SCY305LFCC20TBG [ONSEMI]

Analog Circuit;
SCY305LFCC20TBG
型号: SCY305LFCC20TBG
厂家: ONSEMI    ONSEMI
描述:

Analog Circuit

文件: 总14页 (文件大小:242K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Customer Specific Device from ON Semiconductor  
Voltage Detector Series  
SCY305  
The SCY305 series is a second generation ultra−low current voltage  
detectors. These devices are specifically designed for use as reset  
controllers in portable microprocessor based systems where extended  
battery life is paramount.  
WLCSP4  
FCC SUFFIX  
CASE TBD  
The series features a highly accurate undervoltage detector with  
hysteresis which prevents erratic system reset operation as the  
comparator threshold is crossed.  
The SCY305 series has an open drain N−Channel output with an  
active low reset output.  
The SCY305 device series is available in a WLCSP package with  
standard undervoltage thresholds. Additional thresholds that range  
from 0.9 V to 4.9 V in 100 mV steps can be manufactured.  
MARKING DIAGRAM  
A1  
XM  
X
M
= Specific Device Code  
= Month  
Features  
Quiescent Current of 1.0 mA Typical  
High UVLO Accuracy of 1.0% at Room Temperature  
1.5% Over Room Temperature  
PIN CONNECTIONS  
OUT  
Vin  
Wide Operating Voltage Range of 0.8 V to 10 V  
Open Drain Reset Output  
A1  
A2  
Active Low Reset Output  
These Devices are Pb−Free and are RoHS Compliant  
Typical Applications  
B1  
B2  
Microprocessor Reset Controller  
Low Battery Detection  
Power Fail Indicator  
NC  
GND  
(Top View)  
Battery Backup Detection  
SCY305LFCCxxTxx  
Open Drain Output Configuration  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 13 of  
this data sheet.  
2
1
Input  
Reset Output  
This document contains information on  
a
product under development. ON Semiconductor  
reserves the right to change or discontinue this  
product without notice.  
V
ref  
4
GND  
This document, and the information contained herein,  
is CONFIDENTIAL AND PROPRIETARY and the  
property of Semiconductor Components Industries,  
LLC., dba ON Semiconductor. It shall not be used,  
published, disclosed or disseminated outside of the  
Company, in whole or in part, without the written  
permission of ON Semiconductor. Reverse  
engineering of any or all of the information contained  
herein is strictly prohibited.  
This device contains 37 active transistors.  
* The representative block diagram depicts active low  
reset output ‘L’ suffix devices. The comparator input is  
interchanged for the active high output ‘H’ suffix devices.  
Figure 1. Representative Block Diagram  
This document contains information on a product under development. ON Semiconductor  
reserves the right to change or discontinue this product without notice.  
E 2019, SCILLC. All Rights Reserved.  
