PCA9655EDTR2G [ONSEMI]

Remote 16-bit I/O Expander for I2C Bus with Interrupt; 远程16位I2C总线I / O扩展器,带有中断
PCA9655EDTR2G
型号: PCA9655EDTR2G
厂家: ONSEMI    ONSEMI
描述:

Remote 16-bit I/O Expander for I2C Bus with Interrupt
远程16位I2C总线I / O扩展器,带有中断

驱动程序和接口 接口集成电路 光电二极管
文件: 总20页 (文件大小:215K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCA9655E  
Remote 16-bit I/O Expander  
for I2C Bus with Interrupt  
The PCA9655E provides 16 bits of General Purpose parallel Input /  
2
Output (GPIO) expansion through the I Cbus / SMBus.  
The PCA9655E consists of two 8bit Configuration (Input or  
Output selection); Input, Output and Polarity Inversion (activeHIGH  
or activeLOW operation) registers. At power on, all I/Os default to  
inputs. Each I/O may be configured as either input or output by writing  
to its corresponding I/O configuration bit. The data for each Input or  
Output is kept in its corresponding Input or Output register. The  
Polarity Inversion register may be used to invert the polarity of the  
read register. All registers can be read by the system master.  
The PCA9655E provides an opendrain interrupt output which is  
activated when any input state differs from its corresponding input  
port register state. The interrupt output is used to indicate to the system  
master that an input state has changed. The poweron reset sets the  
registers to their default values and initializes the device state  
machine.  
http://onsemi.com  
MARKING  
DIAGRAMS  
PCA9655E  
AWLYYWWG  
SOIC24  
DW SUFFIX  
CASE 751E  
PCA96  
55EG  
Three hardware pins (AD0, AD1, AD2) are used to configure the  
2
I Cbus slave address of the device. Up to 64 devices are allowed to  
AWLYYWW  
TSSOP24  
DT SUFFIX  
CASE 948H  
2
share the same I Cbus / SMBus.  
Features  
V Operating Range: 1.65 V to 5.5 V  
DD  
SDA Sink Capability: 30 mA  
5.5 V Tolerant I/Os  
PCA  
9655E  
ALYWG  
G
1
WQFN24  
MT SUFFIX  
CASE 485BG  
Polarity Inversion Register  
Active LOW Interrupt Output  
Low Standby Current  
Noise Filter on SCL/SDA Inputs  
No Glitch on Powerup  
XXXX = Specific Device Code  
= Assembly Location  
WL, L = Wafer Lot  
YY, Y = Year  
WW, W = Work Week  
A
Internal Poweron Reset  
64 Programmable Slave Addresses Using Three Address Pins  
16 I/O Pins Which Default to 16 Inputs  
G or G = PbFree Package  
(Note: Microdot may be in either location)  
2
I C SCL Clock Frequencies Supported:  
Standard Mode: 100 kHz  
Fast Mode: 400 kHz  
Fast Mode +: 1 MHz  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 17 of this data sheet.  
ESD Performance: 2000 V Human Body Model,  
200 V Machine Model  
These are PbFree Devices  
© Semiconductor Components Industries, LLC, 2012  
1
Publication Order Number:  
May, 2012 Rev. 1  
PCA9655E/D  
PCA9655E  
BLOCK DIAGRAM  
PCA9655E  
IO1_0  
IO1_1  
IO1_2  
IO1_3  
IO1_4  
IO1_5  
IO1_6  
IO1_7  
8bit  
AD0  
AD1  
AD2  
INPUT/  
OUTPUT  
PORTS  
write pulse  
read pulse  
2
I CBUS/SMBus  
CONTROL  
SCL  
SDA  
IO0_0  
IO0_1  
IO0_2  
IO0_3  
IO0_4  
IO0_5  
IO0_6  
IO0_7  
INPUT  
FILTER  
8bit  
INPUT/  
OUTPUT  
PORTS  
write pulse  
read pulse  
V
DD  
POWERON  
RESET  
V
SS  
V
DD  
LP filter  
INT  
Remark: All I/Os are set as inputs at reset.  
Figure 1. Block Diagram  
data from  
output port  
shift register  
register data  
configuration  
register  
V
DD  
data from  
shift register  
Q1  
D
Q
100 kW  
FF  
write  
configuration  
pulse  
D
Q
CK  
Q
FF  
I/O pin  
Q2  
write pulse  
read pulse  
CK  
V
input port  
register  
SS  
output port  
register  
D
Q
input port  
register data  
FF  
CK  
to INT  
polarity inversion  
register  
data from  
shift register  
polarity  
inversion  
register data  
D
Q
FF  
write polarity  
pulse  
CK  
At poweron reset, all registers return to default values.  
Figure 2. Simplified Schematic of I/Os  
http://onsemi.com  
2
 
