SCV431ASN1T1G [ONSEMI]

Low Voltage Precision Adjustable Shunt Regulator;
SCV431ASN1T1G
型号: SCV431ASN1T1G
厂家: ONSEMI    ONSEMI
描述:

Low Voltage Precision Adjustable Shunt Regulator

文件: 总19页 (文件大小:394K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Voltage Precision  
Adjustable Shunt Regulator  
TLV431, NCV431, SCV431  
The TLV431A, B and C series are precision low voltage shunt  
regulators that are programmable over a wide voltage range of 1.24 V to  
16 V. The TLV431A series features a guaranteed reference accuracy of  
1.0% at 25°C and 2.0% over the entire industrial temperature range of  
40°C to 85°C. The TLV431B series features higher reference accuracy  
of 0.5% and 1.0% respectively. For the TLV431C series, the accuracy  
is even higher. It is 0.2% and 1.0% respectively. These devices exhibit  
a sharp low current turnon characteristic with a low dynamic impedance  
of 0.20 W over an operating current range of 100 mA to 20 mA. This  
combination of features makes this series an excellent replacement for  
zener diodes in numerous applications circuits that require a precise  
reference voltage. When combined with an optocoupler, the  
TLV431A/B/C can be used as an error amplifier for controlling the  
feedback loop in isolated low output voltage (3.0 V to 3.3 V) switching  
power supplies. These devices are available in economical TO923 and  
micro size TSOP5 and SOT233 packages.  
www.onsemi.com  
Pin 1. Reference  
2. Anode  
1
3. Cathode  
1
2
2
3
3
STRAIGHT LEAD  
BULK PACK  
BENT LEAD  
TAPE & REEL  
AMMO PACK  
TO92  
TO92  
LP SUFFIX  
CASE 2911  
LPRA, LPRE, LPRM,  
LPRP SUFFIX  
CASE 2911  
Features  
Programmable Output Voltage Range of 1.24 V to 16 V  
Voltage Reference Tolerance 1.0% for A Series, 0.5% for B Series  
4
and 0.2% for C Series  
Pin 1. NC  
2. NC  
TSOP5  
SN SUFFIX  
CASE 483  
5
Sharp Low Current TurnOn Characteristic  
Low Dynamic Output Impedance of 0.20 W from 100 mA to 20 mA  
Wide Operating Current Range of 50 mA to 20 mA  
Micro Miniature TSOP5, SOT233 and TO923 Packages  
NCV and SCV Prefix for Automotive and Other Applications  
Requiring Unique Site and Control Change Requirements;  
AECQ100 Qualified and PPAP Capable  
3
3. Cathode  
4. Reference  
5. Anode  
2
3
1
SOT23  
SN1 SUFFIX  
CASE 318  
Pin 1. Reference  
2. Cathode  
1
3. Anode  
2
These are PbFree and HalideFree Devices  
Applications  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 14 of this data sheet.  
Low Output Voltage (3.0 V to 3.3 V) Switching Power Supply  
Error Amplifier  
Adjustable Voltage or Current Linear and Switching Power Supplies  
Voltage Monitoring  
DEVICE MARKING INFORMATION  
AND PIN CONNECTIONS  
See general marking information in the device marking  
section on page 13 of this data sheet.  
Current Source and Sink Circuits  
Analog and Digital Circuits Requiring Precision References  
Low Voltage Zener Diode Replacements  
Cathode (K)  
Reference (R)  
+
-
1.24 V  
ref  
Anode (A)  
Figure 1. Representative Block Diagram  
© Semiconductor Components Industries, LLC, 2000  
1
Publication Order Number:  
January, 2020 Rev. 26  
TLV431A/D  
TLV431, NCV431, SCV431  
Cathode (K)  
Reference (R)  
Cathode (K)  
Reference (R)  
Anode (A)  
Device Symbol  
Anode (A)  
The device contains 13 active transistors.  
Figure 2. Representative Device Symbol and Schematic Diagram  
MAXIMUM RATINGS (Full operating ambient temperature range applies, unless otherwise noted)  
Rating Symbol  
Value  
18  
Unit  
V
Cathode to Anode Voltage  
V
KA  
Cathode Current Range, Continuous  
I
20 to 25  
*0.05 to 10  
mA  
mA  
°C/W  
K
Reference Input Current Range, Continuous  
I
ref  
Thermal Characteristics  
LP Suffix Package, TO923 Package  
Thermal Resistance, JunctiontoAmbient  
Thermal Resistance, JunctiontoCase  
SN Suffix Package, TSOP5 Package  
Thermal Resistance, JunctiontoAmbient  
SN1 Suffix Package, SOT233 Package  
Thermal Resistance, JunctiontoAmbient  
R
R
178  
83  
q
JA  
q
JC  
226  
R
R
q
JA  
491  
150  
q
JA  
J
Operating Junction Temperature  
T
°C  
°C  
Operating Ambient Temperature Range  
TLV431  
NCV431, SCV431  
T
A
*40 to 85  
*40 to 125  
Storage Temperature Range  
T
stg  
*65 to 150  
°C  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
NOTE: This device series contains ESD protection and exceeds the following tests:  
Human Body Model 2000 V per JEDEC JESD22A114F, Machine Model Method 200 V per JEDEC JESD22A115C,  
Charged Device Method 1000 V per JEDEC JESD22C101E. This device contains latchup protection and exceeds 100 mA per  
JEDEC standard JESD78.  
T
* T  
J(max)  
R
A
P
+
D
qJA  
RECOMMENDED OPERATING CONDITIONS  
Condition  
Symbol  
Min  
Max  
16  
Unit  
V
Cathode to Anode Voltage  
Cathode Current  
V
KA  
V
ref  
I
K
0.1  
20  
mA  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
www.onsemi.com  
2
TLV431, NCV431, SCV431  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
TLV431A  
Typ  
TLV431B  
Typ Max  
Min  
Max  
Min  
Characteristic  
Reference Voltage (Figure 3)  
Symbol  
Unit  
V
ref  
V
1.228 1.240 1.252 1.234 1.240 1.246  
(V = V , I = 10 mA, T = 25°C)  
KA  
ref  
K
A
1.215  
1.265 1.228  
1.252  
(T = T  
to T , Note 1)  
A
low  
high  
Reference Input Voltage Deviation Over Temperature (Figure 3)  
(V = V , I = 10 mA, T = T to T , Notes 1, 2, 3)  
DV  
mV  
ref  
7.2  
20  
7.2  
20  
KA  
ref  
K
A
low  
high  
Ration of Reference Input Voltage Change to Cathode Voltage  
Change (Figure 4)  
DVref  
DVKA  
mV  
V
0.6  
1.5  
0.6  
1.5  
(V = V to 16 V, I = 10 mA)  
KA  
ref  
K
Reference Terminal Current (Figure 4)  
(I = 10 mA, R1 = 10 kW, R2 = open)  
K
I
ref  
mA  
mA  
0.15  
0.3  
0.15  
0.3  
Reference Input Current Deviation Over Temperature (Figure 4)  
DI  
ref  
0.04  
30  
0.08  
80  
0.04  
30  
0.08  
80  
(I = 10 mA, R1 = 10 kW, R2 = open, Notes 1, 2, 3)  
K
Minimum Cathode Current for Regulation (Figure 3)  
I
)
mA  
mA  
K(min  
OffState Cathode Current (Figure 5)  
I
K(off)  
0.01  
0.012 0.05  
0.04  
0.01  
0.012 0.05  
0.04  
(V = 6.0 V, V = 0)  
KA  
ref  
(V = 16 V, V = 0)  
KA  
ref  
Dynamic Impedance (Figure 3)  
(V = V , I =0.1 mA to 20 mA, f 1.0 kHz, Note 4)  
|Z  
|
W
KA  
0.25  
0.4  
0.25  
0.4  
KA  
ref  
K
1. Ambient temperature range: T = *40°C, T  
= 85°C.  
low  
high  
2. Guaranteed but not tested.  
3. The deviation parameters DV and DI are defined as the difference between the maximum value and minimum value obtained over the  
ref  
ref  
full operating ambient temperature range that applied.  
V
ref  
Max  
DV = V Max V Min  
ref  
ref  
ref  
DT = T T  
1
V
ref  
Min  
A
2
T
1
Ambient Temperature  
T
2
The average temperature coefficient of the reference input voltage, aV is defined as:  
ref  
(DV  
ref  
)
  106  
ǒ
Ǔ
V
(T + 25°C)  
A
ref  
ppm  
ref ǒ Ǔ+  
°C  
αV  
DT  
A
aV can be positive or negative depending on whether V Min or V Max occurs at the lower ambient temperature, refer to Figure 8.  
ref  
ref  
ref  
Example: DV = 7.2 mV and the slope is positive,  
ref  
Example: V @ 25°C = 1.241 V  
ref  
Example: DT = 125°C  
A
  106  
0.0072  
1.241  
ppm  
°C  
ref ǒ Ǔ+  
αV  
+ 46 ppmń°C  
125  
4. The dynamic impedance Z is defined as:  
KA  
DV  
KA  
DIK  
Z +  
KA  
When the device is operating with two external resistors, R1 and R2, (refer to Figure 4) the total dynamic impedance of the circuit is given by:  
R1  
  ǒ1 )  
Ǔ
Z ′⏐ + Z  
KA  
KA  
R2  
www.onsemi.com  
3
 
