfer Capacitance  
Total Gate Charge  
C
V
25  
RSS  
DS  
DS  
= −10 V  
30  
Q
V
GS  
= 4.5 V, V = 10 V, I = 2.9 A  
2.6  
3.0  
0.6  
0.5  
0.7  
0.9  
4.0  
6.0  
nC  
G(TOT)  
DS  
D
V
V
V
= −4.5 V, V = 10 V, I = 2.2 A  
DS D  
GS  
Gate−to−Source Gate Charge  
Gate−to−Drain “Miller” Charge  
Q
Q
V
= 4.5 V, V = 10 V, I = 2.9 A  
GS DS D  
GS  
= −4.5 V, V = 10 V, I = 2.2 A  
GS  
DS  
D
V
GS  
= 4.5 V, V = 10 V, I = 2.9 A  
DS D  
GD  
= −4.5 V, V = 10 V, I = 2.2 A  
GS  
DS  
D
3. Pulse Test: Pulse Width v 250 ms, Duty Cycle v 2%.  
http://onsemi.com  
2
 
NTHC5513  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
J
Parameter  
SWITCHING CHARACTERISTICS (Note 4)  
Turn−On Delay Time  
Rise Time  
Symbol  
N/P  
Test Conditions  
Min  
Typ  
Max  
Unit  
t
5.0  
9.0  
10  
10  
18  
20  
6.0  
12  
25  
50  
40  
ns  
d(ON)  
t
r
N
V
= 16 V, V = 4.5 V, I = 2.9 A,  
GS D  
DD  
R
= 2.5 W  
G
Turn−Off Delay Time  
Fall Time  
t
d(OFF)  
t
f
3.0  
7.0  
13  
Turn−On Delay Time  
Rise Time  
t
d(ON)  
t
r
V
= −16 V, V = 4.5 V, I = 2.2 A,  
GS D  
DD  
P
R
= 2.5 W  
G
Turn−Off Delay Time  
Fall Time  
t
33  
d(OFF)  
t
f
27  
DRAIN−SOURCE DIODE CHARACTERISTICS  
Forward Diode Voltage (Note 5)  
Reverse Recovery Time (Note 4)  
Charge Time  
V
N
P
N
P
N
P
N
P
N
P
I
= 2.6 A  
0.8  
1.15  
V
SD  
RR  
S
V
= 0 V  
GS  
I
I
I
I
I
= −2.1 A  
= 1.5 A  
= −1.5 A  
= 1.5 A  
= −1.5 A  
= 1.5 A  
= −1.5 A  
= 1.5 A  
= −1.5 A  
−0.8 −1.15  
S
t
I
S
12.5  
32  
ns  
S
t
t
I
S
9.0  
10  
a
S
V
GS  
= 0 V,  
dI / dt = 100 A/ms  
S
Discharge Time  
I
S
3.5  
22  
b
S
Reverse Recovery Charge  
Q
I
S
6.0  
15  
nC  
RR  
S
4. Switching characteristics are independent of operating junction temperatures.  
5. Pulse Test: Pulse Width v 250 ms, Duty Cycle v 2%.  
http://onsemi.com  
3
 