PCA9655E  
PIN ASSIGNMENT  
terminal 1  
index area  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
INT  
AD1  
V
DD  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
IO0_0  
AD0  
SDA  
IO0_1  
IO0_2  
IO0_3  
IO0_4  
IO0_5  
IO1_7  
IO1_6  
IO1_5  
IO1_4  
IO1_3  
3
AD2  
SCL  
4
IO0_0  
IO0_1  
IO0_2  
IO0_3  
IO0_4  
IO0_5  
IO0_6  
IO0_7  
AD0  
PCA9655E  
5
IO1_7  
IO1_6  
IO1_5  
IO1_4  
IO1_3  
IO1_2  
IO1_1  
IO1_0  
6
PCA9655E  
7
8
9
10  
11  
12  
Transparent top view  
V
SS  
(The exposed thermal pad at the bottom  
is not connected to internal circuitry)  
Figure 4. WQFN24  
Figure 3. SOIC24 / TSSOP24  
Table 1. PIN DESCRIPTIONS  
Pin  
SOIC24, TSSOP24  
WQFN24  
Symbol  
INT  
Description  
Interrupt Output (activeLOW)  
Address Input 1  
Address Input 2  
Port 0 I/O 0  
1
2
22  
23  
24  
1
AD1  
AD2  
3
IO0_0  
IO0_1  
IO0_2  
IO0_3  
IO0_4  
IO0_5  
IO0_6  
IO0_7  
4
5
2
Port 0 I/O 1  
6
3
Port 0 I/O 2  
7
4
Port 0 I/O 3  
9
5
Port 0 I/O 4  
9
6
Port 0 I/O 5  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
7
Port 0 I/O 6  
9
Port 0 I/O 7  
V
SS  
9
Supply Ground  
Port 1 I/O 0  
IO1_0  
IO1_1  
IO1_2  
IO1_3  
IO1_4  
IO1_5  
IO1_6  
IO1_7  
AD0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
Port 1 I/O 1  
Port 1 I/O 2  
Port 1 I/O 3  
Port 1 I/O 4  
Port 1 I/O 5  
Port 1 I/O 6  
Port 1 I/O 7  
Address Input 0  
Serial Clock Line  
Serial Data Line  
Supply Voltage  
SCL  
SDA  
V
DD  
http://onsemi.com  
3
PCA9655E  
Table 2. MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
0.5 to +7.0  
0.5 to +7.0  
$20  
Unit  
V
V
DD  
DC Supply Voltage  
V
Input / Output Pin Voltage  
Input Current  
V
I/O  
I
mA  
mA  
mA  
mA  
mW  
mW  
°C  
I
I
O
Output Current  
$50  
I
DC Supply Current  
$100  
DD  
I
DC Ground Current  
Total Power Dissipation  
Power Dissipation per Output  
Storage Temperature Range  
$600  
GND  
P
600  
TOT  
OUT  
STG  
P
T
200  
65 to +150  
260  
T
Lead Temperature, 1 mm from Case for 10 Seconds  
Junction Temperature Under Bias  
°C  
L
T
150  
°C  
J
q
Thermal Resistance (Note 1)  
SOIC24  
TSSOP24  
WQFN24  
85  
91  
68  
°C/W  
JA  
MSL  
Moisture Sensitivity  
Level 1  
F
R
Flammability Rating Oxygen Index: 28 to 34  
UL 94 V0 @ 0.125 in  
V
ESD  
ESD Withstand Voltage  
Human Body Model (Note 2)  
Machine Model (Note 3)  
> 2000  
> 200  
V
I
Latchup Performance Above V and Below GND at 125°C (Note 4)  
$300  
mA  
LATCHUP  
DD  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. Measured with minimum pad spacing on an FR4 board, using 10 mmby1 inch, 2 ounce copper trace no air flow.  
2. Tested to EIA / JESD22A114A.  
3. Tested to EIA / JESD22A115A.  
4. Tested to EIA / JESD78.  
Table 3. RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
1.65  
0
Max  
5.5  
Unit  
V
V
DD  
Positive DC Supply Voltage  
V
I/O  
Switch Input / Output Voltage  
Operating FreeAir Temperature  
Input Transition Rise or Fall Rate  
5.5  
V
T
A
55  
0
+125  
5
°C  
Dt / DV  
nS/V  
http://onsemi.com  
4
 
