TL431BVPG [ONSEMI]

Programmable Precision References; 可编程精密基准
TL431BVPG
型号: TL431BVPG
厂家: ONSEMI    ONSEMI
描述:

Programmable Precision References
可编程精密基准

文件: 总18页 (文件大小:216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TL431, A, B Series,  
NCV431A, B  
Programmable  
Precision References  
The TL431, A, B integrated circuits are threeterminal  
programmable shunt regulator diodes. These monolithic IC voltage  
references operate as a low temperature coefficient zener which is  
http://onsemi.com  
TO92 (TO226)  
LP SUFFIX  
CASE 29  
programmable from V to 36 V with two external resistors. These  
ref  
devices exhibit a wide operating current range of 1.0 mA to 100 mA  
with a typical dynamic impedance of 0.22 W. The characteristics of  
these references make them excellent replacements for zener diodes in  
many applications such as digital voltmeters, power supplies, and op  
amp circuitry. The 2.5 V reference makes it convenient to obtain a  
stable reference from 5.0 V logic supplies, and since the TL431, A, B  
operates as a shunt regulator, it can be used as either a positive or  
negative voltage reference.  
Pin 1. Reference  
2. Anode  
1
2
3
3. Cathode  
PDIP8  
P SUFFIX  
CASE 626  
Features  
8
1
Programmable Output Voltage to 36 V  
Micro8E  
DM SUFFIX  
CASE 846A  
Voltage Reference Tolerance: 0.4%, Typ @ 25°C (TL431B)  
Low Dynamic Output Impedance, 0.22 W Typical  
Sink Current Capability of 1.0 mA to 100 mA  
8
1
Equivalent FullRange Temperature Coefficient of 50 ppm/°C Typical  
1
2
3
4
8
7
6
5
Cathode  
N/C  
Reference  
N/C  
Temperature Compensated for Operation over Full Rated Operating  
Temperature Range  
N/C  
Anode  
N/C  
Low Output Noise Voltage  
These are PbFree and HalideFree Devices  
N/C  
(Top View)  
SOIC8  
D SUFFIX  
CASE 751  
8
1
1
8
Cathode  
Reference  
Anode  
2
3
4
7
6
5
Anode  
N/C  
N/C  
(Top View)  
This is an internally modified SOIC8 package. Pins 2, 3, 6 and  
7 are electrically common to the die attach flag. This internal  
lead frame modification increases power dissipation capability  
when appropriately mounted on a printed circuit board. This  
modified package conforms to all external dimensions of the  
standard SOIC8 package.  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 13 of this data sheet.  
DEVICE MARKING INFORMATION  
See general marking information in the device marking  
section on page 14 of this data sheet.  
© Semiconductor Components Industries, LLC, 2012  
1
Publication Order Number:  
April, 2012 Rev. 34  
TL431/D  
TL431, A, B Series, NCV431A, B  
Symbol  
Representative Schematic Diagram  
Component values are nominal  
Cathode  
(K)  
Cathode (K)  
Reference  
(R)  
800  
800  
Reference  
(R)  
Anode  
(A)  
20 pF  
Representative Block Diagram  
150  
3.28 k  
7.2 k  
4.0 k  
20 pF  
Reference  
(R)  
Cathode  
(K)  
10 k  
2.4 k  
+
-
1.0 k  
2.5 V  
ref  
800  
Anode (A)  
Anode (A)  
This device contains 12 active transistors.  
MAXIMUM RATINGS (Full operating ambient temperature range applies, unless otherwise noted.)  
Rating Symbol  
Value  
Unit  
V
Cathode to Anode Voltage  
V
KA  
37  
Cathode Current Range, Continuous  
I
100 to +150  
0.05 to +10  
150  
mA  
mA  
°C  
K
Reference Input Current Range, Continuous  
Operating Junction Temperature  
I
ref  
T
J
Operating Ambient Temperature Range  
TL431I, TL431AI, TL431BI  
TL431C, TL431AC, TL431BC  
NCV431AI, NCV431B, TL431BV  
T
A
°C  
40 to +85  
0 to +70  
40 to +125  
Storage Temperature Range  
T
stg  
65 to +150  
°C  
Total Power Dissipation @ T = 25°C  
P
D
W
A
Derate above 25°C Ambient Temperature  
D, LP Suffix Plastic Package  
P Suffix Plastic Package  
0.70  
1.10  
0.52  
DM Suffix Plastic Package  
Total Power Dissipation @ T = 25°C  
P
W
V
C
D
Derate above 25°C Case Temperature  
D, LP Suffix Plastic Package  
P Suffix Plastic Package  
1.5  
3.0  
ESD Rating  
HBM  
MM  
>2000  
>200  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
RECOMMENDED OPERATING CONDITIONS  
Condition  
Symbol  
Min  
Max  
36  
Unit  
V
Cathode to Anode Voltage  
Cathode Current  
V
KA  
V
ref  
I
K
1.0  
100  
mA  
THERMAL CHARACTERISTICS  
D, LP Suffix  
Package  
P Suffix  
Package  
DM Suffix  
Package  
Characteristic  
Symbol  
Unit  
°C/W  
°C/W  
Thermal Resistance, JunctiontoAmbient  
Thermal Resistance, JunctiontoCase  
R
178  
83  
114  
41  
240  
q
JA  
R
q
JC  
http://onsemi.com  
2
TL431, A, B Series, NCV431A, B  
ELECTRICAL CHARACTERISTICS (T = 25°C, unless otherwise noted.)  