NTHC5513  
TYPICAL N−CHANNEL PERFORMANCE CURVES  
(T = 25°C unless otherwise noted)  
J
8
6
4
8
V
= 5 V to 3 V  
= 2.4 V  
GS  
T = 25°C  
J
V
DS  
10 V  
V
GS  
2 V  
2.2 V  
6
1.8 V  
4
2
0
1.6 V  
1.4 V  
2
0
T
C
= −55°C  
25°C  
100°C  
0
1
2
3
4
5
6
7
8
9
10  
0
0.5  
1
1.5  
2
2.5  
3
V
GS  
, GATE−TO−SOURCE VOLTAGE (VOLTS)  
V
DS  
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
Figure 1. On−Region Characteristics  
Figure 2. Transfer Characteristics  
0.1  
0.15  
0.1  
I
= 2.7 A  
T = 25°C  
J
D
T = 25°C  
J
V
= 2.5 V  
= 4.5 V  
GS  
0.07  
0.04  
V
GS  
0.05  
0
1
3
5
7
0
1
2
3
4
5
6
V
GS  
, GATE−TO−SOURCE VOLTAGE (VOLTS)  
I
D,  
DRAIN CURRENT (AMPS)  
Figure 4. On−Resistance vs. Drain Current and  
Gate Voltage  
Figure 3. On−Resistance vs. Gate−to−Source  
Voltage  
1.7  
100  
10  
1
I
V
= 2.7 A  
V
GS  
= 0 V  
D
= 4.5 V  
GS  
1.5  
1.3  
1.1  
T = 100°C  
J
0.9  
0.7  
−50 −25  
0
25  
50  
75  
100  
125 150  
2
4
6
8
10  
, DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
DS  
12  
14  
16  
18  
20  
T , JUNCTION TEMPERATURE (°C)  
V
J
Figure 5. On−Resistance Variation with  
Temperature  
Figure 6. Drain−to−Source Leakage Current  
vs. Voltage  
http://onsemi.com  
4
NTHC5513  
TYPICAL N−CHANNEL PERFORMANCE CURVES  
(T = 25°C unless otherwise noted)  
J
5
20  
16  
12  
8
400  
300  
200  
V
DS  
= 0 V  
V
GS  
= 0 V  
Q
G
T = 25°C  
J
C
C
4.5  
4
ISS  
3.5  
3
RSS  
2.5  
2
Q
GD  
Q
GS  
1.5  
1
100  
0
4
C
I
= 2.7 A  
OSS  
D
T = 25°C  
0.5  
0
J
0
0
0.5  
1
1.5  
2
2.5  
3
10  
5
0
5
10  
15  
20  
V
GS  
V
DS  
Q , TOTAL GATE CHARGE (nC)  
G
GATE−TO−SOURCE OR DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
Figure 8. Gate−to−Source and  
Drain−to−Source Voltage vs. Total Charge  
Figure 7. Capacitance Variation  
100  
7
6
5
4
3
2
V = 0 V  
GS  
T = 25°C  
J
V
= 16 V  
= 2.7 A  
= 4.5 V  
DD  
I
D
V
GS  
t
r
10  
t
d(OFF  
)
t
d(ON)  
t
f
1
0
1
1
10  
R , GATE RESISTANCE (OHMS)  
100  
0.3  
0.6  
0.75  
0.9  
1.05  
1.2  
0.45  
V
, SOURCE−TO−DRAIN VOLTAGE (VOLTS)  
G
SD  
Figure 9. Resistive Switching Time Variation  
vs. Gate Resistance  
Figure 10. Diode Forward Voltage vs. Current  
http://onsemi.com  
5
NTHC5513  
TYPICAL P−CHANNEL PERFORMANCE CURVES  
(T = 25°C unless otherwise noted)  
J
4
3
2
4
T = 25°C  
J
V
= −6 V to −3 V  
= −2.4 V  
GS  
V
DS  
−10 V  
−2 V  
V
GS  
−2.2 V  
3
−1.8 V  
−1.6 V  
2
1
0
T
= −55°C  
C
1
0
−1.4 V  
−1.2 V  
25°C  
100°C  
0
1
2
3
4
5
6
7
8
0.5  
1
1.5  
2
2.5  
3
−V , GATE−TO−SOURCE VOLTAGE (VOLTS)  
GS  
−V , DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
DS  
Figure 11. On−Region Characteristics  
Figure 12. Transfer Characteristics  
0.25  
0.225  
0.2  
0.5  
T = 25°C  
J
I
= −2.1 A  
D
T = 25°C  
J
0.4  
0.3  
0.2  
V
GS  
= −2.5 V  
0.175  
0.15  
0.125  
0.1  
V
GS  
= −4.5 V  
0.1  
0
1
2
3
4
5
6
0.5  
1.5  
2.5  
3.5  
−V , GATE−TO−SOURCE VOLTAGE (VOLTS)  
GS  
−I DRAIN CURRENT (AMPS)  
D,  
Figure 14. On−Resistance vs. Drain Current  
and Gate Voltage  
Figure 13. On−Resistance vs. Gate−to−Source  
Voltage  
1.6  
1.4  
1.2  
1
10000  
I
V
= −2.1 A  
V
GS  
= 0 V  
D
= −4.5 V  
GS  
T = 150°C  
J
1000  
100  
10  
T = 100°C  
J
0.8  
0.6  
−50 −25  
0
25  
50  
75  
100  
125 150  
2
4
6
8
10  
12  
14  
16  
18  
20  
−T , JUNCTION TEMPERATURE (°C)  
J
−V , DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
DS  
Figure 15. On−Resistance Variation with  
Temperature  
Figure 16. Drain−to−Source Leakage Current  
vs. Voltage  
http://onsemi.com  
6
NTHC5513  
TYPICAL P−CHANNEL PERFORMANCE CURVES  
(T = 25°C unless otherwise noted)  
J
5
15  
12  
9
600  
500  
400  
300  
200  
V
DS  
= 0 V  
V
GS  
= 0 V  
T = 25°C  
J
Q
T
C
C
−V  
ISS  
−V  
GS  
DS  
4
3
RSS  
Q
GS  
Q
GD  
2
1
0
6
3
I
= −2.1 A  
T = 25°C  
C
D
100  
0
OSS  
J
0
10  
5
0
5
10  
15  
20  
0
1
2
3
4
−V  
GS  
−V  
DS  
Q , TOTAL GATE CHARGE (nC)  
G
GATE−TO−SOURCE OR DRAIN−TO−SOURCE VOLTAGE (VOLTS)  
Figure 18. Gate−to−Source and  
Drain−to−Source Voltage vs. Total Charge  
Figure 17. Capacitance Variation  
1000  
2.5  
2
V
GS  
= 0 V  
T = 25°C  
J
100  
1.5  
1
t
d(OFF)  
t
f
t
10  
r
t
d(ON)  
V
= −16 V  
= −2.1 A  
= −4.5 V  
DD  
0.5  
0
I
D
V
GS  
1
1
10  
R , GATE RESISTANCE (OHMS)  
100  
0.3  
0.5  
0.7  
0.9  
−V , SOURCE−TO−DRAIN VOLTAGE (VOLTS)  
SD  
G
Figure 19. Resistive Switching Time Variation  
vs. Gate Resistance  
Figure 20. Diode Forward Voltage vs. Current  
TYPICAL PERFORMANCE CURVES  
(T = 25°C unless otherwise noted)  
J
2
1
Duty Cycle = 0.5  
Notes:  
P
DM  
0.2  
t
1
0.1  
t
2
1
2
0.1  
t
0.05  
0.02  
1. Duty Cycle, D =  
t
2. Per Unit Base = R  
= 90°C/W  
thJA  
(t)  
3. T  
T = P  
A
Z
q
JM −  
DM JA  
Single Pulse  
4. Surface Mounted  
0.01  
−4  
−3  
10  
−2  
10  
−1  
10  
10  
1
10  
100  
600  
Square Wave Pulse Duration (sec)  
Figure 21. Thermal Response  
http://onsemi.com  
7
NTHC5513  
SOLDERING FOOTPRINT*  
2.032  
0.08  
2.032  
0.08  
0.457  
0.018  
1.092  
0.043  
0.635  
0.025  
0.635  
0.025  
0.178  
0.007  
0.457  
0.018  
0.711  
0.028  
0.254  
0.010  
0.66  
0.66  
0.026  
0.026  
Figure 23. Style 2  
Figure 22. Basic  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
BASIC PAD PATTERNS  
The basic pad layout with dimensions is shown in  
Figure 22. This is sufficient for low power dissipation  
MOSFET applications, but power semiconductor  
performance requires a greater copper pad area, particularly  
for the drain leads.  
The minimum recommended pad pattern shown in  
Figure 23 improves the thermal area of the drain  
connections (pins 5, 6, 7, 8) while remaining within the  
confines of the basic footprint. The drain copper area is  
0.0019 sq. in. (or 1.22 sq. mm). This will assist the power  
dissipation path away from the device (through the copper  
lead−frame) and into the board and exterior chassis (if  
applicable) for the single device. The addition of a further  
copper area and/or the addition of vias to other board layers  
will enhance the performance still further.  
http://onsemi.com  
8
 