© Semiconductor Components Industries, LLC, 2019  
1
Publication Order Number:  
October, 2019 − Rev. P0  
SCY305/D  
CONFIDENTIAL AND PROPRIETARY  
NOT FOR PUBLIC RELEASE  
SCY305  
Table 1. MAXIMUM RATINGS (Note 1)  
Rating  
Symbol  
Value  
Unit  
Input Power Supply Voltage (Pin 2)  
V
12  
V
V
in  
Output Voltage (Pin 1)  
V
OUT  
−0.3 to 12  
N−Channel Open Drain, SCY305  
Output Current (Pin 1) (Note 2)  
Thermal Resistance, Junction−to−Air  
Maximum Junction Temperature  
Storage Temperature Range  
I
70  
TBD  
mA  
°C/W  
°C  
OUT  
R
q
JA  
J
T
+125  
T
−55 to +150  
°C  
stg  
LATCHUP  
Latchup Performance (Note 3)  
I
mA  
500  
170  
Positive  
Negative  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. This device series contains ESD protection and exceeds the following tests:  
Human Body Model 2000 V per MIL−STD−883, Method 3015.  
Machine Model Method 200 V.  
2. The maximum package power dissipation limit must not be exceeded.  
T
−T  
J(max)  
R
A
P
D
+
qJA  
3. Maximum Ratings per JEDEC standard JESD78.  
Table 2. ELECTRICAL CHARACTERISTICS (For all values T = 25°C, unless otherwise noted.)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
SCY305 − 2.7  
Detector Threshold (Pin 2, V Decreasing)  
V
2.673  
2.660  
0.081  
2.700  
2.700  
0.135  
2.727  
2.741  
0.189  
V
in  
DET−  
Detector Threshold Hysteresis (Pin 2, V Increasing)  
V
V
in  
HYS  
Supply Current (Pin 2)  
I
in  
mA  
0.9  
1.1  
2.7  
3.3  
(V = 2.6 V)  
in  
(V = 4.7 V)  
in  
Maximum Operating Voltage (Pin 2)  
Minimum Operating Voltage (Pin 2)  
(T = −40°C to 85°C)  
A
V
10  
V
V
in(max)  
V
0.55  
0.65  
0.70  
0.80  
in(min)  
Reset Output Current (Pin 1, Active Low ‘L’ Suffix Devices)  
I
mA  
OUT  
N−Channel Sink Current, SCY305  
0.01  
1.0  
0.05  
2.0  
(V  
OUT  
(V  
OUT  
= 0.05 V, V = 0.70 V)  
in  
= 0.50 V, V = 1.5 V)  
in  
Reset Output Current (Pin 1, Active High ‘H’ Suffix Devices)  
N−Channel Sink Current, SCY305  
I
mA  
OUT  
6.3  
11  
(V  
OUT  
= 0.5 V, V = 5.0 V)  
in  
Propagation Delay Input to Output (Figure 2)  
ms  
N−Channel Open Drain SCY305 Series  
Output Transition, High to Low (Note 4)  
Output Transition, Low to High (Note 4)  
t
t
12  
70  
pHL  
pLH  
SCY305 − 2.9  
Detector Threshold (Pin 2, V Decreasing)  
V
DET−  
2.871  
2.857  
2.900  
2.900  
2.929  
2.944  
V
in  
4. In the case of CMOS Output Type: The time interval between the rising edge of V input pulse from 0.7 V to (+V  
) +2.0 V and output  
DET  
DD  
voltage level becoming to V /2. In the case of N−Channel Open Drain Output Type: Output pin is pulled up with a resistance of 470 kW  
DD  
to 5.0 V, the time interval between the rising edge of V input pulse from 0.7 V to (+V  
) +2.0 V and output voltage level becoming to  
DET  
DD  
2.5 V.  
www.onsemi.com  
2
 