PCA9655E  
Table 4. DC ELECTRICAL CHARACTERISTICS V = 1.65 V to 5.5 V, unless otherwise specified.  
DD  
T
= 555C to +1255C  
A
Min  
Typ  
Max  
Symbol  
Parameter  
Conditions  
Unit  
SUPPLIES  
I
Standby Current  
Standby mode; no load;  
STB  
V = 0 V; f  
= 0 Hz; I/O = inputs  
= 0 Hz; I/O = inputs  
DD SCL  
1.1  
0.25  
1.5  
1
mA  
mA  
I
I
SCL  
V = V ; f  
V
POR  
PowerOn Reset Voltage  
(Note 5)  
1.5  
1.65  
V
INPUT SCL; Input / Output SDA  
V
HighLevel Input Voltage  
LowLevel Input Voltage  
LowLevel Output Current  
0.7 x V  
V
V
IH  
DD  
V
0.3 x V  
IL  
DD  
I
OL  
V
V
= 0.4 V; V < 2.3 V  
10  
20  
mA  
OL  
DD  
w 2.3 V  
DD  
DD  
I
L
Leakage Current  
Input Capacitance  
V = V or 0 V  
I
$1  
6
mA  
C
V = 0 V  
I
4.6  
pF  
I
I/Os  
V
HighLevel Input Voltage  
LowLevel Input Voltage  
0.7 x V  
V
V
IH  
DD  
V
0.3 x V  
DD  
IL  
I
OL  
LowLevel Output Current  
(Note 6)  
V
OL  
V
OL  
V
OL  
V
OL  
= 0.5 V; V = 1.65 V  
8
20  
28  
35  
42  
mA  
DD  
= 0.5 V; V = 2.3 V  
12  
17  
25  
DD  
= 0.5 V; V = 3.0 V  
DD  
= 0.5 V; V = 4.5 V  
DD  
I
Total LowLevel Output Current  
V
= 0.5 V; V = 4.5 V  
400  
mA  
V
OL(tot)  
OL  
DD  
(Note 6)  
V
OH  
HighLevel Output Voltage  
I
I
I
I
I
I
I
I
= 3 mA; V = 1.65 V  
1.2  
1.1  
1.8  
1.7  
2.6  
2.5  
4.1  
4.0  
OH  
OH  
OH  
OH  
OH  
OH  
OH  
OH  
DD  
= 4 mA; V = 1.65 V  
DD  
= 8 mA; V = 2.3 V  
DD  
= 10 mA; V = 2.3 V  
DD  
= 8 mA; V = 3.0 V  
DD  
= 10 mA; V = 3.0 V  
DD  
= 8 mA; V = 4.5 V  
DD  
= 10 mA; V = 4.5 V  
DD  
I
Input Leakage Current  
Input Leakage Current  
V
= 5.5 V; V = V  
DD  
1
mA  
mA  
pF  
LH  
DD  
DD  
I
I
V
= 5.5 V; V = 0 V  
100  
LL  
I
C
Input / Output Capacitance  
(Note 7)  
5.0  
5.0  
6.0  
I/O  
INTERRUPT (INT)  
I
OL  
LowLevel Output Current  
V
OL  
= 0.4 V  
6.0  
mA  
pF  
C
Output Capacitance  
5.5  
O
INPUTS AD0, AD1, AD2  
V
HighLevel Input Voltage  
LowLevel Input Voltage  
Leakage Current  
0.7 x V  
V
V
IH  
DD  
V
I
0.3 x V  
$1  
IL  
DD  
V = V or 0 V  
mA  
pF  
L
I
DD  
C
Input Capacitance  
4.5  
5.0  
I
2
5. The poweron reset circuit resets the I C bus logic with V < V  
and set all I/Os to logic 1 upon powerup. Thereafter, V must be lower  
DD  
DD  
POR  
than 0.2 V to reset the part.  
6. Each bit must be limited to a maximum of 25 mA and the total package limited to 400 mA due to internal bussing limits.  
7. The value is not tested, but verified on sampling basis.  
http://onsemi.com  
5
 
PCA9655E  
Table 5. AC ELECTRICAL CHARACTERISTICS V = 1.65 V to 5.5 V; T = 55°C to +125°C, unless otherwise specified.  
DD  
A
Standard  
Mode  
Fast Mode  
Fast Mode +  
Min  
Max  
Min  
0
Max  
Min  
0
Max  
Symbol  
Parameter  
SCL Clock Frequency  
Unit  
MHz  
ms  
f
0
0.1  
0.4  
1.0  
SCL  
t
BusFree Time between a STOP and START  
Condition  
4.7  
1.3  
0.5  
BUF  
t
Hold Time (Repeated) START Condition  
4.0  
4.7  
0.6  
0.6  
0.26  
0.26  
ms  
ms  
HD:STA  
t
Setup Time for a Repeated START Condition  
SU:STA  
t
Setup Time for STOP Condition  
4.0  
0.6  
0.26  
ms  
SU:STO  
t
Data Hold Time  
0
0
0
ns  
ms  
ns  
ns  
ms  
ms  
ns  
HD:DAT  
t
Data Valid Acknowledge Time (Note 8)  
Data Valid Time (Note 9)  
Data Setup Time  
0.3  
300  
250  
4.7  
4.0  
3.45  
0.1  
50  
0.9  
0.05  
50  
0.45  
450  
VD:ACK  
t
t
VD:DAT  
100  
1.3  
0.6  
50  
SU:DAT  
t
LOW Period of SCL  
0.5  
0.26  
LOW  
t
HIGH Period of SCL  
HIGH  
t
f
Fall Time of SDA and SCL (Notes 11 and 12)  
300  
1000  
50  
20 + 0.1C  
(Note 10)  
300  
300  
50  
120  
120  
50  
b
t
r
Rise Time of SDA and SCL  
20 + 0.1C  
(Note 10)  
ns  
ns  
b
t
SP  
Pulse Width of Spikes Suppressed by Input Filter  
(Note 13)  
PORT TIMING: C v 100 pF (See Figures 6, 9 and 10)  
L
t
Data Output Valid Time  
(V = 4.5 V to 5.5 V)  
200  
350  
550  
200  
350  
550  
200  
350  
550  
ns  
V(Q)  
DD  
DD  
(V = 2.3 V to 4.5 V)  
(V = 1.65 V to 2.3 V)  
DD  
t
Data Input Setup Time  
Data Input Hold Time  
100  
1
100  
1
100  
1
ns  
SU(D)  
t
ms  
H(D)  
INTERRUPT TIMING: C v 100 pF (See Figures 9 and 10)  
V(INT_N)  
L
t
Data Valid Time  
4
4
4
4
4
4
ms  
ms  
t
Reset Delay Time  
RST(INT_N)  
8. t  
9. t  
= time for Acknowledgment signal from SCL LOW to SDA (out) LOW.  
= minimum time for SDA data out to be valid following SCL LOW.  
VD:ACK  
VD:DAT  
b
10.C = total capacitance of one bus line in pF.  
11. A master device must internally provide a hold time of al least 300 ns for the SDA signal (refer to V of the SCL signal) in order to bridge  
IL  
the undefined region SCL’s falling edge.  
12.The maximum t for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output stage t is specified at 250 ns.  
f
f
This allows series protection resistors to be connected between the SDA and the SCL pins and the SDA/SCL bus lines without exceeding  
the maximum specified t .  
f
13.Input filters on the SDA and SCL inputs suppress noise spikes less than 50 ns.  
http://onsemi.com  
6
 