A
TL431I  
Typ  
TL431C  
Typ  
Min  
Max  
Min  
Max  
Characteristic  
Symbol  
Unit  
Reference Input Voltage (Figure 1)  
V
ref  
V
V
= V , I = 10 mA  
KA  
ref K  
T = 25°C  
A
2.44  
2.41  
2.495  
2.55  
2.58  
2.44  
2.423  
2.495  
2.55  
2.567  
A
T = T  
to T  
(Note 1)  
low  
high  
Reference Input Voltage Deviation Over  
Temperature Range (Figure 1, Notes 1, 2)  
= V = 10 mA  
DV  
7.0  
30  
3.0  
17  
mV  
ref  
V
KA  
I
ref, K  
Ratio of Change in Reference Input Voltage to Change  
in Cathode to Anode Voltage  
mV/V  
DV  
ref  
DV  
I
= 10 mA (Figure 2),  
KA  
K
DV = 10 V to V  
1.4  
1.0  
2.7  
2.0  
1.4  
1.0  
2.7  
2.0  
KA  
ref  
DV = 36 V to 10 V  
KA  
Reference Input Current (Figure 2)  
= 10 mA, R1 = 10 k, R2 = ∞  
I
mA  
mA  
ref  
I
K
T = 25°C  
1.8  
4.0  
6.5  
1.8  
4.0  
5.2  
A
A
T = T  
to T (Note 1)  
high  
low  
Reference Input Current Deviation Over  
Temperature Range (Figure 2, Note 1, 4)  
DI  
0.8  
2.5  
0.4  
1.2  
ref  
I
K
= 10 mA, R1 = 10 k, R2 = ∞  
Minimum Cathode Current For Regulation  
= V (Figure 1)  
I
0.5  
20  
1.0  
1000  
0.5  
0.5  
20  
1.0  
1000  
0.5  
mA  
nA  
W
min  
V
KA  
ref  
OffState Cathode Current (Figure 3)  
= 36 V, V = 0 V  
I
off  
V
KA  
ref  
Dynamic Impedance (Figure 1, Note 3)  
|Z  
|
0.22  
0.22  
KA  
V
KA  
= V , DI = 1.0 mA to 100 mA  
ref K  
f 1.0 kHz  
1. T  
T
=
=
40°C for TL431AIP TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431AIDM, TL431IDM, TL431BIDM;  
0°C for TL431ACP, TL431ACLP, TL431CP, TL431CLP, TL431CD, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM,  
TL431ACDM, TL431BCDM  
+85°C for TL431AIP, TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431IDM, TL431AIDM, TL431BIDM  
+70°C for TL431ACP, TL431ACLP, TL431CP, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM, TL431ACDM,  
TL431BCDM  
low  
=
=
high  
2. The deviation parameter DV is defined as the difference between the maximum and minimum values obtained over the full operating  
ref  
ambient temperature range that applies.  
V
max  
min  
ref  
DV = V max  
ref  
ref  
-V min  
ref  
DT = T - T  
A
2
1
V
ref  
T1  
T2  
Ambient Temperature  
D V  
ref  
6
X 10  
ǒ
Ǔ
V
@ 25_C  
6
D V x 10  
ref  
ref  
ppm  
_C  
V
+
+
The average temperature coefficient of the reference input voltage, aV is defined as:  
ref  
ref  
D T  
D T (V @ 25_C)  
A
A
ref  
aV can be positive or negative depending on whether V Min or V Max occurs at the lower ambient temperature. (Refer to Figure 6.)  
ref  
ref  
ref  
Example : DV + 8.0 mV and slope is positive,  
ref  
6
0.008 x 10  
V
@ 25_C + 2.495 V, DT + 70_C  
a V  
+
+ 45.8 ppmń_C  
ref  
A
ref  
70 (2.495)  
D V  
KA  
|Z | +  
3. The dynamic impedance Z is defined as:  
. When the device is programmed with two external resistors, R1 and R2,  
R1  
KA  
KA  
D I  
K
KA| ǒ1 )  
Ǔ
|Z Ȁ| [ |Z  
(refer to Figure 2) the total dynamic impedance of the circuit is defined as:  
KA  
R2  
http://onsemi.com  
3
TL431, A, B Series, NCV431A, B  
ELECTRICAL CHARACTERISTICS (T = 25°C, unless otherwise noted.)  