TLV431, NCV431, SCV431  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
TLV431C  
Typ  
Min  
Max  
Characteristic  
Symbol  
Unit  
Reference Voltage (Figure 3)  
V
ref  
V
(V = V , I = 10 mA, T = 25°C)  
1.237 1.240 1.243  
KA  
ref  
K
A
(T = T  
to T  
, Note 5)  
1.228  
1.252  
A
low  
high  
Reference Input Voltage Deviation Over Temperature (Figure 3)  
(V = V , I = 10 mA, T = T to T , Notes 5, 6, 7)  
DV  
mV  
ref  
7.2  
20  
KA  
ref  
K
A
low  
high  
Ration of Reference Input Voltage Change to Cathode Voltage Change (Figure 4)  
(V = V to 16 V, I = 10 mA)  
DVref  
DVKA  
mV  
V
0.6  
1.5  
KA  
ref  
K
Reference Terminal Current (Figure 4)  
(I = 10 mA, R1 = 10 kW, R2 = open)  
K
I
ref  
mA  
0.15  
0.3  
Reference Input Current Deviation Over Temperature (Figure 4)  
(I = 10 mA, R1 = 10 kW, R2 = open, Notes 5, 6, 7)  
K
DI  
ref  
mA  
0.04  
30  
0.08  
80  
Minimum Cathode Current for Regulation (Figure 3)  
I
)
mA  
mA  
K(min  
OffState Cathode Current (Figure 5)  
I
K(off)  
0.01  
0.012 0.05  
0.04  
(V = 6.0 V, V = 0)  
KA  
ref  
(V = 16 V, V = 0)  
KA  
ref  
Dynamic Impedance (Figure 3)  
(V = V , I = 0.1 mA to 20 mA, f 1.0 kHz, Note 8)  
|Z  
|
W
KA  
0.25  
0.4  
KA  
ref  
K
5. Ambient temperature range: T = *40°C, T  
= 85°C.  
low  
high  
6. Guaranteed but not tested.  
7. The deviation parameters DV and DI are defined as the difference between the maximum value and minimum value obtained over the  
ref  
ref  
full operating ambient temperature range that applied.  
V
ref  
Max  
DV = V Max V Min  
ref  
ref  
ref  
DT = T T  
1
V
ref  
Min  
A
2
T
1
Ambient Temperature  
T
2
The average temperature coefficient of the reference input voltage, aV is defined as:  
ref  
(DV  
ref  
)
  106  
ǒ
Ǔ
V
(T + 25°C)  
A
ref  
ppm  
ref ǒ Ǔ+  
°C  
αV  
DT  
A
aV can be positive or negative depending on whether V Min or V Max occurs at the lower ambient temperature, refer to Figure 8.  
ref  
ref  
ref  
Example: DV = 7.2 mV and the slope is positive,  
ref  
Example: V @ 25°C = 1.241 V  
ref  
Example: DT = 125°C  
A
  106  
0.0072  
1.241  
ppm  
°C  
ref ǒ Ǔ+  
αV  
+ 46 ppmń°C  
125  
8. The dynamic impedance Z is defined as:  
KA  
DV  
KA  
DIK  
Z +  
KA  
When the device is operating with two external resistors, R1 and R2, (refer to Figure 4) the total dynamic impedance of the circuit is given by:  
R1  
  ǒ1 )  
Ǔ
Z ′⏐ + Z  
KA  
KA  
R2  
www.onsemi.com  
4
 
