SN74LS92DR2 [ONSEMI]

LS SERIES, ASYN NEGATIVE EDGE TRIGGERED 3-BIT UP DIVIDE BY 12 COUNTER, PDSO14, SOIC-14;
SN74LS92DR2
型号: SN74LS92DR2
厂家: ONSEMI    ONSEMI
描述:

LS SERIES, ASYN NEGATIVE EDGE TRIGGERED 3-BIT UP DIVIDE BY 12 COUNTER, PDSO14, SOIC-14

光电二极管 逻辑集成电路 触发器
文件: 总7页 (文件大小:166K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN74LS90  
DECADE COUNTER;  
DIVIDE-BY-TWELVE  
COUNTER;  
4-BIT BINARY COUNTER  
http://onsemi.com  
The SN54 / 74LS90, SN54 / 74LS92 and SN54 / 74LS93 are  
high-speed 4-bit ripple type counters partitioned into two sections.  
Each counter has a divide-by-two section and either a divide-by-five  
(LS90), divide-by-six (LS92) or divide-by-eight (LS93) section which  
are triggered by a HIGH-to-LOW transition on the clock inputs. Each  
section can be used separately or tied together (Q to CP) to form BCD,  
bi-quinary, modulo-12, or modulo-16 counters. All of the counters  
have a 2-input gated Master Reset (Clear), and the LS90 also has a  
2-input gated Master Set (Preset 9).  
DECADE COUNTER;  
DIVIDE-BY-TWELVE COUNTER;  
4-BIT BINARY COUNTER  
LOW POWER SCHOTTKY  
Low Power Consumption . . . Typically 45 mW  
High Count Rates . . . Typically 42 MHz  
J SUFFIX  
CERAMIC  
CASE 632-08  
Choice of Counting Modes . . . BCD, Bi-Quinary, Divide-by-Twelve,  
Binary  
Input Clamp Diodes Limit High Speed Termination Effects  
14  
1
PIN NAMES  
LOADING (Note a)  
HIGH  
LOW  
N SUFFIX  
PLASTIC  
CASE 646-06  
CP  
CP  
CP  
Clock (Active LOW going edge) Input to  
÷2 Section  
Clock (Active LOW going edge) Input to  
÷5 Section (LS90), ÷6 Section (LS92)  
0.5 U.L.  
1.5 U.L.  
0
1
1
0.5 U.L.  
0.5 U.L.  
2.0 U.L.  
1.0 U.L.  
14  
1
Clock (Active LOW going edge) Input to  
÷8 Section (LS93)  
MR , MR  
Master Reset (Clear) Inputs  
0.5 U.L.  
0.5 U.L.  
10 U.L.  
10 U.L.  
0.25 U.L.  
0.25 U.L.  
5 (2.5) U.L.  
5 (2.5) U.L.  
1
2
2
D SUFFIX  
SOIC  
CASE 751A-02  
MS , MS  
Master Set (Preset-9, LS90) Inputs  
Output from ÷2 Section (Notes b & c)  
Outputs from ÷5 (LS90), ÷6 (LS92),  
÷8 (LS93) Sections (Note b)  
1
Q
14  
0
1
Q , Q , Q  
3
1
2
NOTES:  
a. 1 TTL Unit Load (U.L.) = 40 μA HIGH/1.6 mA LOW.  
ORDERING INFORMATION  
b. The Output LOW drive factor is 2.5 U.L. for Military, (54) and 5 U.L. for commercial (74)  
b. Temperature Ranges.  
SN54LSXXJ  
SN74LSXXN  
SN74LSXXD  
Ceramic  
Plastic  
SOIC  
c. The Q Outputs are guaranteed to drive the full fan-out plus the CP input of the device.  
0
1
d. To insure proper operation the rise (t ) and fall time (t ) of the clock must be less than 100 ns.  
r
f
LOGIC SYMBOL  
LS92  
6
7
1 2  
LS90  
LS93  
MS  
14  
CP  
CP  
14  
1
CP  
14  
1
CP  
CP  
0
1
0
0
CP  
1
1
1
MR  
Q Q Q Q  
0 1 2 3  
MR  
Q
Q
Q
9
Q
8
MR  
Q
Q Q Q  
0 1 2 3  
0
1
2
3
1 2  
1 2  
1
2
2 3 12 9  
V = PIN 5  
CC  
8 11  
2 3 12  
9
8 11  
6 7 12 11  
= PIN 5  
V
= PIN 5  
V
CC  
CC  
GND = PIN 10  
GND = PIN 10  
GND = PIN 10  
NC = PIN 4, 6, 7, 13  
NC = PINS 4, 13  
NC = PINS 2, 3, 4, 13  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
SN74LS90/D  
July, 2006 Rev. 6  
SN74LS90  
LOGIC DIAGRAM  
CONNECTION DIAGRAM  
DIP (TOP VIEW)  
LS90  
6
MS  
MS  
1
2
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