PCA9655E  
slave address  
A3  
Device Address  
Before the bus master can access a slave device, it must  
send the address of the slave it is accessing and the operation  
it wants to perform (read or write) following a START  
condition. The slave address of the PCA9655E is shown in  
Figure 5. Address pins AD2, AD1, and AD0 choose 1 of 64  
slave addresses. To conserve power, no internal pullup  
resistors are provided on AD2, AD1, and AD0.  
A6  
A5  
A4  
A2  
A1  
A0  
R/W  
programmable  
Figure 5. PCA9655E device Address  
A logic 1 on the last bit of the first byte selects a read  
operation while a logic 0 selects a write operation.  
Table 6. PCA9655E ADDRESS MAP  
Address Input  
Slave Address  
AD2  
GND  
GND  
GND  
GND  
VDD  
VDD  
VDD  
VDD  
GND  
GND  
GND  
GND  
VDD  
VDD  
VDD  
VDD  
GND  
GND  
GND  
GND  
VDD  
VDD  
VDD  
VDD  
GND  
GND  
GND  
GND  
VDD  
VDD  
VDD  
VDD  
AD1  
SCL  
SCL  
SDA  
SDA  
SCL  
SCL  
SDA  
SDA  
SCL  
SCL  
SDA  
SDA  
SCL  
SCL  
SDA  
SDA  
GND  
GND  
VDD  
VDD  
GND  
GND  
VDD  
VDD  
GND  
GND  
VDD  
VDD  
GND  
GND  
VDD  
VDD  
AD0  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
SCL  
SDA  
SCL  
SDA  
SCL  
SDA  
SCL  
SDA  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
SCL  
SDA  
SCL  
SDA  
SCL  
SDA  
SCL  
SDA  
A6  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A4  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
A2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
A1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
A0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
HEX  
20h  
22h  
24h  
26h  
28h  
2Ah  
2Ch  
2Eh  
30h  
32h  
34h  
36h  
38h  
3Ah  
3Ch  
3Eh  
40h  
42h  
44h  
46h  
48h  
4Ah  
4Ch  
4Eh  
50h  
52h  
54h  
56h  
58h  
5Ah  
5Ch  
5Eh  
http://onsemi.com  
7
 