A
TL431BC / TL431BI /  
TL431BV /  
NCV431BV  
TL431AI / NCV431AI  
Min Typ Max  
TL431AC  
Typ  
Min  
Max  
Min  
Typ  
Max  
Characteristic  
Symbol  
Unit  
Reference Input Voltage (Figure 1)  
V
ref  
V
V
= V , I = 10 mA  
KA  
ref K  
T = 25°C  
A
2.47 2.495 2.52 2.47 2.495 2.52 2.485 2.495 2.505  
A
T = T  
to T  
high  
2.44  
2.55 2.453  
2.537 2.475 2.495 2.515  
low  
Reference Input Voltage Deviation Over  
Temperature Range (Figure 1, Notes 4, 5)  
= V = 10 mA  
DV  
7.0  
30  
3.0  
17  
3.0  
17  
mV  
ref  
V
KA  
I
ref, K  
Ratio of Change in Reference Input Voltage to  
Change in Cathode to Anode Voltage  
mV/V  
DV  
DV  
ref  
I
= 10 mA (Figure 2),  
KA  
K
DV = 10 V to V  
1.4  
1.0  
2.7  
2.0  
1.4  
1.0  
2.7  
2.0  
1.4 2.7  
1.0 2.0  
KA  
ref  
DV = 36 V to 10 V  
KA  
Reference Input Current (Figure 2)  
= 10 mA, R1 = 10 k, R2 = ∞  
I
mA  
mA  
ref  
I
K
T = 25°C  
1.8  
4.0  
6.5  
1.8  
4.0  
5.2  
1.1  
2.0  
4.0  
A
A
T = T  
to T (Note 4)  
high  
low  
Reference Input Current Deviation Over  
Temperature Range (Figure 2, Note 4)  
DI  
0.8  
2.5  
0.4  
1.2  
0.8  
2.5  
ref  
I
K
= 10 mA, R1 = 10 k, R2 = ∞  
Minimum Cathode Current For Regulation  
= V (Figure 1)  
I
0.5  
20  
1.0  
1000  
0.5  
0.5  
20  
1.0  
1000  
0.5  
0.5  
1.0  
500  
0.3  
mA  
nA  
W
min  
V
KA  
ref  
OffState Cathode Current (Figure 3)  
= 36 V, V = 0 V  
I
0.23  
0.14  
off  
V
KA  
ref  
Dynamic Impedance (Figure 1, Note 6)  
|Z  
|
0.22  
0.22  
KA  
V
KA  
= V , DI = 1.0 mA to 100 mA  
ref K  
f 1.0 kHz  
4. T  
=
=
40°C for TL431AIP TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431BV, TL431AIDM, TL431IDM,  
TL431BIDM, NCV431AIDMR2G, NCV431AIDR2G, NCV431BVDR2G  
0°C for TL431ACP, TL431ACLP, TL431CP, TL431CLP, TL431CD, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM,  
TL431ACDM, TL431BCDM  
low  
T
high  
=
=
+85°C for TL431AIP, TL431AILP, TL431IP, TL431ILP, TL431BID, TL431BIP, TL431BILP, TL431IDM, TL431AIDM, TL431BIDM  
+70°C for TL431ACP, TL431ACLP, TL431CP, TL431ACD, TL431BCD, TL431BCP, TL431BCLP, TL431CDM, TL431ACDM,  
TL431BCDM  
=
+125°C TL431BV, NCV431AIDMR2G, NCV431AIDR2G, NCV431BVDMR2G, NCV431BVDR2G  
5. The deviation parameter DV is defined as the difference between the maximum and minimum values obtained over the full operating  
ref  
ambient temperature range that applies.  
V
max  
min  
ref  
DV = V max  
ref  
ref  
-V min  
ref  
DT = T - T  
A
2
1
V
ref  
T1  
T2  
D V  
Ambient Temperature  
ref  
6
X 10  
ǒ
Ǔ
V
@ 25_C  
6
D V x 10  
ref  
ref  
ppm  
_C  
The average temperature coefficient of the reference input voltage, aV is defined as:  
V
+
+
ref  
ref  
D T  
D T (V @ 25_C)  
A
A
ref  
aV can be positive or negative depending on whether V Min or V Max occurs at the lower ambient temperature. (Refer to Figure 6.)  
ref  
ref  
ref  
Example : DV + 8.0 mV and slope is positive,  
ref  
6
0.008 x 10  
V
@ 25_C + 2.495 V, DT + 70_C  
a V  
+
+ 45.8 ppmń_C  
ref  
A
ref  
70 (2.495)  
D V  
KA  
|Z | +  
6. The dynamic impedance Z is defined as  
When the device is programmed with two external resistors, R1 and R2, (refer  
R1  
KA  
KA  
D I  
K
KA| ǒ1 )  
Ǔ
|Z Ȁ| [ |Z  
to Figure 2) the total dynamic impedance of the circuit is defined as:  
KA  
R2  
7. NCV431AIDMR2G, NCV431AIDR2G, NCV431BVDMR2G, NCV431BVDR2G T  
= 40°C, T  
= +125°C. Guaranteed by design.  
low  
high  
NCV prefix is for automotive and other applications requiring unique site and control change requirements.  