CP  
MR  
MR  
CP  
1
1
2
0
7
NC  
S
S
S
R
S
D
D
D
D
J
Q
J
Q
Q
Q
Q
J
Q
Q
14  
Q
0
CP  
CP  
K
CP  
K
CP  
S
CP  
K
0
NC  
Q
3
Q
C
C
C
C
D
D
D
D
GND  
V
CC  
1
2
Q
MS  
1
1
2
CP  
1
8
Q
MS  
2
MR  
MR  
1
2
12  
9
8
11  
3
Q
Q
Q
Q
3
0
1
2
NC = NO INTERNAL CONNECTION  
NOTE:  
= PIN NUMBERS  
= PIN 5  
The Flatpak version has the same  
pinouts (Connection Diagram) as  
the Dual In-Line Package.  
V
CC  
GND = PIN 10  
LOGIC DIAGRAM  
CONNECTION DIAGRAM  
DIP (TOP VIEW)  
LS92  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
CP  
CP  
1
0
NC  
NC  
NC  
NC  
J
Q
Q
J
Q
J
Q
J
Q
Q
14  
Q
0
CP  
CP  
0
1
CP  
K
CP  
K
CP  
K
CP  
K
Q
Q
Q
1
C
C
C
C
D
D
D
D
GND  
V
CC  
1
6
Q
MR  
2
1
2
MR  
MR  
1
2
8
12  
11  
9
8
MR  
Q
3
7
Q
Q
Q
Q
3
0
1
2
NC = NO INTERNAL CONNECTION  
= PIN NUMBERS  
= PIN 5  
NOTE:  
The Flatpak version has the same  
pinouts (Connection Diagram) as  
the Dual In-Line Package.  
V
CC  
GND = PIN 10  
LOGIC DIAGRAM  
CONNECTION DIAGRAM  
DIP (TOP VIEW)  
LS93  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
CP  
MR  
MR  
CP  
1
1
2
0
J
Q
Q
J
Q
Q
J
Q
Q
J
Q
Q
NC  
14  
CP  
CP  
0
1
CP  
K
CP  
K
CP  
K
CP  
K
Q
0
C
C
C
C
D
D
D
D
NC  
Q
3
1
2
GND  
V
CC  
Q
NC  
1
MR  
MR  
1
2
12  
9
8
11  
3
8
Q
NC  
2
Q
Q
Q
Q
3
0
1
2
NC = NO INTERNAL CONNECTION  
= PIN NUMBERS  
= PIN 5  
V
CC  
NOTE:  
GND = PIN 10  
The Flatpak version has the same  
pinouts (Connection Diagram) as  
the Dual In-Line Package.  
http://onsemi.com  
2
SN74LS90  
FUNCTIONAL DESCRIPTION  
The LS90, LS92, and LS93 are 4-bit ripple type Decade,  
Divide-By-Twelve, and Binary Counters respectively. Each  
device consists of four master/slave flip-flops which are  
internally connected to provide a divide-by-two section and a  
C. Divide-By-Two and Divide-By-Five Counter — No  
external interconnections are required. The first flip-flop is  
used as a binary element for the divide-by-two function  
(CP0 as the input and Q0 as the output). The CP1 input is  
used to obtain binary divide-by-five operation at the Q3  
output.  
divide-by-five  
(LS90),  
divide-by-six  
(LS92),  
or  
divide-by-eight (LS93) section. Each section has a separate  
clock input which initiates state changes of the counter on the  
HIGH-to-LOW clock transition. State changes of the Q  
outputs do not occur simultaneously because of internal  
ripple delays. Therefore, decoded output signals are subject  
to decoding spikes and should not be used for clocks or  
strobes. The Q0 output of each device is designed and  
specified to drive the rated fan-out plus the CP1 input of the  
device.  
A gated AND asynchronous Master Reset (MR1 MR2) is  
provided on all counters which overrides and clocks and  
resets (clears) all the flip-flops. A gated AND asynchronous  
Master Set (MS1 MS2) is provided on the LS90 which  
overrides the clocks and the MR inputs and sets the outputs  
to nine (HLLH).  
LS92  
A. Modulo 12, Divide-By-Twelve Counter — The CP1 input  
must be externally connected to the Q0 output. The CP0  
input receives the incoming count and Q3 produces a  
symmetrical divide-by-twelve square wave output.  
B. Divide-By-Two and Divide-By-Six Counter —No external  