TLV431, NCV431, SCV431  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted. NCV prefix indicates TSOP package device. SCV prefix  
A
indicates SOT23 package device.)  
NCV431A, SCV431A  
Min  
Typ  
Max  
Characteristic  
Symbol  
Unit  
Reference Voltage (Figure 3)  
(V = V , I = 10 mA, T = 25°C)  
V
ref  
V
1.228 1.240 1.252  
KA  
ref  
K
A
1.215  
1.211  
1.265  
1.265  
(T = *40°C to 85°C)  
A
(T = *40°C to 125°C)  
A
Reference Input Voltage Deviation Over Temperature (Figure 3)  
(V = V , I = 10 mA, T = *40°C to 85°C, Notes 9, 10)  
DV  
mV  
ref  
7.2  
7.2  
20  
24  
KA  
ref  
K
A
(V = V , I = 10 mA, T = *40°C to 125°C, Notes 9, 10)  
KA  
ref  
K
A
Ration of Reference Input Voltage Change to Cathode Voltage Change (Figure 4)  
(V = V to 16 V, I = 10 mA)  
DVref  
DVKA  
mV  
V
0.6  
1.5  
KA  
ref  
K
Reference Terminal Current (Figure 4)  
(I = 10 mA, R1 = 10 kW, R2 = open)  
K
I
ref  
mA  
0.15  
0.3  
Reference Input Current Deviation Over Temperature (Figure 4)  
DI  
ref  
mA  
0.04  
0.08  
0.10  
(I = 10 mA, R1 = 10 kW, R2 = open, T = *40°C to 85°C, Notes 9, 10)  
K
A
(I = 10 mA, R1 = 10 kW, R2 = open, T = *40°C to 125°C, Notes 9, 10)  
K
A
Minimum Cathode Current for Regulation (Figure 3)  
I
)
30  
80  
mA  
mA  
K(min  
OffState Cathode Current (Figure 5)  
I
K(off)  
0.01  
0.012 0.05  
0.04  
(V = 6.0 V, V = 0)  
KA  
ref  
(V = 16 V, V = 0)  
KA  
ref  
Dynamic Impedance (Figure 3)  
(V = V , I =0.1 mA to 20 mA, f 1.0 kHz, Note 11)  
|Z  
|
W
KA  
0.25  
0.4  
KA  
ref  
K
9. Guaranteed but not tested.  
10.The deviation parameters DV and DI are defined as the difference between the maximum value and minimum value obtained over the  
ref  
ref  
full operating ambient temperature range that applied.  
V
ref  
Max  
DV = V Max V Min  
ref  
ref  
ref  
DT = T T  
1
V
ref  
Min  
A
2
T
1
Ambient Temperature  
T
2
The average temperature coefficient of the reference input voltage, aV is defined as:  
ref  
(DV  
ref  
)
  106  
ǒ
Ǔ
V
(T + 25°C)  
A
ref  
ppm  
ref ǒ Ǔ+  
°C  
αV  
DT  
A
aV can be positive or negative depending on whether V Min or V Max occurs at the lower ambient temperature, refer to Figure 8.  
ref  
ref  
ref  
Example: DV = 7.2 mV and the slope is positive,  
ref  
Example: V @ 25°C = 1.241 V  
ref  
Example: DT = 125°C  
A
  106  
0.0072  
1.241  
ppm  
°C  
ref ǒ Ǔ+  
αV  
+ 46 ppmń°C  
125  
11. The dynamic impedance Z is defined as:  
KA  
DV  
KA  
DIK  
Z +  
KA  
When the device is operating with two external resistors, R1 and R2, (refer to Figure 4) the total dynamic impedance of the circuit is given by:  
R1  
  ǒ1 )  
Ǔ
Z ′⏐ + Z  
KA  
KA  
R2  
www.onsemi.com  
5
 