CONFIDENTIAL AND PROPRIETARY  
NOT FOR PUBLIC RELEASE  
SCY305  
Table 2. ELECTRICAL CHARACTERISTICS (continued) (For all values T = 25°C, unless otherwise noted.)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
SCY305 − 2.9  
Detector Threshold Hysteresis (Pin 2, V Increasing)  
V
HYS  
0.087  
0.145  
0.203  
V
in  
Supply Current (Pin 2)  
I
in  
mA  
0.9  
1.1  
2.9  
3.5  
(V = 2.8 V)  
in  
(V = 4.9 V)  
in  
Maximum Operating Voltage (Pin 2)  
Minimum Operating Voltage (Pin 2)  
(T = −40°C to 85°C)  
A
V
10  
V
V
in(max)  
V
0.55  
0.65  
0.70  
0.80  
in(min)  
Reset Output Current (Pin 1, Active Low ‘L’ Suffix Devices)  
I
mA  
OUT  
N−Channel Sink Current, SCY305  
0.01  
1.0  
0.05  
2.0  
(V  
OUT  
(V  
OUT  
= 0.05 V, V = 0.70 V)  
in  
= 0.50 V, V = 1.5 V)  
in  
Reset Output Current (Pin 1, Active High ‘H’ Suffix Devices)  
N−Channel Sink Current, SCY305  
I
mA  
OUT  
6.3  
11  
(V  
OUT  
= 0.5 V, V = 5.0 V)  
in  
Propagation Delay Input to Output (Figure 2)  
ms  
N−Channel Open Drain SCY305 Series  
Output Transition, High to Low (Note 4)  
Output Transition, Low to High (Note 4)  
t
t
12  
70  
pHL  
pLH  
SCY305 − 3.0  
Detector Threshold (Pin 2, V Decreasing)  
V
2.970  
2.955  
0.09  
3.00  
3.00  
0.15  
3.030  
3.045  
0.21  
V
in  
DET−  
Detector Threshold Hysteresis (Pin 2, V Increasing)  
V
V
in  
HYS  
Supply Current (Pin 2)  
I
in  
mA  
1.0  
1.2  
3.0  
3.6  
(V = 2.87 V)  
in  
(V = 5.0 V)  
in  
Maximum Operating Voltage (Pin 2)  
Minimum Operating Voltage (Pin 2)  
(T = −40°C to 85°C)  
A
V
10  
V
V
in(max)  
V
0.55  
0.65  
0.70  
0.80  
in(min)  
Reset Output Current (Pin 1, Active Low ‘L’ Suffix Devices)  
I
mA  
OUT  
N−Channel Sink Current, SCY305  
0.01  
1.0  
0.05  
2.0  
(V  
OUT  
(V  
OUT  
= 0.05 V, V = 0.70 V)  
in  
= 0.50 V, V = 1.5 V)  
in  
Reset Output Current (Pin 1, Active High ‘H’ Suffix Devices)  
N−Channel Sink Current, SCY305  
I
mA  
OUT  
6.3  
11  
(V  
OUT  
= 0.5 V, V = 5.0 V)  
in  
Propagation Delay Input to Output (Figure 2)  
ms  
N−Channel Open Drain SCY305 Series  
Output Transition, High to Low (Note 4)  
Output Transition, Low to High (Note 4)  
t
t
12  
70  
pHL  
pLH  
4. In the case of CMOS Output Type: The time interval between the rising edge of V input pulse from 0.7 V to (+V  
) +2.0 V and output  
DET  
DD  
voltage level becoming to V /2. In the case of N−Channel Open Drain Output Type: Output pin is pulled up with a resistance of 470 kW  
DD  
to 5.0 V, the time interval between the rising edge of V input pulse from 0.7 V to (+V  
) +2.0 V and output voltage level becoming to  
DET  
DD  
2.5 V.  
www.onsemi.com  
3
 