NTHC5513  
PACKAGE DIMENSIONS  
ChipFET  
CASE 1206A−03  
ISSUE E  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. MOLD GATE BURRS SHALL NOT EXCEED 0.13 MM  
PER SIDE.  
A
M
4. LEADFRAME TO MOLDED BODY OFFSET IN  
HORIZONTAL AND VERTICAL SHALL NOT EXCEED  
0.08 MM.  
5. DIMENSIONS A AND B EXCLUSIVE OF MOLD GATE  
BURRS.  
K
8
1
7
2
6
3
5
4
5
4
6
3
7
2
8
1
S
B
6. NO MOLD FLASH ALLOWED ON THE TOP AND  
BOTTOM LEAD SURFACE.  
7. 1206A−01 AND 1206A−02 OBSOLETE. NEW  
STANDARD IS 1206A−03.  
L
D
J
MILLIMETERS  
INCHES  
STYLE 2:  
PIN 1. SOURCE 1  
2. GATE 1  
G
DIM MIN  
MAX  
3.10  
1.70  
1.10  
0.35  
MIN  
MAX  
0.122  
0.067  
0.043  
0.014  
A
B
C
D
G
J
2.95  
1.55  
1.00  
0.25  
0.116  
0.061  
0.039  
0.010  
3. SOURCE 2  
4. GATE 2  
5. DRAIN 2  
6. DRAIN 2  
7. DRAIN 1  
8. DRAIN 1  
0.65 BSC  
0.025 BSC  
0.10  
0.28  
0.20  
0.42  
0.004 0.008  
0.011 0.017  
0.022 BSC  
C
K
L
0.55 BSC  
5 ° NOM  
1.80 2.00  
M
S
5 ° NOM  
0.05 (0.002)  
0.072  
0.080  
http://onsemi.com  
9
NTHC5513  
ChipFET is a trademark of Vishay Siliconix.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
NTHC5513/D  