http://onsemi.com  
4
 
TL431, A, B Series, NCV431A, B  
Input  
R1  
V
KA  
Input  
V
KA  
Input  
V
KA  
I
off  
I
K
I
K
I
ref  
V
ref  
R2  
R1  
R2  
ǒꢀ1 ) Ǔ) I  
V
+ V  
SꢀR1  
KA  
ref  
ref  
V
ref  
Figure 1. Test Circuit for VKA = Vref  
Figure 2. Test Circuit for VKA > Vref  
Figure 3. Test Circuit for Ioff  
150  
800  
V
KA  
= V  
ref  
V
KA  
= V  
ref  
T = 25°C  
T = 25°C  
A
A
I
100  
50  
600  
400  
200  
0
Input  
V
KA  
K
Min  
Input  
V
KA  
I
I
K
0
-50  
-100  
-200  
-2.0  
-1.0  
0
1.0  
2.0  
3.0  
-1.0  
0
1.0  
V , CATHODE VOLTAGE (V)  
KA  
2.0  
3.0  
V
KA  
, CATHODE VOLTAGE (V)  
Figure 4. Cathode Current versus  
Cathode Voltage  
Figure 5. Cathode Current versus  
Cathode Voltage  
2600  
2580  
2560  
2540  
2520  
2500  
3.0  
V
KA  
Input  
I
K V = V  
KA  
= 10 mA  
ref  
V
ref  
Max = 2550 mV  
2.5  
2.0  
1.5  
1.0  
0.5  
0
I
K
V
ref  
V
ref  
Typ = 2495 mV  
I
= 10 mA  
I
2480  
2460  
2440  
K
V
KA  
Input  
10k  
I
ref  
K
V
Min = 2440 mV  
100  
ref  
2420  
2400  
-55  
-25  
0
25  
50  
75  
125  
-55  
-25  
0
25  
50  
75  
100  
125  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 6. Reference Input Voltage versus  
Ambient Temperature  
Figure 7. Reference Input Current versus  
Ambient Temperature  
http://onsemi.com  
5
TL431, A, B Series, NCV431A, B  
0
-8.0  
-16  
-24  
-32  
1.0 k  
I
= 10 mA  
K
T = 25°C  
A
100  
10  
V
KA  
V
ref  
= 36 V  
= 0 V  
Input  
R1  
V
KA  
1.0  
I
K
V
KA  
Input  
I
off  
R2  
V
ref  
0.1  
0.01  
-55  
-25  
0
25  
50  
75  
100  
125  
0
10  
20  
, CATHODE VOLTAGE (V)  
30  
40  
V
T , AMBIENT TEMPERATURE (5C)  
KA  
A
Figure 8. Change in Reference Input  
Voltage versus Cathode Voltage  
Figure 9. OffState Cathode Current  
versus Ambient Temperature  
100  
0.320  
0.300  
T = 25°C  
K
A
1.0 k  
V
KA  
= V  
ref  
Output  
K
D I = 1.0 mA to 100 mA  
D I = 1.0 mA to 100 mA  
K
I
f 1.0 kHz  
50  
-
+
Output  
K
0.280  
0.260  
0.240  
0.220  
0.200  
GND  
10  
1.0  
0.1  
1.0ꢀk  
50  
I
-
+
GND  
1.0 k  
10 k  
100 k  
f, FREQUENCY (MHz)  
1.0 M  
10 M  
-55  
-25  
0
25  
50  
75  
100  
125  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 10. Dynamic Impedance  
versus Frequency  
Figure 11. Dynamic Impedance  
versus Ambient Temperature  
80  
60  
40  
20  
0
60  
Output  
I
K
50  
40  
30  
20  
10  
0
15ꢀk  
9.0 mF  
230  
8.25ꢀk  
GND  
V
= V  
ref  
KA  
I = 10 mA  
K
T = 25°C  
A
Input  
Output  
I
= 10 mA  
K
I
K
T = 25°C  
A
-10  
1.0 k  
10 k  
100 k  
f, FREQUENCY (MHz)  
1.0 M  
10 M  
10  
100  
1.0 k  
f, FREQUENCY (Hz)  
10 k  
100 k  
Figure 12. OpenLoop Voltage Gain  
Figure 13. Spectral Noise Density  
versus Frequency  
http://onsemi.com  
6
 
TL431, A, B Series, NCV431A, B  
140  
T = 25°C  
A
Unstable Programmed  
Input  
Monitor  
3.0  
2.0  
1.0  
T = 25°C  
A
Area  
V (V)  
KA  
C
120  
Output  
GND  
A
B
C
D
V
ref  
220  
50  
5.0  
10  
15  
Output  
100  
80  
Pulse  
Generator  
f = 100 kHz  
60  
Stable  
A
Stable  
D
0
5.0  
0
B
40  
20  
0
B
A
Input  
0
4.0  
8.0  
12  
16  
20  
1.0 nF  
10 nF  
100 nF  
1.0 mF  
10 mF  
100 mF  
t, TIME (ms)  
C , LOAD CAPACITANCE  
L
Figure 14. Pulse Response  
Figure 15. Stability Boundary Conditions  
150  
150  
I
K
I
K
10 k  
V+  
V+  
C
C
L
L
Figure 16. Test Circuit For Curve A  
of Stability Boundary Conditions  
Figure 17. Test Circuit For Curves B, C, And D  
of Stability Boundary Conditions  