CONFIDENTIAL AND PROPRIETARY  
NOT FOR PUBLIC RELEASE  
SCY305  
V
DET+  
+ 2  
Input Voltage, Pin 2  
0.7  
0 V  
5 V  
Reset Output Voltage, Pin 1  
2.5 V  
SCY305L  
Open Drain  
Output  
0.5 V  
0 V  
t
t
pHL  
pLH  
The SCY305 series is measured with a 10 pF capacitive load. The SCY305 has an additional 470 k pullup resistor connected from  
the reset output to +5.0 V. The reset output voltage waveforms are shown for the active low ‘L’ devices. The upper detector thresh-  
old, V  
is the sum of the lower detector threshold, V  
plus the input hysteresis, V  
.
DET+  
DET−  
HYS  
Figure 2. Propagation Delay Measurement Conditions  
www.onsemi.com  
4
CONFIDENTIAL AND PROPRIETARY  
NOT FOR PUBLIC RELEASE  
SCY305  
Table 3. SCY305 SERIES ELECTRICAL CHARACTERISTIC TABLE FOR 0.9 − 4.9 V, TA = 255C  
N−Channel  
Sink Current  
Supply Current  
Detector Threshold  
Hysteresis  
V
in  
Low  
V
in  
High  
V
in  
Low  
V High  
in  
Detector Threshold  
I
in  
I
in  
I
I
OUT  
OUT  
(mA)  
(mA)  
(mA)  
(mA)  
(Note 5)  
(Note 6)  
(Note 7)  
(Note 8)  
V
DET−  
(V)  
V
HYS  
(V)  
Min  
Typ  
Max  
Min  
Typ  
Max  
Typ  
Typ  
Typ  
Typ  
Part Number  
SCY305LFCC09TBG  
SCY305LFCC15TBG  
SCY305LFCC16TBG  
SCY305LFCC17TBG  
SCY305LFCC18TBG  
SCY305LFCC20TBG  
SCY305LFCC22TBG  
SCY305LFCC23TBG  
SCY305LFCC24TBG  
SCY305LFCC25TBG  
SCY305LFCC26TBG  
SCY305LFCC27TBG  
SCY305LFCC28TBG  
SCY305LFCC29TBG  
SCY305LFCC30TBG  
SCY305LFCC31TBG  
SCY305LFCC32TBG  
SCY305LFCC33TBG  
SCY305LFCC34TBG  
SCY305LFCC35TBG  
SCY305LFCC36TBG  
SCY305LFCC37TBG  
SCY305LFCC40TBG  
SCY305LFCC44TBG  
SCY305LFCC45TBG  
SCY305LFCC47TBG  
SCY305LFCC49TBG  
0.891  
1.485  
1.584  
1.683  
1.782  
1.980  
2.178  
2.277  
2.376  
2.475  
2.574  
2.673  
2.772  
2.871  
2.970  
3.069  
3.168  
3.267  
3.366  
3.465  
3.564  
3.663  
3.960  
4.356  
4.455  
4.653  
4.851  
0.9  
1.5  
1.6  
1.7  
1.8  
2.0  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
4.0  
4.4  
4.5  
4.7  
4.9  
0.909  
1.515  
1.616  
1.717  
1.818  
2.020  
2.222  
2.323  
2.424  
2.525  
2.626  
2.727  
2.828  
2.929  
3.030  
3.131  
3.232  
3.333  
3.434  
3.535  
3.636  
3.737  
4.040  
4.444  
4.545  
4.747  
4.949  
0.027  
0.045  
0.048  
0.051  
0.054  
0.060  
0.066  
0.069  
0.072  
0.075  
0.078  
0.081  
0.084  
0.087  
0.090  
0.093  
0.096  
0.099  
0.102  
0.105  
0.108  
0.111  
0.120  
0.132  
0.135  
0.141  
0.147  
0.045  
0.075  
0.080  
0.085  
0.090  
0.100  
0.110  
0.115  
0.120  
0.125  
0.130  
0.135  
0.140  
0.145  
0.150  
0.155  
0.160  
0.165  
0.170  
0.175  
0.180  
0.185  
0.200  
0.220  
0.225  
0.235  
0.245  
0.063  
0.105  
0.112  
0.119  
0.126  
0.140  
0.154  
0.161  
0.168  
0.175  
0.182  
0.189  
0.196  
0.203  
0.210  
0.217  
0.224  
0.231  
0.238  
0.245  
0.252  
0.259  
0.280  
0.308  
0.315  
0.329  
0.343  
0.8  
0.9  
0.05  
0.5  
2.0  
0.9  
1.1  
1.0  
1.2  
1.1  
1.3  
5. Condition 1: 0.9 − 2.9 V, V = V  
− 0.10 V; 3.0 − 3.9 V, V = V  
− 0.13 V; 4.0 − 4.9 V, V = V  
− 0.16 V  
in  
DET−  
in  
DET−  
in  
DET−  
6. Condition 2: 0.9 − 4.9 V, V = V  
+ 2.0 V  
in  
DET−  
7. Condition 3: 0.9 − 4.9 V, V = 0.7 V, V  
= 0.05 V, Active Low ‘L’ Suffix Devices  
in  
OUT  
8. Condition 4: 0.9 − 1.0 V, V = 0.85 V, V  
= 0.5 V; 1.1 − 1.5 V, V = 1.0 V, V  
= 0.5 V; 1.6 − 4.9 V, V = 1.5 V, V  
= 0.5 V,  
in  
OUT  
in  
OUT  
in  
OUT  
Active Low ‘L’ Suffix Devices  
www.onsemi.com  
5
 