PCA9655E  
Table 6. PCA9655E ADDRESS MAP  
Address Input  
Slave Address  
AD2  
SCL  
SCL  
SCL  
SCL  
SDA  
SDA  
SDA  
SDA  
SCL  
SCL  
SCL  
SCL  
SDA  
SDA  
SDA  
SDA  
SCL  
SCL  
SCL  
SCL  
SDA  
SDA  
SDA  
SDA  
SCL  
SCL  
SCL  
SCL  
SDA  
SDA  
SDA  
SDA  
AD1  
SCL  
SCL  
SDA  
SDA  
SCL  
SCL  
SDA  
SDA  
SCL  
SCL  
SDA  
SDA  
SCL  
SCL  
SDA  
SDA  
GND  
GND  
VDD  
VDD  
GND  
GND  
VDD  
VDD  
GND  
GND  
VDD  
VDD  
GND  
GND  
VDD  
VDD  
AD0  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
SCL  
SDA  
SCL  
SDA  
SCL  
SDA  
SCL  
SDA  
GND  
VDD  
GND  
VDD  
GND  
VDD  
GND  
VDD  
SCL  
SDA  
SCL  
SDA  
SCL  
SDA  
SCL  
SDA  
A6  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A5  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
A4  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
A3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
A1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
A0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
HEX  
A0h  
A2h  
A4h  
A6h  
A8h  
AAh  
ACh  
AEh  
B0h  
B2h  
B4h  
B6h  
B8h  
BAh  
BCh  
BEh  
C0h  
C2h  
C4h  
C6h  
C8h  
CAh  
CCh  
CEh  
E0h  
E2h  
E4h  
E6h  
E8h  
EAh  
ECh  
EEh  
http://onsemi.com  
8
PCA9655E  
REGISTERS  
Command Byte  
During a write transmission, the address byte is followed  
by the command byte. The command byte determines which  
of the following registers will be written or read.  
Table 7. COMMAND BYTE  
COMMAND  
REGISTER  
0
1
2
3
4
5
6
7
Input Port 0  
Input Port 1  
Output Port 0  
Output Port 1  
Polarity Inversion Port 0  
Polarity Inversion Port 1  
Configuration Port 0  
Configuration Port 1  
Registers 0 and 1: Input Port Registers  
The externallyapplied logic level determines the default  
These registers are inputonly. They reflect the incoming  
logic levels of the pins, regardless of whether the pin is  
defined as an input or an output by Registers 6 or 7. Writes  
to these registers have no effect.  
value ‘X’.  
Table 8. INPUT PORT 0 REGISTER  
Bit  
Symbol  
Default  
7
I0.7  
X
6
I0.6  
X
5
I0.5  
X
4
I0.4  
X
3
I0.3  
X
2
I0.2  
X
1
I0.1  
X
0
I0.0  
X
Table 9. INPUT PORT 1 REGISTER  
Bit  
Symbol  
Default  
7
I1.7  
X
6
I1.6  
X
5
I1.5  
X
4
I1.4  
X
3
I1.3  
X
2
I1.2  
X
1
I1.1  
X
0
I1.0  
X
Registers 2 and 3: Output Port Registers  
as inputs. In turn, reads from these registers reflect the values  
that are in the flipflops controlling the output selection, not  
the actual pin values.  
These registers are outputonly. They reflect the outgoing  
logic levels of the pins defined as outputs by Registers 6 and  
7. Bit values in these registers have no effect on pins defined  
Table 10. OUTPUT PORT 0 REGISTER  
Bit  
Symbol  
Default  
7
O0.7  
1
6
O0.6  
1
5
O0.5  
1
4
O0.4  
1
3
O0.3  
1
2
O0.2  
1
1
O0.1  
1
0
O0.0  
1
Table 11. OUTPUT PORT 1 REGISTER  
Bit  
Symbol  
Default  
7
O1.7  
1
6
O1.6  
1
5
O1.5  
1
4
O1.4  
1
3
O1.3  
1
2
O1.2  
1
1
O1.1  
1
0
O1.0  
1
http://onsemi.com  
9
PCA9655E  
Registers 4 and 5: Polarity Inversion Registers  
These registers allow the polarity of the data in the input  
port registers to be inverted. The input port data polarity will  
be inverted when its corresponding bit in these registers is  
set (written with ‘1’), and retained when the bit is cleared  
(written with a ‘0’).  
Table 12. POLARITY INVERSION PORT 0 REGISTER  
Bit  
Symbol  
Default  
7
N0.7  
0
6
N0.6  
0
5
N0.5  
0
4
N0.4  
0
3
N0.3  
0
2
N0.2  
0
1
N0.1  
0
0
N0.0  
0
Table 13. POLARITY INVERSION PORT 1 REGISTER  
Bit  
Symbol  
Default  
7
N1.7  
0
6
N1.6  
0
5
N1.5  
0
4
N1.4  
0
3
N1.3  
0
2
N1.2  
0
1
N1.1  
0
0
N1.0  
0
Registers 6 and 7: Configuration Registers  
highimpedance. When a bit is cleared (written with ‘0’),  
The I/O pin directions are configured through the  
configuration registers. When a bit in the configuration  
registers is set (written with ‘1’), the bit’s corresponding port  
pin is enabled as an input with the output driver in  
the corresponding port pin is enabled as an output. Note that  
there is a high value resistor tied to V at each pin. At reset,  
DD  
the device’s ports are inputs with a pullup to V  
.
DD  
Table 14. CONFIGURATION PORT 0 REGISTER  
Bit  
Symbol  
Default  
7
C0.7  
1
6
C0.6  
1
5
C0.5  
1
4
C0.4  
1
3
C0.3  
1
2
C0.2  
1
1
C0.1  
1
0
C0.0  
1
Table 15. CONFIGURATION PORT 1 REGISTER  
Bit  
Symbol  
Default  
7
C1.7  
1
6
C1.6  
1
5
C1.5  
1
4
C1.4  
1
3
C1.3  
1
2
C1.2  
1
1
C1.1  
1
0
C1.0  
1
Poweron Reset  
I/O Port (see Figure 2)  
Upon application of power, an internal PowerOn Reset  
(POR) holds the PCA9655E in a reset condition while V  
When an I/O pin is configured as an input, FETs Q1 and  
Q2 are off, creating a highimpedance input with a weak  
DD  
is ramping up. When V has reached V  
, the reset  
POR  
pullup (100 kW typ) to V . The input voltage may be  
DD  
DD  
condition is released and the PCA9655E registers and  
SMBus state machine will initialize to their default states.  
The reset is typically completed by the POR and the part  
raised above V to a maximum of 5.5 V.  
DD  
When the I/O pin is configured as an output, then either Q1  
or Q2 is enabled, depending on the state of the Output Port  
register. Care should be exercised if an external voltage is  
applied to an I/O configured as an output because of the  
lowimpedance path that exists between the pin and either  
enabled by the time the power supply is above V  
.
POR  
However, when doing a power reset cycle, it is necessary to  
lower the power supply below 0.2 V, and then restored to the  
operating voltage.  
V
DD  
or V .  
SS  
http://onsemi.com  
10  
PCA9655E  
BUS TRANSACTIONS  
Writing to the Port Registers  
Input Ports, Output Ports, Polarity Inversion Ports, and  
Configuration Ports. Data bytes are sent alternately to each  
register in a register pair (see Figures 6 and 7). For example,  
if one byte is sent to Output Port 1 (register 3), then the next  
byte will be stored in Output Port 0 (register 2). There is no  
limitation on the number of data bytes sent in one write  
transmission. In this way, each 8bit register may be updated  
independently of the other registers.  
To transmit data to the PCA9655E, the bus master must  
first send the device address with the least significant bit set  
to logic 0 (see Figure 5 “PCA9655E device address”). The  
command byte is sent after the address and determines  
which registers will receive the data following the command  
byte.  
There are eight registers within the PCA9655E. These  
registers are configured to operate as four register pairs:  
SCL  
1
2
3
4
5
6
7
8
9
slave address  
A6 A5 A4 A3 A2 A1 A0  
START condition  
command byte  
data to port 0  
DATA 0  
data to port 1  
DATA 1  
SDA  
S
0
A
0
0
0
0
0
0
1
0
A
0.7  
0.0 A 1.7  
1.0 A  
P
R/W acknowledge  
from slave  
acknowledge  
from slave  
acknowledge  
from slave  
STOP  
condition  
write to port  
t
v(Q)  
data out  
from port 0  
t
v(Q)  
data out  
DATA VALID  
from port 1  
Figure 6. Write to Output Port Registers  
SCL  
SDA  
1
2
3
4
5
6
7
8
9
data to register  
data to register  
slave address  
A6 A5 A4 A3 A2 A1 A0  
command byte  
MSB  
LSB  
MSB  
LSB  
S
0
A
0
0
0
0
0
1
1
0
A
DATA 0  
A
DATA 1  
A
P
START condition  
acknowledge  
from slave  
acknowledge  
from slave  
acknowledge  
from slave  
STOP  
condition  
R/W  
Figure 7. Write to Configuration Registers  
Reading the Port Registers  
by the PCA9655E (see Figures 8, 9 and 10). Data is clocked  
into the register on the falling edge of the acknowledge clock  
pulse. After the first byte is read, additional bytes may be  
read but with data alternately coming from each register in  
the pair. For example, if you read Input Port 1, then the next  
byte read would be Input Port 0. There is no limitation on the  
number of data bytes received in one read transmission but  
the bus master must not acknowledge the data for the final  
byte received.  
To read data from the PCA9655E, the bus master must  
first send the PCA9655E address with the least significant  
bit set to logic 0 (see Figure 5 “PCA9655E device address”).  
The command byte is sent after the address and determines  
which register will be accessed.  
After a restart, the device address must be sent again, but  
this time, the least significant bit is set to logic 1. Data from  
the register defined by the command byte will then be sent  
http://onsemi.com  
11  
 