TYPICAL APPLICATIONS  
V+  
V
out  
V+  
V
out  
R1  
R2  
R1  
R2  
R1  
R2  
+ǒ1 ) ǓꢀV  
V
out  
ref  
R1  
R2  
+ǒ1 ) ǓꢀV  
V
out  
ref  
Figure 18. Shunt Regulator  
Figure 19. High Current Shunt Regulator  
http://onsemi.com  
7
 
TL431, A, B Series, NCV431A, B  
V+  
V
out  
MC7805  
Out  
Common  
R1  
R2  
V+  
V
out  
In  
R1  
R2  
R1  
R2  
+ǒ1 ) ǓꢀV  
V
V
out  
ref  
be  
R1  
R2  
+ǒ1 ) ǓꢀV  
out(min)  
V
out  
ref  
+ V ) V  
out  
in(min)  
V
+ V ) 5.0ꢀV  
ref  
V
+ V  
out(min)  
ref  
Figure 20. Output Control for a  
ThreeTerminal Fixed Regulator  
Figure 21. Series Pass Regulator  
R
CL  
I
V+  
sink  
V+  
I
out  
V
ref  
I
+
Sink  
R
S
V
R
ref  
CL  
I
+
out  
R
S
Figure 22. Constant Current Source  
Figure 23. Constant Current Sink  
V+  
V+  
V
out  
V
out  
R1  
R2  
R1  
R2  
R1  
R2  
+ǒ1 ) ǓꢀV  
V
out(trip)  
ref  
R1  
R2  
+ǒ1 ) ǓꢀV  
V
out(trip)  
ref  
Figure 24. TRIAC Crowbar  
Figure 25. SRC Crowbar  
http://onsemi.com  
8
TL431, A, B Series, NCV431A, B  
V+  
V
out  
V+  
l
R1  
R2  
R3  
V
out  
V
in  
R4  
V
V
out  
in  
V
th  
= V  
ref  
L.E.D. indicator is `on' when V+ is between the  
upper and lower limits.  
< V  
> V  
V+  
2.0 V  
ref  
ref  
R1  
R2  
LowerꢀLimit +ǒ1 ) ǓꢀV  
ref  
ref  
R3  
UpperꢀLimit +ǒ1 ) ǓꢀV  
R4  
Figure 26. Voltage Monitor  
Figure 27. SingleSupply Comparator with  
TemperatureCompensated Threshold  
25 V  
1N5305  
38 V  
2.0 mA  
330  
T = 330 to 8.0 W  
l
T
5.0 k  
1%  
50 k 500 k  
5.0 M  
1%  
10 k  
Calibrate  
I
+
1%  
1%  
470 mF  
8.0 W  
10 kW  
V
360 k  
100 kW  
V
25 V  
1.0 MW  
V
1.0 mF  
1.0 kW  
V
-
*
LM11  
V
out  
Range  
Volume  
47 k  
+
0.05 mF  
Tone  
*Thermalloy  
*THM 6024  
*Heatsink on  
*LP Package  
-5.0 V  
R
X
56 k  
10 k  
25 k  
W
V
R
x
+ V ꢀDꢀꢀ ꢀ Range  
out  
Figure 28. Linear Ohmmeter  
Figure 29. Simple 400 mW Phono Amplifier  
http://onsemi.com  
9
TL431, A, B Series, NCV431A, B  
150 mH @ 2.0 A  
V
in  
= 10 V to 20 V  
TIP115  
V
= 5.0 V  
= 1.0 A  
out  
I
out  
1.0 k  
1N5823  
4.7 k  
4.7 k  
100 k  
MPSA20  
4.7 k  
0.01mF  
+
2200 mF  
+
470 mF  
0.1 mF  
2.2 k  
10  
51 k  
Figure 30. High Efficiency StepDown Switching Converter  
Test  
Conditions  
= 10 V to 20 V, I = 1.0 A  
Results  
53 mV (1.1%)  
25 mV (0.5%)  
50 mVpp P.A.R.D.  
100 mVpp P.A.R.D.  
82%  
Line Regulation  
Load Regulation  
Output Ripple  
Output Ripple  
Efficiency  
V
in  
V
in  
V
in  
V
in  
V
in  
o
= 15 V, I = 0 A to 1.0 A  
o
= 10 V, I = 1.0 A  
o
= 20 V, I = 1.0 A  
o
= 15 V, I = 1.0 A  
o
http://onsemi.com  
10  
TL431, A, B Series, NCV431A, B  
APPLICATIONS INFORMATION  
The TL431 is a programmable precision reference which  
1
1
P2 +  
+
+
+ 60 kHz  
2p R  
C
2p * 10 M * 0.265 pF  
is used in a variety of ways. It serves as a reference voltage  
in circuits where a nonstandard reference voltage is  
needed. Other uses include feedback control for driving an  
optocoupler in power supplies, voltage monitor, constant  
current source, constant current sink and series pass  
regulator. In each of these applications, it is critical to  
maintain stability of the device at various operating currents  
and load capacitances. In some cases the circuit designer can  
estimate the stabilization capacitance from the stability  
boundary conditions curve provided in Figure 15. However,  
these typical curves only provide stability information at  
specific cathode voltages and at a specific load condition.  