CONFIDENTIAL AND PROPRIETARY  
NOT FOR PUBLIC RELEASE  
SCY305  
3.00  
2.95  
2.90  
2.85  
2.80  
2.75  
2.70  
2.65  
2.60  
0.98  
0.96  
V
DET+  
0.94  
0.92  
0.90  
V
V
DET+  
V
DET−  
DET−  
0.88  
0.86  
−50  
0
75  
−50  
0
75  
−25  
25  
50  
100  
−25  
25  
50  
100  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 3. SCY305 Series 0.9 V  
Figure 4. SCY305 Series 2.7 V  
Detector Threshold Voltage vs. Temperature  
Detector Threshold Voltage vs. Temperature  
1.0  
0.8  
0.6  
0.4  
4.9  
4.8  
4.7  
4.6  
4.5  
V
V
DET+  
DET−  
T = −30°C  
A
T = 25°C  
T = 85°C  
A
A
0.2  
0
4.4  
4.3  
−50  
0
75  
−25  
25  
50  
100  
0
0.2  
0.4  
0.6  
0.8  
1.0  
V , INPUT VOLTAGE (V)  
in  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 6. SCY305L Series 0.9 V  
Figure 5. SCY305 Series 4.5 V  
Reset Output Voltage vs. Input Voltage  
Detector Threshold Voltage vs. Temperature  
7.0  
3.0  
2.5  
2.0  
1.5  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.5  
0
T = −30°C  
A
T = −30°C  
A
T = 85°C  
A
A
T = 25°C  
A
T = 25°C  
1.0  
0
T = 85°C  
A
0
2.0  
4.0  
5.0  
6.0  
1.0  
3.0  
0
0.5  
1.5  
2.5  
3.0  
1.0  
2.0  
V , INPUT VOLTAGE (V)  
in  
V , INPUT VOLTAGE (V)  
in  
Figure 8. SCY305L Series 4.5 V  
Figure 7. SCY305L Series 2.7 V  
Reset Output Voltage vs. Input Voltage  
Reset Output Voltage vs. Input Voltage  
www.onsemi.com  
6
CONFIDENTIAL AND PROPRIETARY  
NOT FOR PUBLIC RELEASE  
SCY305  
3.0  
1.2  
T = 25°C  
A
1.0  
0.8  
0.6  
0.4  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
in  
= 0.85 V  
V
in  
= 0.7 V  
T = −30°C  
A
T = 25°C  
A
0.2  
0
T = 85°C  
A
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.4  
, OUTPUT VOLTAGE (V)  
1.0  
0.2  
V
0.6  
0.8  
V , INPUT VOLTAGE (V)  
in  
OUT  
Figure 9. SCY305H Series 2.7 V  
Figure 10. SCY305L Series 0.9 V  
Reset Output Voltage vs. Input Voltage  
Reset Output Sink Current vs. Output Voltage  
16  
14  
35  
30  
25  
20  
15  
10  
5.0  
0
T = 25°C  
A
T = 25°C  
A
V
V
V
= 4.0 V  
= 3.5 V  
= 3.0 V  
in  
in  
in  
V
= 2.5 V  
= 2.0V  
in  
12  
10  
8.0  
6.0  
4.0  
V
in  
V
= 2.5 V  
in  
V
= 2.0 V  
in  
V
in  
= 1.5 V  
1.5  
V
in  
= 1.5 V  
2.0  
0
0
1.0  
V
2.5  
, OUTPUT VOLTAGE (V)  
0
1.0  
2.5  
0.5  
1.5  
2.0  
3.0  
3.5  
4.0  
0.5  
2.0  
V
OUT  
, OUTPUT VOLTAGE (V)  
OUT  
Figure 11. SCY305L Series 2.7 V  
Reset Output Sink Current vs. Output Voltage  
Figure 12. SCY305L Series 4.5 V  
Reset Output Sink Current vs. Output Voltage  
2.0  
T = 25°C  
A
1.5  
1.0  
0.5  
0
0
4.0  
V , INPUT VOLTAGE (V)  
8.0  
10  
2.0  
6.0  
in  
Figure 13. SCY305 Series 0.9 V  
Input Current vs. Input Voltage  
www.onsemi.com  
7
CONFIDENTIAL AND PROPRIETARY  
NOT FOR PUBLIC RELEASE  
SCY305  
2
2.0  
T = 25°C  
A
T = 25°C  
A
1.5  
1.0  
1.5  
1.0  
0.5  
0
0.5  
0
0
4.0  
6.0  
10  
2.0  
8.0  
0
4.0  
6.0  
2.0  
8.0  
10  
V , INPUT VOLTAGE (V)  
in  
V , INPUT VOLTAGE (V)  
in  