PCA9655E  
slave address  
(cont.)  
SDA  
S
A6 A5 A4 A3 A2 A1 A0  
0
A
COMMAND BYTE  
A
START condition  
R/W  
acknowledge  
from slave  
acknowledge  
from slave  
data from lower or  
upper byte of register  
data from upper or  
lower byte of register  
slave address  
A6 A5 A4 A3 A2 A1 A0  
MSB  
LSB  
MSB  
LSB  
(cont.)  
S
1
A
DATA (first byte)  
A
DATA (last byte)  
NA P  
(repeated)  
START condition  
acknowledge  
from master  
STOP  
condition  
R/W  
no acknowledge  
from master  
acknowledge  
from slave  
at this moment mastertransmitter becomes masterreceiver  
and slavereceiver becomes slavetransmitter  
Remark: Transfer can be stopped at any time by a STOP condition.  
Figure 8. Read from Register  
SCL  
1 2 3 4 5 6 7 8 9  
STOP condition  
slave address  
SDA S A6 A5 A4 A3 A2 A1 A0 1  
I0.x  
I1.x  
I0.x  
I1.x  
A
7 6 5 4 3 2 1 0 A 7 6 5 4 3 2 1 0 A 7 6 5 4 3 2 1 0 A 7 6 5 4 3 2 1 0 1 P  
acknowledge  
from master  
START condition  
R/W  
acknowledge  
acknowledge  
from master  
acknowledge  
from master  
non acknowledge  
from master  
from slave  
read from port 0  
data into port 0  
read from port 1  
data into port 1  
INT  
t
t
rst(INT_N)  
v(INT_N)  
Remark: Transfer of data can be stopped at any moment by a STOP condition. When this occurs, data present at the latest acknowledge  
phase is valid (output mode). It is assumed that the command byte has previously been set to ’00’ (read Input Port register).  
Figure 9. Read from Input Port Register, Scenario 1  
http://onsemi.com  
12  
 