相关型号:

NTHC60A-24.0000

XO, Clock, 6MHz Min, 24MHz Max, 24MHz Nom, Hybrid,
PERICOM

NTHC60A3

Crystal Clock Oscillator
ETC

NTHC60AA3

Crystal Clock Oscillator
ETC

NTHC60B3

Crystal Clock Oscillator
ETC

NTHC60B3-24.0000

Oscillator, 6MHz Min, 24MHz Max, 24MHz Nom, Hybrid,
PERICOM

NTHC60B3-6.0000

XO, Clock, 6MHz Min, 24MHz Max, 6MHz Nom, Hybrid,
PERICOM

NTHC60B3-FREQ

HCMOS Output Clock Oscillator, 6MHz Min, 24MHz Max, FULL SIZE, RESISTANCE WELDED, METAL, DIP-4
PERICOM

NTHC60C-FREQ

CMOS Output Clock Oscillator, 6MHz Min, 24MHz Max, FULL SIZE, RESISTANCE WELDED, METAL, DIP-4
PERICOM

NTHC60C3

Crystal Clock Oscillator
ETC

NTHC60C3-24.0000

Oscillator, 6MHz Min, 24MHz Max, 24MHz Nom, Hybrid,
PERICOM

NTHC60C3-6.0000

XO, Clock, 6MHz Min, 24MHz Max, 6MHz Nom, Hybrid,
PERICOM

NTHC60C3-FREQ

HCMOS Output Clock Oscillator, 6MHz Min, 24MHz Max, FULL SIZE, RESISTANCE WELDED, METAL, DIP-4
PERICOM