TLV431, NCV431, SCV431  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted. NCV prefix indicates TSOP package device. SCV prefix  
A
indicates SOT23 package device.)  
NCV431B, SCV431B  
Min  
Typ  
Max  
Characteristic  
Symbol  
Unit  
Reference Voltage (Figure 3)  
(V = V , I = 10 mA, T = 25°C)  
V
ref  
V
1.234 1.240 1.246  
KA  
ref  
K
A
1.228  
1.224  
1.252  
1.252  
(T = *40°C to 85°C)  
A
(T = *40°C to 125°C)  
A
Reference Input Voltage Deviation Over Temperature (Figure 3)  
(V = V , I = 10 mA, T = *40°C to 85°C, Notes 9, 10)  
DV  
mV  
ref  
7.2  
7.2  
20  
24  
KA  
ref  
K
A
(V = V , I = 10 mA, T = *40°C to 125°C, Notes 9, 10)  
KA  
ref  
K
A
Ration of Reference Input Voltage Change to Cathode Voltage Change (Figure 4)  
(V = V to 16 V, I = 10 mA)  
DVref  
DVKA  
mV  
V
0.6  
1.5  
KA  
ref  
K
Reference Terminal Current (Figure 4)  
(I = 10 mA, R1 = 10 kW, R2 = open)  
K
I
ref  
mA  
0.15  
0.3  
Reference Input Current Deviation Over Temperature (Figure 4)  
DI  
ref  
mA  
0.04  
0.08  
0.10  
(I = 10 mA, R1 = 10 kW, R2 = open, T = *40°C to 85°C, Notes 12, 13)  
K
A
(I = 10 mA, R1 = 10 kW, R2 = open, T = *40°C to 125°C, Notes 12, 13)  
K
A
Minimum Cathode Current for Regulation (Figure 3)  
I
)
30  
80  
mA  
mA  
K(min  
OffState Cathode Current (Figure 5)  
I
K(off)  
0.01  
0.012 0.05  
0.04  
(V = 6.0 V, V = 0)  
KA  
ref  
(V = 16 V, V = 0)  
KA  
ref  
Dynamic Impedance (Figure 3)  
(V = V , I =0.1 mA to 20 mA, f 1.0 kHz, Note 14)  
|Z  
|
W
KA  
0.25  
0.4  
KA  
ref  
K
12.Guaranteed but not tested.  
13.The deviation parameters DV and DI are defined as the difference between the maximum value and minimum value obtained over the  
ref  
ref  
full operating ambient temperature range that applied.  
V
ref  
Max  
DV = V Max V Min  
ref  
ref  
ref  
DT = T T  
1
V
ref  
Min  
A
2
T
1
Ambient Temperature  
T
2
The average temperature coefficient of the reference input voltage, aV is defined as:  
ref  
(DV  
ref  
)
  106  
ǒ
Ǔ
V
(T + 25°C)  
A
ref  
ppm  
ref ǒ Ǔ+  
°C  
αV  
DT  
A
aV can be positive or negative depending on whether V Min or V Max occurs at the lower ambient temperature, refer to Figure 8.  
ref  
ref  
ref  
Example: DV = 7.2 mV and the slope is positive,  
ref  
Example: V @ 25°C = 1.241 V  
ref  
Example: DT = 125°C  
A
  106  
0.0072  
1.241  
ppm  
°C  
ref ǒ Ǔ+  
αV  
+ 46 ppmń°C  
125  
14.The dynamic impedance Z is defined as:  
KA  
DV  
KA  
DIK  
Z +  
KA  
When the device is operating with two external resistors, R1 and R2, (refer to Figure 4) the total dynamic impedance of the circuit is given by:  
R1  
  ǒ1 )  
Ǔ
Z ′⏐ + Z  
KA  
KA  
R2  
www.onsemi.com  
6
 
TLV431, NCV431, SCV431  
Input  
V
KA  
Input  
V
KA  
Input  
V
KA  
I
K
I
K
I
K(off)  
I
R1  
R2  
ref  
V
ref  
V
ref  
R1  
R2  
ǒꢀ1 ) Ǔ) I  
V
+ V  
SꢀR1  
KA  
ref  
ref  
Figure 3. Test Circuit  
for VKA = Vref  
Figure 4. Test Circuit  
Figure 5. Test Circuit  
for IK(off)  
for VKA u Vref  
110  
90  
70  
50  
30  
10  
30  
Input  
V
KA  
I
K
Input  
V
KA  
20  
10  
I
K
I
K(min)  
V
= V  
KA  
ref  
T
A
= 25°C  
V
= V  
ref  
KA  
T
A
= 25°C  
0
10  
30  
10  
1.0  
0.5  
0
0.5  
1.0  
1.5  
2.0  
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
V
KA  
, CATHODE VOLTAGE (V)  
V
KA  
, CATHODE VOLTAGE (V)  
Figure 6. Cathode Current vs. Cathode Voltage  
Figure 7. Cathode Current vs. Cathode Voltage  
0.15  
0.14  
1.25  
1.24  
Vref  
(max)  
Input  
10 k  
V
KA  
I
K
I
ref  
Vref  
(typ)  
I
K
= 10 mA  
1.23  
1.22  
0.13  
0.12  
Input  
V
K
KA  
Vref  
(min)  
I
V
= V  
ref  
KA  
I
K
= 10 mA  
TLV431A Typ.  
60  
40  
15  
10  
35  
85  
40  
15  
10  
35  
60  
85  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 8. Reference Input Voltage versus  
Ambient Temperature  
Figure 9. Reference Input Current versus  
Ambient Temperature  
www.onsemi.com  
7
TLV431, NCV431, SCV431  
4.0  
0
2.0  
4.0  
6.0  
Input  
V
KA  
I
= 10 mA  
K
I
off  
V
KA  
V
ref  
= 16 V  
= 0 V  
T = 25°C  
A
3.0  
2.0  
Input  
V
KA  
I
K
R1  
R2  
1.0  
0
V
ref  
T = 25°C  
A
8.0  
10  
0
4.0  
8.0  
12  
16  
0
4.0  
8.0  
12  
16  
20  
V
KA  
, CATHODE VOLTAGE (V)  
V
KA  
, CATHODE VOLTAGE (V)  
Figure 10. Reference Input Voltage Change  
versus Cathode Voltage  
Figure 11. OffState Cathode Current  
versus Cathode Voltage  
0.4  
0.3  
0.2  
10  
Output  
I
K
Input  
V
KA  
50  
I
off  
V
= 16 V  
= 0 V  
KA  
V
ref  
+
1.0  
0.1  
0.1  
0
I
K
= 0.1 mA to 20 mA  
T = 25°C  
A
40  
15  
10  
35  
60  
85  
1.0 k  
10 k  
100 k  
f, FREQUENCY (Hz)  
1.0 M  
10 M  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 12. OffState Cathode Current versus  
Figure 13. Dynamic Impedance versus  
Frequency  
Ambient Temperature  
0.24  
0.23  
0.22  
0.21  
60  
50  
40  
30  
20  
Output  
I
= 0.1 mA to 20 mA  
K
f = 1.0 kHz  
Output  
15 k  
I
K
I
K
9 m F  
230  
50  
8.25 k  
+
+
I
= 10 mA  
K
T = 25°C  
A
0.20  
0.19  
10  
0
40  
15  
10  
35  
60  
85  
100  
1.0 k  
10 k  
f, FREQUENCY (Hz)  
100 k  
1.0 M  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 14. Dynamic Impedance versus  
Ambient Temperature  
Figure 15. OpenLoop Voltage Gain  
versus Frequency  
www.onsemi.com  
8
TLV431, NCV431, SCV431  
350  
Output  
1.8 kW  
Input  
Input  
Output  
I
K
I
ref  
1.5  
1.0  
0.5  
0
325  
300  
V
I
T
A
= V  
ref  
= 10 mA  
= 25°C  
KA  
50  
Output  
Input  
K
T
A
= 25°C  
2.0  
0
275  
250  
10  
100  
1.0 k  
f, FREQUENCY (Hz)  
10 k  
100 k  
0
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0  
t, TIME (ms)  
Figure 16. Spectral Noise Density  
Figure 17. Pulse Response  
1.0 k  
25  
20  
15  
T = 25°C  
A
I
K
R1  
R2  
A
Stable  
V+  
C
L
C
B
Stable  
10  
5.0  
0
Stable  
Unstable  
Regions  
V
(V)  
R1  
(kW)  
R2  
(kW)  
KA  
D
10  
100  
pF  
1.0  
nF  
0.01  
mF  
0.1  
mF  
1.0  
mF  
10  
mF  
100  
mF  
A, C  
B, D  
V
0
ref  
pF  
5.0  
30.4  
10  
C , LOAD CAPACITANCE  
L
Figure 18. Stability Boundary Conditions  
Figure 19. Test Circuit for Figure 18  
Stability  
Figures 18 and 19 show the stability boundaries and  
circuit configurations for the worst case conditions with the  
load capacitance mounted as close as possible to the device.  
The required load capacitance for stable operation can vary  
depending on the operating temperature and capacitor  
equivalent series resistance (ESR). Ceramic or tantalum  
surface mount capacitors are recommended for both  
temperature and ESR. The application circuit stability  
should be verified over the anticipated operating current and  
temperature ranges.  
www.onsemi.com  
9
 