interconnections are required. The first flip-flop is used as  
a binary element for the divide-by-two function. The CP1  
input is used to obtain divide-by-three operation at the Q1  
and Q2 outputs and divide-by-six operation at the Q3  
output.  
LS93  
Since the output from the divide-by-two section is not  
internally connected to the succeeding stages, the devices  
may be operated in various counting modes.  
A. 4-Bit Ripple Counter — The output Q0 must be externally  
connected to input CP1. The input count pulses are  
applied to input CP0. Simultaneous divisions of 2, 4, 8,  
and 16 are performed at the Q0, Q1, Q2, and Q3 outputs as  
shown in the truth table.  
LS90  
A. BCD Decade (8421) Counter — The CP1 input must be  
externally connected to the Q0 output. The CP0 input  
receives the incoming count and a BCD count sequence  
is produced.  
B. 3-Bit Ripple Counter— The input count pulses are applied  
to input CP1. Simultaneous frequency divisions of 2, 4,  
and 8 are available at the Q1, Q2, and Q3 outputs.  
Independent use of the first flip-flop is available if the reset  
function coincides with reset of the 3-bit ripple-through  
counter.  
B. Symmetrical Bi-quinary Divide-By-Ten Counter — The Q3  
output must be externally connected to the CP0 input. The  
input count is then applied to the CP1 input and a  
divide-by-ten square wave is obtained at output Q0.  
http://onsemi.com  
3
SN74LS90  
LS90  
MODE SELECTION  
LS92 AND LS93  
MODE SELECTION  
RESET  
INPUTS  
RESET/SET INPUTS  
MR MR MS MS  
OUTPUTS  
OUTPUTS  
Q
Q
Q
Q
1
2
1
2
0
1
2
3
MR MR  
Q
Q
Q
Q
1
2
0
1
2
3
H
H
X
L
X
L
X
H
H
X
X
L
X
L
L
X
H
L
X
X
L
X
L
H
X
L
L
X
L
L
H
L
L
L
L
L
L
L
L
H
H
L
H
L
H
H
L
L
L
L
L
L
Count  
Count  
Count  
Count  
Count  
Count  
Count  
H = HIGH Voltage Level  
L = LOW Voltage Level  
X = Don’t Care  
H = HIGH Voltage Level  
L = LOW Voltage Level  
X = Don’t Care  
LS90  
LS92  
TRUTH TABLE  
LS93  
TRUTH TABLE  
BCD COUNT SEQUENCE  
OUTPUT  
OUTPUT  
OUTPUT  
COUNT  
COUNT  
COUNT  
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
0
1
2
3
0
1
2
3
0
1
2
3
0
1
2
3
4
5
6
7
8
9
L
H
L
H
L
H
L
H
L
H
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
H
0
1
L
L
L
L
L
L
L
H
H
L
L
L
L
H
H
L
L
L
L
L
L
H
H
H
H
H
H
0
1
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
H
H
H
H
H
H
H
H
L
H
L
H
L
H
L
H
L
H
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
H
H
L
L
H
H
L
L
2
H
H
L
L
L
L
H
H
L
L
2
H
H
L
3
3
H
H
H
H
L
4
4
H
H
H
H
L
5
5
L
6
6
H
H
L
7
7
8
8
L
9
9
L
L
10  
11  
10  
11  
12  
13  
14  
15  
H
H
L
L
L
H
H
H
H
L
H
H
NOTE: Output Q is connected to Input  
0
CP for BCD count.  
1
NOTE: Output Q is connected to Input  
0
CP .  
1
NOTE: Output Q is connected to Input  
0
CP .  
1
GUARANTEED OPERATING RANGES  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
V
Supply Voltage  
54  
74  
4.5  
4.75  
5.0  
5.0  
5.5  
5.25  
V
CC  
T
A
Operating Ambient Temperature Range  
54  
74  
55  
0
25  
25  
125  
70  
°C  
I
I
Output Current — High  
Output Current — Low  
54, 74  
0.4  
mA  
mA  
OH  
OL  
54  
74  
4.0  
8.0  
http://onsemi.com  
4
SN74LS90  
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)  
Limits  
Min  
Typ  