Figure 14. SCY305 Series 2.7 V  
Input Current vs. Input Voltage  
Figure 15. SCY305 Series 4.5 V  
Input Current vs. Input Voltage  
7.0  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
T = −30°C  
A
T = 25°C  
A
T = 85°C  
A
T = 85°C  
A
T = 25°C  
A
T = −30°C  
A
0
1.0  
V , INPUT VOLTAGE (V)  
2.5  
0.5  
1.5  
2.0  
3.0  
0
0.4  
V , INPUT VOLTAGE (V)  
1.0  
0.2  
0.6  
0.8  
in  
in  
Figure 16. SCY305L Series 0.9 V  
Figure 17. SCY305L Series 2.7 V  
Reset Output Sink Current vs. Input Voltage  
Reset Output Sink Current vs. Input Voltage  
90  
12  
10  
8.0  
6.0  
4.0  
2.0  
0
80  
70  
60  
50  
40  
30  
T = −30°C  
A
V
out  
= V − 2.1 V  
in  
T = 25°C  
A
= V − 1.5 V  
in  
= V − 1.0 V  
in  
T = 85°C  
A
= V − 0.5 V  
in  
20  
10  
0
0
2.0  
4.0  
6.0  
8.0  
10  
0
2.0  
V , INPUT VOLTAGE (V)  
5.0  
1.0  
3.0  
4.0  
V , INPUT VOLTAGE (V)  
in  
in  
Figure 18. SCY305L Series 4.5 V  
Reset Output Sink Current vs. Input Voltage  
Figure 19. SCY305H Series 2.7 V  
Reset Output Sink Current vs. Input Voltage  
www.onsemi.com  
8
CONFIDENTIAL AND PROPRIETARY  
NOT FOR PUBLIC RELEASE  
SCY305  
OPERATING DESCRIPTION  
The SCY305 series devices are second generation  
ultra−low current voltage detectors. Figures 20 and 21 show  
a timing diagram and a typical application. Initially consider  
for active high devices. After completion of the power  
interruption, V will again return to its nominal level and  
in  
become greater than the V  
. The voltage detector has  
DET+  
that input voltage V is at a nominal level and it is greater  
built−in hysteresis to prevent erratic reset operation as the  
comparator threshold is crossed.  
in  
than the voltage detector upper threshold (V  
), and the  
DET+  
reset output (Pin 1) will be in the high state for active low  
devices, or in the low state for active high devices. If there  
Although these device series are specifically designed for  
use as reset controllers in portable microprocessor based  
systems, they offer a cost−effective solution in numerous  
applications where precise voltage monitoring is required.  
Figure 21 through Figure 27 shows various application  
examples.  
is a power interruption and V becomes significantly  
in  
deficient, it will fall below the lower detector threshold  
(V ). This sequence of events causes the Reset output to  
DET−  
be in the low state for active low devices, or in the high state  
“L” in Part Name  
“H” in Part Name  
Function: active Low Reset Output  
Input < Vdet−, Reset Output is Low  
Input > Vdet+, Reset Output is High  
Function: active High Reset Output  
Input < Vdet−, Reset Output is High  
Input > Vdet+, Reset Output is Low  
V
in  
Input Voltage, Pin 2  
V
+
DET  
V
DET−  
V
in  
Reset Output (Active Low), Pin 1  
V
+
DET  
V
DET−  
0 V  
V
in  
Reset Output (Active High), Pin 1  
V
+
DET  
V
DET−  
0 V  
Figure 20. Timing Waveforms  
www.onsemi.com  
9
 