TLV431, NCV431, SCV431  
TYPICAL APPLICATIONS  
V
in  
V
out  
V
in  
V
out  
R1  
R2  
R1  
R2  
R1  
R1  
+ ǒ1 ) ǓV  
V
+ ǒ1 ) ǓV  
V
out  
ref  
R2  
out  
ref  
R2  
Figure 20. Shunt Regulator  
Figure 21. High Current Shunt Regulator  
V
in  
V
out  
MC7805  
V
in  
Out  
Common  
In  
V
out  
R1  
R2  
R1  
R2  
R1  
R1  
+ ǒ1 ) ǓV  
+ ǒ1 ) ǓV  
out(min)  
V
V
out  
out  
ref  
ref  
R2  
R2  
V
+ V ) 5.0 V  
V
+ V ) V  
ref  
out  
in(min)  
V
be  
+ V  
out(min)  
ref  
Figure 22. Output Control for a Three Terminal  
Fixed Regulator  
Figure 23. Series Pass Regulator  
www.onsemi.com  
10  
TLV431, NCV431, SCV431  
I
V
in  
sink  
V
ref  
I
+
sink  
R
S
I
out  
R
CL  
V
in  
V
out  
R
S
V
R
ref  
I
+
out  
CL  
Figure 24. Constant Current Source  
Figure 25. Constant Current Sink  
V
in  
V
in  
V
out  
V
out  
R1  
R1  
R2  
R2  
R1  
R1  
+ ǒ1 ) ǓV  
+ ǒ1 ) ǓV  
V
V
out(trip)  
ref  
out(trip)  
ref  
R2  
R2  
Figure 26. TRIAC Crowbar  
Figure 27. SCR Crowbar  
www.onsemi.com  
11  
TLV431, NCV431, SCV431  
25 V  
V
in  
2.0 mA  
1N5305  
R1  
R2  
R3  
LED  
5 k  
1%  
50 k  
1%  
1.0 M  
1%  
500 k  
1%  
10 k  
Calibrate  
10 kW  
V
100 kW  
V
R4  
1.0 kW  
1.0 MW  
V
V
25 V  
-
+
L.E.D. indicator is ‘ON’ when V is  
between the upper and lower limits,  
in  
V
out  
Range  
R1  
Lower limit + ǒ1 ) ǓVref  
5.0 V  
R
x
R2  
R3  
W
V
Upper limit + ǒ1 ) ǓVref  
R
+ V ꢀDꢀꢀ ꢀ Range  
x
R4  
out  
Figure 28. Voltage Monitor  
Figure 29. Linear Ohmmeter  
38 V  
T1 = 330 W to 8.0 W  
330  
T1  
+
470 mF  
8.0 W  
360 k  
1.0 mF  
Volume  
47 k  
*
0.05 mF  
25 k  
*Thermalloy  
*THM 6024  
*Heatsink on  
*LP Package.  
56 k  
Tone  
10 k  
Figure 30. Simple 400 mW Phono Amplifier  
www.onsemi.com  
12  
TLV431, NCV431, SCV431  
AC Input  
DC Output  
3.3 V  
Gate Drive  
100  
V
CC  
Controller  
R1  
3.0 k  
V
FB  
C1  
0.1 mF  
Current  
Sense  
R2  
1.8 k  
GND  
Figure 31. Isolated Output Line Powered Switching Power Supply  
The above circuit shows the TLV431A/B/C as a compensated amplifier controlling the feedback loop of an isolated output line  
powered switching regulator. The output voltage is programmed to 3.3 V by the resistors values selected for R1 and R2. The  
minimum output voltage that can be programmed with this circuit is 2.64 V, and is limited by the sum of the reference voltage  
(1.24 V) and the forward drop of the optocoupler light emitting diode (1.4 V). Capacitor C1 provides loop compensation.  
PIN CONNECTIONS AND DEVICE MARKING  
TO92  
TSOP5  
SOT233  
TLV43  
1XXX  
ALYWG  
G
1
5
4
Anode  
NC  
NC  
1
Reference  
Cathode  
2
3
Anode  
3
Reference  
Cathode  
2
1. Reference  
2. Anode  
3. Cathode  
(Top View)  
(Top View)  
XXX  
A
Y
= Specific Device Code  
= Assembly Location  
= Year  
XXX  
M
= Specific Device Code  
= Date Code  
= PbFree Package  
1
2 3  
G
L
= Wafer Lot  
(Note: Microdot may be in either location)  
W
G
= Work Week  
= PbFree Package  
(Note: Microdot may be in either location)  
www.onsemi.com  
13  
TLV431, NCV431, SCV431  
ORDERING INFORMATION  
Device  
Device Code  
Package  
Shipping  
TLV431ALPG  
ALP  
TO923  
(PbFree)  
6000 / Box  
TLV431ALPRAG  
TLV431ALPREG  
TLV431ALPRMG  
TLV431ALPRPG  
TLV431ASNT1G  
TLV431ASN1T1G  
TLV431BLPG  
ALP  
ALP  
ALP  
ALP  
RAA  
RAF  
BLP  
BLP  
BLP  
BLP  
BLP  
RAH  
RAG  
AAN  
RAE  
RAC  
ACH  
AD6  
TO923  
(PbFree)  
2000 / Tape & Reel  
2000 / Tape & Reel  
2000 / Ammo Pack  
2000 / Ammo Pack  
3000 / Tape & Reel  
3000 / Tape & Reel  
6000 / Box  
TO923  
(PbFree)  
TO923  
(PbFree)  
TO923  
(PbFree)  
TSOP5  
(PbFree, HalideFree)  
SOT233  
(PbFree, HalideFree)  
TO923  
(PbFree)  
TLV431BLPRAG  
TLV431BLPREG  
TLV431BLPRMG  
TLV431BLPRPG  
TLV431BSNT1G  
TLV431BSN1T1G  
TLV431CSN1T1G  
SCV431ASN1T1G*  
SCV431BSN1T1G*  
NCV431ASNT1G*  
NCV431BSNT1G*  
TO923  
(PbFree)  
2000 / Tape & Reel  
2000 / Tape & Reel  
2000 / Ammo Pack  
2000 / Ammo Pack  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
3000 / Tape & Reel  
TO923  
(PbFree)  
TO923  
(PbFree)  
TO923  
(PbFree)  
TSOP5  
(PbFree, HalideFree)  
SOT233  
(PbFree, HalideFree)  
SOT233  
(PbFree, HalideFree)  
SOT233  
(PbFree, HalideFree)  
SOT233  
(PbFree, HalideFree)  
TSOP5  
(PbFree, HalideFree)  
TSOP5  
(PbFree, HalideFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