Additional information is needed to determine the  
capacitance needed to optimize phase margin or allow for  
process variation.  
P2 P2  
1
1
Z1 +  
+ 500 kHz  
2p R  
C
2p * 15.9 k * 20 pF  
Z1 P1  
In addition, there is an external circuit pole defined by the  
load:  
1
P
+
L
2p R C  
L L  
Also, the transfer dc voltage gain of the TL431 is:  
G + G R  
GoR  
M GM  
L
Example 1:  
A simplified model of the TL431 is shown in Figure 31.  
When tested for stability boundaries, the load resistance is  
150 W. The model reference input consists of an input  
transistor and a dc emitter resistance connected to the device  
anode. A dependent current source, Gm, develops a current  
whose amplitude is determined by the difference between  
the 1.78 V internal reference voltage source and the input  
transistor emitter voltage. A portion of Gm flows through  
I
+10mA, R + 230 W, C + 0. Define the transfer gain.  
C
L
L
The DC gain is:  
G + G R  
GoR +  
M GM  
L
(2.138)(1.0 M)(1.25 m)(230) + 615 + 56 dB  
8.25 k  
8.25 k ) 15 k  
compensation capacitance, C . The voltage across C  
P2  
P2  
Loop gain + G  
+ 218 + 47 dB  
drives the output dependent current source, Go, which is  
connected across the device cathode and anode.  
The resulting transfer function Bode plot is shown in  
Figure 32. The asymptotic plot may be expressed as the  
following equation:  
Model component values are:  
V
= 1.78 V  
ref  
Gm = 0.3 + 2.7 exp (I /26 mA)  
C
where IC is the device cathode current and Gm is in mhos  
jf  
ǒ1 )  
Ǔ
500 kHz  
Go = 1.25 (V 2) mmhos.  
Av + 615  
cp  
jf  
jf  
ǒ
1 )  
Ǔǒ1 )  
Ǔ
Resistor and capacitor typical values are shown on the  
model. Process tolerances are 20% for resistors, 10% for  
capacitors, and 40% for transconductances.  
An examination of the device model reveals the location  
of circuit poles and zeroes:  
8.0 kHz  
60 kHz  
The Bode plot shows a unity gain crossover frequency of  
approximately 600 kHz. The phase margin, calculated from  
the equation, would be 55.9 degrees. This model matches the  
OpenLoop Bode Plot of Figure 12. The total loop would  
have a unity gain frequency of about 300 kHz with a phase  
margin of about 44 degrees.  
1
1
P1 +  
+
+ 7.96 kHz  
2p R  
C
2p * 1.0 M * 20 pF  
GM P1  
http://onsemi.com  
11  
TL431, A, B Series, NCV431A, B  
V
CC  
R
L
C
L
Input  
3
15 k  
Cathode  
9.0 mF  
Go  
1.0 mmho  
R
10 M  
P2  
Ref  
V
ref  
1.78 V  
1
C
20 pF  
G
M
P1  
C
+
P2  
R
R
1.0 M  
ref  
16  
GM  
0.265 pF  
R
Z1  
500 k  
-
15.9 k  
8.25 k  
Anode  
2
Figure 31. Simplified TL431 Device Model  
TL431 OPEN-LOOP VOLTAGE GAIN VERSUS FREQUENCY  
Note that the transfer function now has an extra pole  
formed by the load capacitance and load resistance.  
Note that the crossover frequency in this case is about  
250 kHz, having a phase margin of about 46 degrees.  
Therefore, instability of this circuit is likely.  
60  
50  
40  
30  
20  
10  
0
TL431 OPEN-LOOP BODE PLOT WITH LOAD CAP  
80  
60  
40  
20  
-10  
-20  
1
2
3
4
5
6
7
10  
10  
10  
10  
10  
10  
10  
f, FREQUENCY (Hz)  
Figure 32. Example 1 Circuit Open Loop Gain Plot  
Example 2.  
0
I = 7.5 mA, R = 2.2 kW, C = 0.01 mF. Cathode tied to  
C
L
L
reference input pin. An examination of the data sheet  
stability boundary curve (Figure 15) shows that this value of  
load capacitance and cathode current is on the boundary.  
Define the transfer gain.  
-20  
1
2
3
4
5
6
10  
10  
10  
10  
10  
10  
f, FREQUENCY (Hz)  
Figure 33. Example 2 Circuit Open Loop Gain Plot  
The DC gain is:  
With three poles, this system is unstable. The only hope  
for stabilizing this circuit is to add a zero. However, that can  
only be done by adding a series resistance to the output  
capacitance, which will reduce its effectiveness as a noise  
filter. Therefore, practically, in reference voltage  
applications, the best solution appears to be to use a smaller  
value of capacitance in low noise applications or a very  
large value to provide noise filtering and a dominant pole  
rolloff of the system.  
G + G R  
GoR +  
M GM  
L
(2.323)(1.0 M)(1.25 m)(2200) + 6389 + 76 dB  
The resulting open loop Bode plot is shown in Figure 33.  