CONFIDENTIAL AND PROPRIETARY  
NOT FOR PUBLIC RELEASE  
SCY305  
APPLICATION CIRCUIT INFORMATION  
V
DD  
V
DD  
2
Input  
1
SCY305  
Series  
Microprocessor  
Reset  
Reset Output  
4
GND  
GND  
Figure 21. Microprocessor Reset Circuit  
2.85 V  
2.70 V  
V
in  
< 2.7 ON  
2
Input  
1
SCY305  
LFCC27TBG  
To Additional Circuitry  
Reset Output  
V
in  
> 2.835 ON  
4
GND  
Figure 22. Battery Charge Indicator  
V
supply  
5.0 V  
Input  
2
1
SCY305  
LFCC45TBG  
Reset Output  
4
2
GND  
Input  
3.3 V  
1
SCY305  
LFCC30TBG  
Low state output if either  
power supply is below the  
respective undervoltage de-  
tector threshold but greater  
than 1.0 V.  
Reset Output  
4
GND  
Figure 23. Dual Power Supply Undervoltage Supervision  
www.onsemi.com  
10  
CONFIDENTIAL AND PROPRIETARY  
NOT FOR PUBLIC RELEASE  
SCY305  
V
DD  
R
H
V
DD  
Input  
2
R
L
1
SCY305  
Microprocessor  
LFCC27TBG  
Reset  
Reset Output  
GND  
4
GND  
Figure 24. Microprocessor Reset Circuit with Additional Hysteresis  
Comparator hysteresis can be increased with the addition of  
Test Data  
resistor R . The hysteresis equations have been simplified and  
H
V
th  
Decreasing  
(mV)  
V
th  
Increasing  
(mV)  
V
(mV)  
R
(W)  
R
L
(kW)  
do not account for the change of input current I as V crosses  
HYS  
H
in  
in  
the comparator threshold. The internal resistance, R is simply  
in  
calculated using I = 0.26 mA at 2.6 V.  
in  
2.70  
2.70  
2.70  
2.70  
2.70  
2.70  
2.70  
2.70  
2.70  
2.70  
2.84  
2.87  
2.88  
2.91  
2.90  
2.94  
2.98  
2.70  
3.04  
3.15  
0.135  
0.17  
0.19  
0.21  
0.20  
0.24  
0.28  
0.27  
0.34  
0.35  
0
10  
V Decreasing:  
in  
100  
100  
100  
220  
220  
220  
470  
470  
470  
6.8  
4.3  
10  
6.8  
4.3  
10  
RH  
Rin  
ǒ
Ǔ
+ ǒ Ǔ  
Vth  
) 1 VDET*  
V Increasing:  
in  
RH  
6.8  
4.3  
ǒ
Ǔ
+ ǒ Ǔ V  
Vth  
) 1  
DET* ) VHYS  
Rin ø RL  
V
HYS  
= V Increasing − V Decreasing  
in  
in  
5.0 V  
100 k  
Test Data  
(kHz)  
C (mF)  
0.01  
0.1  
f
I
Q
(mA)  
OSC  
C
2
Input  
2590  
21.77  
21.97  
22.07  
82 k  
1
490  
52  
SCY302
LFCC27TBG  
Reset Output  
1.0  
GND  
4
Figure 25. Simple Clock Oscillator  
www.onsemi.com  
11  
CONFIDENTIAL AND PROPRIETARY  
NOT FOR PUBLIC RELEASE  
SCY305  
V
supply  
This circuit monitors the current at the load. As  
current flows through the load, a voltage drop with  
Load  
respect to ground appears across R  
where  
sense  
V
DD  
V
sense  
= I  
load  
* R The following conditions apply:  
sense.  
If:  
I
Then:  
Reset Output = 0 V  
Reset Output = V  
DD  
Input  
2
t V  
w (V  
/R  
Load  
DETsense  
R
sense  
50 k  
I