*SCV, NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AECQ100 Qualified and  
PPAP Capable.  
www.onsemi.com  
14  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TO92 (TO226) 1 WATT  
CASE 2910  
SCALE 1:1  
ISSUE A  
DATE 08 MAY 2012  
1
1
2
2
3
STRAIGHT LEAD  
3
BENT LEAD  
A
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1994.  
STRAIGHT LEAD  
2. CONTROLLING DIMENSION: INCHES.  
3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS  
UNCONTROLLED.  
B
R
4. DIMENSION F APPLIES BETWEEN DIMENSIONS P  
AND L. DIMENSIONS D AND J APPLY BETWEEN DI­  
MENSIONS L AND K MINIMUM. THE LEAD  
DIMENSIONS ARE UNCONTROLLED IN DIMENSION  
P AND BEYOND DIMENSION K MINIMUM.  
P
L
F
K
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
4.44  
7.37  
3.18  
0.46  
0.41  
1.15  
2.42  
0.46  
12.70  
6.35  
2.04  
---  
MAX  
5.21  
7.87  
4.19  
0.53  
0.48  
1.39  
2.66  
0.61  
---  
A
B
C
D
F
0.175  
0.290  
0.125  
0.018  
0.016  
0.045  
0.095  
0.018  
0.500  
0.250  
0.080  
---  
0.205  
0.310  
0.165  
0.021  
0.019  
0.055  
0.105  
0.024  
---  
D
X X  
G
J
H
V
G
H
J
C
K
L
SECTION XX  
---  
---  
1
N
N
P
R
V
0.105  
0.100  
---  
2.66  
2.54  
---  
N
0.135  
0.135  
3.43  
3.43  
---  
---  
A
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
BENT LEAD  
R
2. CONTROLLING DIMENSION: INCHES.  
3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS  
UNCONTROLLED.  
B
4. DIMENSION F APPLIES BETWEEN DIMENSIONS P  
AND L. DIMENSIONS D AND J APPLY BETWEEN  
DIMENSIONS L AND K MINIMUM. THE LEAD  
DIMENSIONS ARE UNCONTROLLED IN DIMENSION  
P AND BEYOND DIMENSION K MINIMUM.  
P
T
SEATING  
PLANE  
K
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
4.44  
7.37  
3.18  
0.46  
2.40  
0.46  
12.70  
2.04  
---  
MAX  
5.21  
7.87  
4.19  
0.53  
2.80  
0.61  
---  
A
B
C
D
G
J
0.175  
0.290  
0.125  
0.018  
0.094  
0.018  
0.500  
0.080  
---  
0.205  
0.310  
0.165  
0.021  
0.102  
0.024  
---  
D
X X  
G
J
K
N
P
R
V
V
C
0.105  
0.100  
---  
2.66  
2.54  
---  
SECTION XX  
0.135  
0.135  
3.43  
3.43  
1
N
---  
---  
STYLES ON PAGE 2  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON52857E  
TO92 (TO226) 1 WATT  
PAGE 1 OF 2  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
TO92 (TO226) 1 WATT  
CASE 2910  
ISSUE A  
DATE 08 MAY 2012  
STYLE 2:  
PIN 1. BASE  
2. EMITTER  
3. COLLECTOR  
STYLE 3:  
STYLE 4:  
PIN 1. CATHODE  
STYLE 5:  
STYLE 1:  
PIN 1. EMITTER  
2. BASE  
PIN 1. ANODE  
2. ANODE  
3. CATHODE  
PIN 1. DRAIN  
2. SOURCE  
3. GATE  
2. CATHODE  
3. ANODE  
3. COLLECTOR  
STYLE 8:  
PIN 1. DRAIN  
2. GATE  
STYLE 9:  
STYLE 10:  
STYLE 7:  
STYLE 6:  
PIN 1. GATE  
PIN 1. BASE 1  
2. EMITTER  
3. BASE 2  
PIN 1. CATHODE  
2. GATE  
3. ANODE  
PIN 1. SOURCE  
2. DRAIN  
3. GATE  
2. SOURCE & SUBSTRATE  
3. DRAIN  
3. SOURCE & SUBSTRATE  
STYLE 13:  
STYLE 14:  
STYLE 15:  
STYLE 12:  
STYLE 11:  
PIN 1. ANODE  
PIN 1. ANODE 1  
2. GATE  
3. CATHODE 2  
PIN 1. EMITTER  
2. COLLECTOR  
3. BASE  
PIN 1. ANODE 1  
2. CATHODE  
3. ANODE 2  
PIN 1. MAIN TERMINAL 1  
2. GATE  
3. MAIN TERMINAL 2  
2. CATHODE & ANODE  
3. CATHODE  
STYLE 18:  
STYLE 19:  
STYLE 20:  
STYLE 17:  
STYLE 16:  
PIN 1. ANODE  
2. GATE  
PIN 1. ANODE  
2. CATHODE  
3. NOT CONNECTED  
PIN 1. GATE  
2. ANODE  
3. CATHODE  
PIN 1. NOT CONNECTED  
2. CATHODE  
3. ANODE  
PIN 1. COLLECTOR  
2. BASE  
3. EMITTER  
3. CATHODE  
STYLE 23:  
PIN 1. GATE  
2. SOURCE  
3. DRAIN  
STYLE 24:  
STYLE 25:  
PIN 1. MT 1  
2. GATE  
3. MT 2  
STYLE 22:  
STYLE 21:  
PIN 1. EMITTER  
2. COLLECTOR/ANODE  
3. CATHODE  
PIN 1. SOURCE  
2. GATE  
3. DRAIN  
PIN 1. COLLECTOR  
2. EMITTER  
3. BASE  
STYLE 28:  
STYLE 29:  
STYLE 30:  
STYLE 27:  
PIN 1. MT  
2. SUBSTRATE  
3. MT  
STYLE 26:  
PIN 1.  
PIN 1. CATHODE  
2. ANODE  
3. GATE  
PIN 1. NOT CONNECTED  
2. ANODE  
3. CATHODE  
PIN 1. DRAIN  
2. GATE  
3. SOURCE  
V
CC  
2. GROUND 2  
3. OUTPUT  
STYLE 33:  
STYLE 34:  
STYLE 35:  
STYLE 32:  
PIN 1. BASE  
2. COLLECTOR  
STYLE 31:  
PIN 1. GATE  
2. DRAIN  
PIN 1. RETURN  
2. INPUT  
3. OUTPUT  
PIN 1. INPUT  
2. GROUND  
3. LOGIC  
PIN 1. GATE  
2. COLLECTOR  
3. EMITTER  
3. EMITTER  
3. SOURCE  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON52857E  
TO92 (TO226) 1 WATT  