The asymptotic plot may be expressed as the following  
equation:  
jf  
ǒ1 )  
Ǔ
500 kHz  
Av + 615  
jf  
jf  
jf  
ǒ
1 )  
Ǔǒ1 ) Ǔǒ1 )  
Ǔ
8.0 kHz  
60 kHz  
7.2 kHz  
http://onsemi.com  
12  
 
TL431, A, B Series, NCV431A, B  
ORDERING INFORMATION  
Marking  
Code  
Device  
Operating Temperature Range  
Package Code  
Shipping Information  
Tolerance  
1.0%  
0.4%  
2.2%  
1.0%  
0.4%  
2.2%  
1.0%  
0.4%  
2.2%  
1.0%  
0.4%  
2.2%  
1.0%  
0.4%  
2.2%  
1.0%  
0.4%  
2.2%  
1.0%  
0.4%  
2.2%  
TL431ACDG  
AC  
SOIC8  
TL431BCDG  
BC  
98 Units / Rail  
(PbFree)  
TL431CDG  
C
TL431ACDR2G  
TL431BCDR2G  
TL431CDR2G  
TL431ACDMR2G  
TL431BCDMR2G  
TL431CDMR2G  
TL431ACPG  
AC  
SOIC8  
(PbFree)  
BC  
2500 Units / Tape & Reel  
4000 Units / Tape & Reel  
50 Units / Rail  
C
TAC  
TBC  
TC  
ACP  
BCP  
CP  
Micro8  
(PbFree)  
PDIP8  
(PbFree)  
TL431BCPG  
TL431CPG  
TL431ACLPG  
TL431BCLPG  
TL431CLPG  
ACLP  
BCLP  
CLP  
ACLP  
BCLP  
CLP  
ACLP  
BCLP  
CLP  
0°C to 70°C  
TO92  
(PbFree)  
2000 Units / Bag  
TL431ACLPRAG  
TL431BCLPRAG  
TL431CLPRAG  
TL431ACLPREG  
TL431BCLPREG  
TL431CLPREG  
TL431ACLPRPG  
TO92  
(PbFree)  
2000 Units / Tape & Reel  
TO92  
(PbFree)  
ACLP  
2000 / Tape & Ammo Box  
1.0%  
TL431BCLPRMG  
TL431CLPRMG  
TL431CLPRPG  
TL431AIDG  
BCLP  
CLP  
CLP  
AI  
0.4%  
2.2%  
2.2%  
1.0%  
0.4%  
2.2%  
1.0%  
0.4%  
2.2%  
1.0%  
0.4%  
2.2%  
1.0%  
0.4%  
2.2%  
1.0%  
0.4%  
2.2%  
1.0%  
0.4%  
2.2%  
2.2%  
1.0%  
1.0%  
2.2%  
TO92  
2000 Units / FanFold  
(PbFree)  
SOIC8  
(PbFree)  
TL431BIDG  
BI  
98 Units / Rail  
2500 Units / Tape & Reel  
4000 Units / Tape & Reel  
50 Units / Rail  
TL431IDG  
I
TL431AIDR2G  
TL431BIDR2G  
TL431IDR2G  
TL431AIDMR2G  
TL431BIDMR2G  
TL431IDMR2G  
TL431AIPG  
AI  
SOIC8  
(PbFree)  
BI  
I
TAI  
TBI  
TI  
AIP  
BIP  
IP  
Micro8  
(PbFree)  
PDIP8  
(PbFree)  
TL431BIPG  
40°C to 85°C  
TL431IPG  
TL431AILPG  
TL431BILPG  
TL431ILPG  
AILP  
BILP  
ILP  
AILP  
BILP  
ILP  
ILP  
TO92  
(PbFree)  
2000 Units / Bag  
TL431AILPRAG  
TL431BILPRAG  
SC431ILPRAG  
TL431ILPRAG  
TL431AILPRMG  
TL431AILPRPG  
TL431ILPRPG  
TO92  
(PbFree)  
2000 Units / Tape & Reel  
AILP  
ILP  
TO92  
(PbFree)  
2000 / Tape & Ammo Box  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
13  
TL431, A, B Series, NCV431A, B  
ORDERING INFORMATION  
Marking  
Code  
Device  
Operating Temperature Range  
Package Code  
Shipping Information  
Tolerance  
0.4%  
TL431BVDG  
98 Units / Rail  
SOIC8  
BV  
(PbFree)  
TL431BVDR2G  
TL431BVDMR2G  
2500 Units / Tape & Reel  
0.4%  
Micro8  
(PbFree)  
TBV  
4000 Units / Tape & Reel  
0.4%  
TL431BVLPG  
TL431BVLPRAG  
TL431BVPG  
2000 Units / Bag  
0.4%  
0.4%  
TO92  
BVLP  
(PbFree)  
2000 Units / Tape & Reel  
PDIP8  
(PbFree)  
BVP  
RAN  
AV  
50 Units / Rail  
0.4%  
1%  
40°C to 125°C  
NCV431AIDMR2G  
NCV431AIDR2G  
NCV431BVDMR2G  
NCV431BVDR2G  
Micro8  
(PbFree)  
4000 Units / Tape & Reel  
2500 Units / Tape & Reel  
4000 Units / Tape & Reel  
2500 Units / Tape & Reel  
SOIC8  
(PbFree)  
1%  
Micro8  
(PbFree)  
NVB  
BV  
0.4%  
0.4%  
SOIC8  
(PbFree)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
MARKING DIAGRAMS  
SOIC8  
D SUFFIX  
CASE 751  
Micro8  
CASE 846A  
PDIP8  
CASE 626  
TO92 (TO226)  
CASE 29  
8
8
8
1
TL431  
xxxx  
431xx  
ALYW  
G
TL431xxx  
AWL  
YYWWG  
xxx  
AYWG  
G
YWW G  
G
1
8
1
xxxx  
A
Y, YY  
= See Specific Marking Code  
= Assembly Location  
= Year  
TL431  
ALYWx  
G
WW, W = Work Week  
1
G or G  
= PbFree Package  
(Note: Microdot may be in either location)  
(Exception for the TL431CD  
and TL431ID only)  
http://onsemi.com  
14  
TL431, A, B Series, NCV431A, B  
PACKAGE DIMENSIONS  
TO92 (TO226)  
CASE 2911  
ISSUE AM  
1
1
2
2
3
3
STRAIGHT LEAD  
BULK PACK  
BENT LEAD  
TAPE & REEL  
AMMO PACK  
NOTES:  
A
STRAIGHT LEAD  
BULK PACK  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. CONTOUR OF PACKAGE BEYOND DIMENSION R  
IS UNCONTROLLED.  