+V  
DET−  
)/R  
Load  
HYS  
sense  
1
SCY305  
LFCC09TBG  
Microcontroller  
Reset Output  
GND  
GND  
4
Figure 26. Microcontroller Systems Load Sensing  
V
supply  
2
Input  
1
SCY305
LFCC45TBG  
Reset  
Output  
4
GND  
Input  
2
1
SCY305
LFCC27TBG  
Reset  
Output  
GND  
4
V
in  
= 1.0 V to 10 V  
2
Input  
1
SCY305
LFCC18TBG  
Reset  
Output  
4
GND  
A simple voltage monitor can be constructed by connecting several voltage detectors as shown above. Each LED will  
sequentially turn on when the respective voltage detector threshold (V +V ) is exceeded. Note that detector  
DET−  
HYS  
thresholds (V ) that range from 0.9 V to 4.9 V in 100 mV steps can be manufactured.  
DET−  
Figure 27. LED Bar Graph  
www.onsemi.com  
12  
CONFIDENTIAL AND PROPRIETARY  
NOT FOR PUBLIC RELEASE  
SCY305  
ORDERING INFORMATION  
Threshold  
Voltage  
Output  
Type  
Device  
Reset  
Marking  
Package  
Shipping  
T&R Orientation  
SCY305LFCC32TBG  
3.2  
Open Drain  
Active  
Low  
TBD  
WLCSP  
3000 / Tape &  
Reel  
Pin 1 Upper Right  
Quadrant toward  
sprocket hole  
NOTE: The ordering information lists standard undervoltage thresholds with active low outputs. Additional active low threshold devices, ranging  
from 0.9 V to 4.9 V in 100 mV increments can be manufactured. Contact your ON Semiconductor representative for availability. The  
electrical characteristics of these additional devices are shown in Tables 2 and 3.  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
PACKAGE DIMENSIONS  
WLCSP4  
CASE TBD  
ISSUE O  
www.onsemi.com  
13  
CONFIDENTIAL AND PROPRIETARY  
NOT FOR PUBLIC RELEASE  
SCY305  
WLCSP Tape and Reel Orientation  
Pitch mm  
(Dimension P1)  
(inch)  
Reel Size  
Devices Per Reel &  
Min Order Quantity  
(mm)  
178  
(in)  
Package  
Tape Width mm  
T&R Suffix  
WLCSP 4−Bump  
0.69x0.82mm  
8
2.0+−0.05 (0.079+−0.002)  
7
3000  
TB  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
SCY305/D  

相关型号:

SCY305LFCC27TBG

Analog Circuit
ONSEMI

SCY305LFCC28TBG

Analog Circuit
ONSEMI

SCY99091FCT2G

Voltage Detector Series with Programmable Delay
ONSEMI

SCY99194AD065R2G

SWITCHING CONTROLLER
ONSEMI

SCY99250CFCS200280T2G

Fixed Positive LDO Regulator
ONSEMI

SCY99250CFCS215245T2G

Fixed Positive LDO Regulator
ONSEMI

SCY99250CFCT190260T2G

Fixed Positive LDO Regulator
ONSEMI

SCY99250CFCT195215T2G

Fixed Positive LDO Regulator
ONSEMI

SCY99250CFCT200220T2G

Fixed Positive LDO Regulator
ONSEMI

SCY99250CFCT200280T2G

Fixed Positive LDO Regulator
ONSEMI

SCY99250CFCT210240T2G

Fixed Positive LDO Regulator
ONSEMI

SCZ8220

RF/Microwave Amplifier, 1 Func,
APITECH