PAGE 2 OF 2  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOT23 (TO236)  
CASE 31808  
ISSUE AS  
DATE 30 JAN 2018  
SCALE 4:1  
NOTES:  
D
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.  
MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF  
THE BASE MATERIAL.  
0.25  
3
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,  
PROTRUSIONS, OR GATE BURRS.  
T
H
E
E
1
2
MILLIMETERS  
INCHES  
DIM  
A
A1  
b
c
D
E
e
L
MIN  
0.89  
0.01  
0.37  
0.08  
2.80  
1.20  
1.78  
0.30  
0.35  
2.10  
0°  
NOM  
1.00  
0.06  
0.44  
0.14  
2.90  
1.30  
1.90  
0.43  
0.54  
2.40  
−−−  
MAX  
MIN  
0.035  
0.000  
0.015  
0.003  
0.110  
0.047  
0.070  
0.012  
0.014  
0.083  
0°  
NOM  
0.039  
0.002  
0.017  
0.006  
0.114  
0.051  
0.075  
0.017  
0.021  
0.094  
−−−  
MAX  
0.044  
0.004  
0.020  
0.008  
0.120  
0.055  
0.080  
0.022  
0.027  
0.104  
10°  
L
1.11  
0.10  
0.50  
0.20  
3.04  
1.40  
2.04  
0.55  
0.69  
2.64  
10°  
3X  
b
L1  
VIEW C  
e
TOP VIEW  
L1  
A
H
E
T
c
A1  
SEE VIEW C  
SIDE VIEW  
GENERIC  
MARKING DIAGRAM*  
END VIEW  
RECOMMENDED  
SOLDERING FOOTPRINT  
XXXMG  
G
1
3X  
0.90  
XXX = Specific Device Code  
2.90  
M
= Date Code  
G
= PbFree Package  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “ G”,  
may or may not be present.  
3X  
0.95  
0.80  
PITCH  
DIMENSIONS: MILLIMETERS  
STYLE 1 THRU 5:  
CANCELLED  
STYLE 6:  
STYLE 7:  
PIN 1. EMITTER  
2. BASE  
STYLE 8:  
PIN 1. BASE  
2. EMITTER  
3. COLLECTOR  
PIN 1. ANODE  
2. NO CONNECTION  
3. CATHODE  
3. COLLECTOR  
STYLE 9:  
PIN 1. ANODE  
2. ANODE  
STYLE 10:  
STYLE 11:  
STYLE 12:  
STYLE 13:  
PIN 1. SOURCE  
2. DRAIN  
STYLE 14:  
PIN 1. CATHODE  
2. GATE  
PIN 1. DRAIN  
2. SOURCE  
3. GATE  
PIN 1. ANODE  
PIN 1. CATHODE  
2. CATHODE  
3. ANODE  
2. CATHODE  
3. CATHODEANODE  
3. CATHODE  
3. GATE  
3. ANODE  
STYLE 15:  
STYLE 16:  
STYLE 17:  
PIN 1. NO CONNECTION  
2. ANODE  
STYLE 18:  
STYLE 19:  
STYLE 20:  
PIN 1. GATE  
2. CATHODE  
3. ANODE  
PIN 1. ANODE  
2. CATHODE  
3. CATHODE  
PIN 1. NO CONNECTION PIN 1. CATHODE  
PIN 1. CATHODE  
2. ANODE  
3. GATE  
2. CATHODE  
3. ANODE  
2. ANODE  
3. CATHODEANODE  
3. CATHODE  
STYLE 21:  
STYLE 22:  
STYLE 23:  
PIN 1. ANODE  
2. ANODE  
STYLE 24:  
STYLE 25:  
STYLE 26:  
PIN 1. GATE  
2. SOURCE  
3. DRAIN  
PIN 1. RETURN  
2. OUTPUT  
3. INPUT  
PIN 1. GATE  
2. DRAIN  
PIN 1. ANODE  
2. CATHODE  
3. GATE  
PIN 1. CATHODE  
2. ANODE  
3. SOURCE  
3. NO CONNECTION  
3. CATHODE  
STYLE 27:  
STYLE 28:  
PIN 1. CATHODE  
2. CATHODE  
3. CATHODE  
PIN 1. ANODE  
2. ANODE  
3. ANODE  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42226B  
SOT23 (TO236)  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TSOP5  
CASE 483  
ISSUE N  
5
1
DATE 12 AUG 2020  
SCALE 2:1  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
NOTE 5  
5X  
D
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH  
THICKNESS. MINIMUM LEAD THICKNESS IS THE  
MINIMUM THICKNESS OF BASE MATERIAL.  
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS. MOLD  
FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT  
EXCEED 0.15 PER SIDE. DIMENSION A.  
5. OPTIONAL CONSTRUCTION: AN ADDITIONAL  
TRIMMED LEAD IS ALLOWED IN THIS LOCATION.  
TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2  
FROM BODY.  
0.20 C A B  
2X  
0.10  
T
M
5
4
3
2X  
0.20  
T
B
S
1
2
K
B
A
DETAIL Z  
G
A
MILLIMETERS  
TOP VIEW  
DIM  
A
B
C
D
MIN  
2.85  
1.35  
0.90  
0.25  
MAX  
3.15  
1.65  
1.10  
0.50  
DETAIL Z  
J
G
H
J
K
M
S
0.95 BSC  
C
0.01  
0.10  
0.20  
0
0.10  
0.26  
0.60  
10  
3.00  
0.05  
H
SEATING  
PLANE  
END VIEW  
C
_
_
SIDE VIEW  
2.50  
GENERIC  
MARKING DIAGRAM*  
SOLDERING FOOTPRINT*  
1.9  
5
1
5
0.074  
0.95  
XXXAYWG  
XXX MG  
0.037  
G
G
1
Analog  
Discrete/Logic  
2.4  
0.094  
XXX = Specific Device Code XXX = Specific Device Code  
A
Y
W
G
= Assembly Location  
= Year  
= Work Week  
M
G
= Date Code  
= PbFree Package  
1.0  
0.039  
= PbFree Package  
(Note: Microdot may be in either location)  
0.7  
0.028  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “ G”,  
may or may not be present.  
mm  
inches  
ǒ
Ǔ
SCALE 10:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ARB18753C  
TSOP5  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
ON Semiconductor Website: www.onsemi.com  
www.onsemi.com  