Max  
Symbol  
Parameter  
Input HIGH Voltage  
Unit  
Test Conditions  
Guaranteed Input HIGH Voltage for  
All Inputs  
V
2.0  
V
IH  
54  
74  
0.7  
0.8  
Guaranteed Input LOW Voltage for  
All Inputs  
V
V
V
Input LOW Voltage  
V
IL  
Input Clamp Diode Voltage  
Output HIGH Voltage  
0.65  
3.5  
1.5  
V
V
V
V
V
= MIN, I = 18 mA  
IN  
IK  
CC  
54  
74  
2.5  
2.7  
V
= MIN, I  
= MAX, V = V  
IN  
CC  
OH  
IH  
OH  
or V per Truth Table  
IL  
3.5  
V
V
= V MIN,  
54, 74  
0.25  
0.4  
I
I
= 4.0 mA  
= 8.0 mA  
CC  
CC  
OL  
OL  
V
Output LOW Voltage  
Input HIGH Current  
= V or V  
OL  
IN  
IL  
IH  
74  
0.35  
0.5  
20  
V
per Truth Table  
μA  
mA  
V
V
= MAX, V = 2.7 V  
IN  
CC  
CC  
I
I
IH  
0.1  
= MAX, V = 7.0 V  
IN  
Input LOW Current  
MS, MR  
0.4  
2.4  
3.2  
1.6  
CP  
mA  
V
= MAX, V = 0.4 V  
IL  
0
CC  
IN  
CP (LS90, LS92)  
1
CP (LS93)  
1
I
I
Short Circuit Current (Note 1)  
Power Supply Current  
20  
100  
mA  
mA  
V
V
= MAX  
= MAX  
OS  
CC  
CC  
CC  
15  
Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.  
http://onsemi.com  
5
SN74LS90  
AC CHARACTERISTICS (T = 25°C, V = 5.0 V, C = 15 pF)  
A
CC  
L
Limits  
LS92  
Typ  
LS90  
LS93  
Typ  
Min  
Typ  
Max  
Min  
32  
Max  
Min  
32  
Max  
Symbol  
MAX  
Parameter  
Unit  
MHz  
MHz  
f
f
CP Input Clock Frequency  
32  
16  
0
CP Input Clock Frequency  
16  
16  
MAX  
1
t
t
Propagation Delay,  
10  
12  
16  
18  
10  
12  
16  
18  
10  
12  
16  
18  
PLH  
PHL  
ns  
ns  
ns  
ns  
ns  
CP Input to Q Output  
0
0
t
t
32  
34  
48  
50  
32  
34  
48  
50  
46  
46  
70  
70  
PLH  
PHL  
CP Input to Q Output  
0
3
t
t
10  
14  
16  
21  
10  
14  
16  
21  
10  
14  
16  
21  
PLH  
PHL  
CP Input to Q Output  
1
1
t
t
21  
23  
32  
35  
10  
14  
16  
21  
21  
23  
32  
35  
PLH  
PHL  
CP Input to Q Output  
1
2
t
t
21  
23  
32  
35  
21  
23  
32  
35  
34  
34  
51  
51  
PLH  
PHL  
CP Input to Q Output  
1
3
t
t
t
MS Input to Q and Q Outputs  
20  
26  
26  
30  
40  
40  
ns  
ns  
ns  
PLH  
PHL  
PHL  
0
3
MS Input to Q and Q Outputs  
1
2
MR Input to Any Output  
26  
40  
26  
40  
AC SETUP REQUIREMENTS (T = 25°C, V = 5.0 V)  
A
CC  
Limits  
LS92  
LS90  
LS93  
Min  
15  
30  
15  
15  
25  
Max  
Min  
15  
Max  
Min  
Max  
Symbol  
Parameter  
Unit  
ns  
t
CP Pulse Width  
15  
30  
W
W
W
W
rec  
0
t
t
t
t
CP Pulse Width  
30  
ns  
1
MS Pulse Width  
ns  
MR Pulse Width  
15  
25  
15  
25  
ns  
Recovery Time MR to CP  
ns  
RECOVERY TIME (t ) is defined as the minimum time required between the end of the reset pulse and the clock transition from HIGH-to-LOW in order to recognize  
rec  
and transfer HIGH data to the Q outputs  
AC WAVEFORMS  
*CP  
1.3 V  
1.3 V  
1.3 V  
t
W
t
t
PLH  
PHL  
Q
1.3 V  
1.3 V  
Figure 1  
*The number of Clock Pulses required between the t  
and t  
measurements can be determined from the appropriate Truth Tables.  
PHL  
PLH  
MR & MS  
1.3 V  
1.3 V  
1.3 V  
1.3 V  
MS  
CP  
t
t
W
t
W
t
rec  
rec  
1.3 V  
1.3 V  
CP  
Q
t
t
PHL  
PLH  
Q Q  
0
3
1.3 V  
1.3 V  
(LS90)  
Figure 2  
Figure 3  
http://onsemi.com  
6
SN74LS90  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
SN74LS90/D  