PCA9655E  
SCL  
1 2 3 4 5 6 7 8 9  
R/W  
STOP condition  
slave address  
SDA S A6 A5A4 A3 A2 A1 A0 1  
I0.x  
I1.x  
I0.x  
I1.x  
A
DATA00  
A
DATA10  
A
DATA03  
A
DATA12  
1 P  
START condition acknowledge  
from slave  
acknowledge  
from master  
t
su(D)  
non acknowledge  
from master  
acknowledge  
from master  
acknowledge  
from master  
t
h(D)  
read from port 0  
data into port 0  
read from port 1  
data into port 1  
DATA 00  
DATA 01  
DATA 02  
DATA 03  
t
t
su(D)  
h(D)  
DATA10  
DATA11  
DATA12  
INT  
t
t
rst(INT_N)  
v(INT_N)  
Remark: Transfer of data can be stopped at any moment by a STOP condition. When this occurs, data present at the latest acknowledge  
phase is valid (output mode). It is assumed that the command byte has previously been set to ’00’ (read Input Port register).  
Figure 10. Read from Input Port Register, Scenario 2  
Interrupt Output  
each 8bit port is read independently, the interrupt caused by  
Port 0 will not be cleared by a read of Port 1 or the other way  
around.  
The opendrain interrupt output is activated when an I/O  
pin configured as an input changes state. The interrupt is  
deactivated when the input pin returns to its previous state  
or when the Input Port register is read (see Figure 9). A pin  
configured as an output cannot cause an interrupt. Since  
Remark: Changing an I/O from an output to an input may  
cause a false interrupt to occur if the state of the pin does not  
match the contents of the Input Port register.  
http://onsemi.com  
13  
PCA9655E  
APPLICATION INFORMATION  
V
DD  
(5 V)  
SUBSYSTEM 1  
sensor)  
10 kW  
10 kW  
10 kW  
2 kW  
(e.g., temp  
V
V
DD  
DD  
INT  
MASTER  
CONTROLLER  
PCA9655E  
SCL  
IO0_0  
IO0_1  
IO0_2  
IO0_3  
IO0_4  
IO0_5  
SCL  
SUBSYSTEM 2  
counter)  
(e.g.,  
SDA  
INT  
SDA  
INT  
RESET  
A
B
GND  
controlled  
switch  
ENABLE  
(e.g.,  
7SB or FST)  
IO0_6  
IO0_7  
IO1_0  
IO1_1  
IO1_2  
IO1_3  
IO1_4  
IO1_5  
IO1_6  
IO1_7  
SUBSYSTEM 3  
system)  
(e.g., alarm  
10  
DIGIT  
ALARM  
NUMERIC  
KEYPAD  
AD2  
AD1  
AD0  
V
DD  
V
SS  
Device address configured as 0100 000xb for this example.  
IO0_0, IO0_2, IO0_3 configured as outputs.  
IO0_1, IO0_4, IO0_5 configured as inputs.  
IO0_6, IO0_7, and IO1_0 to IO1_7 configured as inputs.  
Figure 11. Typical Application  
Bit Transfer  
Characteristics of the I2CBus  
2
The I Cbus is meant for 2way, 2line communication  
between different ICs or modules. The two lines are the  
serial data line (SDA) and the serial clock line (SCL). Both  
lines must be connected to a positive supply via a pullup  
resistor when connected to the output stages of a device.  
Data transfer may only be initiated when the bus is not busy.  
One data bit is transferred during each clock pulse. The  
data on the SDA line must remain stable during the HIGH  
period of the clock pulse. Changes in the data line during the  
HIGH period of the clock pulse will be interpreted as control  
signals (see Figure 12).  
http://onsemi.com  
14  
PCA9655E  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
Figure 12. Bit Transfer  
START and STOP Conditions  
HIGH. A STOP condition (P) occurs when there is a  
LOWtoHIGHtransition of the data line while the clock is  
HIGH (see Figure 13).  
Both data and clock lines remain HIGH when the bus is  
not busy. A START condition (S) occurs when there is a  
HIGHtoLOWtransition of the data line while the clock is  
SDA  
SDA  
SCL  
SCL  
S
P
STOP condition  
START condition  
Figure 13. Definition of START and STOP Conditions  
System Configuration  
A device generating a message is a ‘transmitter’; a device  
receiving is the ‘receiver’. The device that controls the  
message is the ‘master’ and the devices which are controlled  
by the master are the ‘slaves’ (see Figure 14).  
SDA  
SCL  
SLAVE  
TRANSMITTER/  
RECEIVER  
MASTER  
2
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
I CBUS  
TRANSMITTER/  
RECEIVER  
MULTIPLEXER  
SLAVE  
Figure 14. System Configuration  
Acknowledge  
device that acknowledges has to pull down the SDA line  
during the acknowledge clock pulse, such that the SDA line  
is stable LOW during the HIGH period of the acknowledge  
clock pulse; setup time and hold time must be taken into  
account.  
A master receiver signals an end of data to the transmitter  
by not generating an acknowledge on the last byte that has  
been clocked out of the slave. In this event, the transmitter  
must leave the data line HIGH to enable the master to  
generate a STOP condition.  
The number of data bytes transferred between the START  
and the STOP conditions from transmitter to receiver is not  
limited. Each 8bit byte is followed by one acknowledge bit.  
The acknowledge bit is a HIGH level put on the bus by the  
transmitter, whereas the master generates an extra clock  
pulse for the acknowledge bit.  
A slave receiver which is addressed must generate an  
acknowledge after the reception of each byte. Also, a master  
must generate an acknowledge after the reception of each  
byte that has been clocked out of the slave transmitter. The  
http://onsemi.com  
15  
 