相关型号:

SCV431B

Low Voltage Precision Adjustable Shunt Regulator
ONSEMI

SCV431BSN1T1G

Low Voltage Precision Adjustable Shunt Regulator
ONSEMI

SCVF02400E

Barrier Strip Terminal Block, 12A, 1 Row(s), 1 Deck(s)
AMPHENOL

SCVF02410E

Barrier Strip Terminal Block, 12A, 1 Row(s), 1 Deck(s)
AMPHENOL

SCVF0241E

12A, BARRIER STRIP TERMINAL BLOCK, 1 ROW, 1 DECK
AMPHENOL

SCVF02420E

Barrier Strip Terminal Block, 12A, 1 Row(s), 1 Deck(s)
AMPHENOL

SCVF024G0

Barrier Strip Terminal Block,
AMPHENOL

SCVF024G0E

Barrier Strip Terminal Block, 12A, 1 Row(s), 1 Deck(s)
AMPHENOL

SCVF024GE

12A, BARRIER STRIP TERMINAL BLOCK, 1 ROW, 1 DECK
AMPHENOL

SCVF03400

Barrier Strip Terminal Block,
AMPHENOL

SCVF03400E

Barrier Strip Terminal Block, 12A, 1 Row(s), 1 Deck(s)
AMPHENOL

SCVF0340E

12A, BARRIER STRIP TERMINAL BLOCK, 1 ROW, 1 DECK
AMPHENOL