相关型号:

SN74LS92DRE4

DECADE, DIVIDE-BY-TWELVE AND BINARY COUNTERS
TI

SN74LS92DRG4

DECADE, DIVIDE-BY-TWELVE AND BINARY COUNTERS
TI

SN74LS92J

LS SERIES, ASYN NEGATIVE EDGE TRIGGERED 3-BIT UP DIVIDE BY 12 COUNTER, CDIP14, CERAMIC, DIP-14
TI

SN74LS92JD

Asynchronous Up Counter
ETC

SN74LS92JP4

SN74LS92JP4
TI

SN74LS92JS

LS SERIES, ASYN NEGATIVE EDGE TRIGGERED 3-BIT UP BINARY COUNTER, CDIP14, CERAMIC, DIP-14
MOTOROLA

SN74LS92N

DECADE, DIVIDE-BY-TWELVE AND BINARY COUNTERS
TI

SN74LS92N

DECADE COUNTER; DIVIDE-BY-TWELVE COUNTER; 4-BIT BINARY COUNTER
MOTOROLA

SN74LS92N

DECADE COUNTER; DIVIDE-BY-TWELVE COUNTER; 4-BIT BINARY COUNTER
ONSEMI

SN74LS92N

Divide By 12 Counter, LS Series, Asynchronous, Negative Edge Triggered, 3-Bit, Up Direction, TTL, PDIP14, PLASTIC, DIP-14
ROCHESTER

SN74LS92N3

DECADE, DIVIDE-BY-TWELVE AND BINARY COUNTERS
TI

SN74LS92N3

Divide By 12 Counter, LS Series, Asynchronous, Negative Edge Triggered, 3-Bit, Up Direction, TTL, PDIP14, PLASTIC, MS-001AA, DIP-14
ROCHESTER