PCA9655E  
data output  
by transmitter  
not acknowledge  
data output  
by receiver  
acknowledge  
8
SCL from master  
1
2
9
S
clock pulse for  
START  
acknowledgement  
condition  
Figure 15. Acknowledgement of the I2C Bus  
TIMING AND TEST SETUP  
SDA  
SCL  
t
t
t
t
SP  
t
r
f
HD;STA  
BUF  
t
LOW  
t
t
t
SU;STO  
HD;STA  
SU;STA  
t
t
t
SU;DAT  
HD;DAT  
HIGH  
P
S
Sr  
P
Figure 16. Definition of Timing on the I2C Bus  
V
DD  
open  
GND  
V
R
500 W  
DD  
L
V
I
V
O
PULSE  
DUT  
GENERATOR  
C
50 pF  
L
R
T
R = load resistor.  
L
C = load capacitance includes jig and probe capacitance.  
L
R = termination resistance should be equal to the output impedance of Z of the pulse generators.  
T
o
Figure 17. Test Circuitry for Switching Times  
R
2V  
open  
GND  
S1  
L
DD  
from output under test  
500 W  
C
50 pF  
R
L
500 W  
L
Figure 18. Load Circuit  
http://onsemi.com  
16  
PCA9655E  
ORDERING INFORMATION  
Device  
Package  
Shipping  
PCA9655EDWR2G  
SOIC24  
(PbFree)  
1000 / Tape & Reel  
2500 / Tape & Reel  
3000 / Tape & Reel  
PCA9655EDTR2G  
PCA9655EMTTXG  
TSSOP24  
(PbFree)  
WQFN24  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
17  
PCA9655E  
PACKAGE DIMENSIONS  
SOIC24  
CASE 751E04  
ISSUE E  
A−  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
24  
13  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
B12X P  
M
M
B
0.010 (0.25)  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN  
EXCESS OF D DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
1
12  
24X D  
J
MILLIMETERS  
INCHES  
MIN  
0.601  
M
S
S
0.010 (0.25)  
T A  
B
DIM MIN  
MAX  
MAX  
0.612  
0.299  
0.104  
0.019  
0.035  
A
B
C
D
F
15.25  
7.40  
2.35  
0.35  
0.41  
15.54  
7.60 0.292  
2.65 0.093  
0.49 0.014  
0.90 0.016  
F
R X 45  
_
G
J
1.27 BSC  
0.050 BSC  
0.23  
0.13  
0
0.32 0.009  
0.29 0.005  
0.013  
0.011  
8
C
K
K
M
P
R
T−  
SEATING  
PLANE  
8
10.55  
0
0.395  
_
_
_
_
M
10.05  
0.25  
0.415  
0.029  
0.75 0.010  
22X G  
http://onsemi.com  
18  
PCA9655E  
PACKAGE DIMENSIONS  
24 LEAD TSSOP  
CASE 948H  
ISSUE A  
24X KREF  
M
S
S
V
0.10 (0.004)  
T U  
S
0.15 (0.006) T U  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
24  
13  
2X L/2  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH,  
PROTRUSIONS OR GATE BURRS. MOLD FLASH  
OR GATE BURRS SHALL NOT EXCEED 0.15  
(0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD  
FLASH OR PROTRUSION. INTERLEAD FLASH OR  
PROTRUSION SHALL NOT EXCEED  
0.25 (0.010) PER SIDE.  
B
U−  
L
PIN 1  
IDENT.  
12  
1
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN  
EXCESS OF THE K DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
S
0.15 (0.006) T U  
A
V−  
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
7. DIMENSION A AND B ARE TO BE DETERMINED  
AT DATUM PLANE -W-.  
MILLIMETERS  
INCHES  
MIN  
DIM MIN  
MAX  
7.90  
4.50  
1.20  
0.15  
0.75  
MAX  
0.311  
0.177  
0.047  
0.006  
0.030  
C
A
B
7.70  
4.30  
---  
0.303  
0.169  
---  
C
0.10 (0.004)  
D
0.05  
0.50  
0.002  
0.020  
SEATING  
PLANE  
T−  
G
F
H
D
G
H
0.65 BSC  
0.026 BSC  
0.27  
0.09  
0.09  
0.19  
0.19  
0.37  
0.20  
0.16  
0.30  
0.25  
0.011  
0.004  
0.004  
0.007  
0.007  
0.015  
0.008  
0.006  
0.012  
0.010  
J
J1  
K
W−  
K1  
L
6.40 BSC  
_
0.252 BSC  
0
M
0
8
8
_
_
_
DETAIL E  
N
0.25 (0.010)  
K
K1  
M
N
J1  
F
SECTION NN  
DETAIL E  
J
http://onsemi.com  
19  
PCA9655E  
PACKAGE DIMENSIONS  
WQFN24 4x4, 0.5P  
CASE 485BG  
ISSUE A  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED TERMINAL  
AND IS MEASURED BETWEEN 0.15 AND 0.30 MM  
FROM TERMINAL TIP.  
B
E
A
D
L
L
PIN ONE  
REFERENCE  
L1  
4. COPLANARITY APPLIES TO THE EXPOSED PAD  
AS WELL AS THE TERMINALS.  
DETAIL A  
MILLIMETERS  
ALTERNATE TERMINAL  
CONSTRUCTIONS  
DIM MIN  
MAX  
0.80  
0.05  
A
A1  
A3  
b
0.70  
0.00  
0.20 REF  
EXPOSED Cu  
MOLD CMPD  
0.20  
0.30  
D
D2  
E
E2  
e
K
4.00 BSC  
0.15  
0.15  
C
2.00  
2.20  
4.00 BSC  
C
2.00  
2.20  
TOP VIEW  
DETAIL B  
0.50 BSC  
ALTERNATE  
0.20  
0.30  
0.00  
−−−  
0.50  
0.15  
A
0.10  
C
C
CONSTRUCTION  
L
L1  
A3  
0.08  
DETAIL B  
NOTE 4  
A1  
K
SEATING  
PLANE  
SIDE VIEW  
C
MOUNTING FOOTPRINT*  
4.30  
2.26  
DETAIL A  
24X  
0.63  
D2  
7
1
13  
24X L  
E2  
2.26  
4.30  
1
PACKAGE  
OUTLINE  
19  
24X  
0.30  
24X  
b
0.50  
PITCH  
e
0.10 C A B  
DIMENSIONS: MILLIMETERS  
e/2  
BOTTOM VIEW  
0.05  
C
NOTE 3  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
PCA9655E/D  

相关型号:

PCA9655EDWR2G

Remote 16-bit I/O Expander for I2C Bus with Interrupt
ONSEMI

PCA9655EMTTXG

Remote 16-bit I/O Expander for I2C Bus with Interrupt
ONSEMI

PCA9661

Smart, simple solutions for the 12 most common design concerns
NXP

PCA9661B,118

PCA9661 - Parallel bus to 1 channel Fm+ I2C-bus controller QFP 48-Pin
NXP

PCA9663

Parallel bus to 3 channel Fm+ I2C-bus controller
NXP

PCA9663B

Parallel bus to 3 channel Fm+ I2C-bus controller
NXP

PCA9663B,118

PCA9663 - Parallel bus to 3 channel Fm+ I2C-bus controller QFP 48-Pin
NXP

PCA9665

Fm+ parallel bus to I2C-bus controller
NXP

PCA9665A

Smart, simple solutions for the 12 most common design concerns
NXP

PCA9665APW

IC I2C BUS CONTROLLER, PDSO20, 4.40 MM, PLASTIC, MO-153, SOT360-1, TSSOP-20, Bus Controller
NXP

PCA9665APW,118

PCA9665_PCA9665A - Fm+ parallel bus to I2C-bus controller TSSOP2 20-Pin
NXP

PCA9665BS

Fm+ parallel bus to I2C-bus controller
NXP