B
R
4. LEAD DIMENSION IS UNCONTROLLED IN P AND  
BEYOND DIMENSION K MINIMUM.  
P
L
INCHES  
DIM MIN MAX  
MILLIMETERS  
SEATING  
PLANE  
K
MIN  
4.45  
4.32  
3.18  
0.407  
1.15  
2.42  
0.39  
12.70  
6.35  
2.04  
---  
MAX  
5.20  
5.33  
4.19  
0.533  
1.39  
2.66  
0.50  
---  
A
B
C
D
G
H
J
0.175  
0.170  
0.125  
0.016  
0.045  
0.095  
0.015  
0.500  
0.250  
0.080  
---  
0.205  
0.210  
0.165  
0.021  
0.055  
0.105  
0.020  
---  
D
X X  
G
J
H
K
L
---  
---  
V
N
P
R
V
0.105  
0.100  
---  
2.66  
2.54  
---  
C
SECTION XX  
0.115  
0.135  
2.93  
3.43  
1
N
---  
---  
N
NOTES:  
A
BENT LEAD  
TAPE & REEL  
AMMO PACK  
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: MILLIMETERS.  
3. CONTOUR OF PACKAGE BEYOND  
DIMENSION R IS UNCONTROLLED.  
B
R
4. LEAD DIMENSION IS UNCONTROLLED IN P  
AND BEYOND DIMENSION K MINIMUM.  
P
T
MILLIMETERS  
SEATING  
PLANE  
DIM MIN  
MAX  
5.20  
5.33  
4.19  
0.54  
2.80  
0.50  
---  
K
A
B
C
D
G
J
4.45  
4.32  
3.18  
0.40  
2.40  
0.39  
12.70  
2.04  
1.50  
2.93  
3.43  
D
X X  
G
K
N
P
R
V
J
2.66  
4.00  
---  
V
C
---  
SECTION XX  
1
N
http://onsemi.com  
15  
TL431, A, B Series, NCV431A, B  
PACKAGE DIMENSIONS  
PDIP8  
P SUFFIX  
CASE 62605  
ISSUE M  
NOTES:  
D
1. DIMENSIONING AND TOLERANCING PER ASME  
A
Y14.5M, 1994.  
2. CONTROLLING DIMENSION: INCHES.  
3. DIMENSION E IS MEASURED WITH THE LEADS RE-  
STRAINED PARALLEL AT WIDTH E2.  
4. DIMENSION E1 DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
D1  
E
8
5
4
INCHES  
NOM  
−−−− 0.210  
MILLIMETERS  
E1  
DIM MIN  
−−−−  
A1 0.015  
b
C
D
MAX  
MIN  
NOM  
−−−−  
MAX  
5.33  
A
−−−−  
0.38  
0.35  
0.20  
9.02  
0.13  
7.62  
6.10  
1
−−−− −−−−  
−−−− −−−−  
0.014 0.018 0.022  
0.008 0.010 0.014  
0.355 0.365 0.400  
0.46  
0.25  
0.56  
0.36  
NOTE 5  
9.27 10.02  
F
c
D1 0.005  
0.300 0.310 0.325  
E1 0.240 0.250 0.280  
−−−− −−−−  
−−−− −−−−  
E
7.87  
6.35  
8.26  
7.11  
E2  
TOP VIEW  
END VIEW  
E2  
E3  
e
0.300 BSC  
−−−− 0.430  
0.100 BSC  
7.62 BSC  
NOTE 3  
−−−−  
−−−−  
−−−− 10.92  
2.54 BSC  
3.30 3.81  
e/2  
L
0.115 0.130 0.150  
2.92  
A
L
A1  
SEATING  
PLANE  
C
E3  
e
8X  
b
M
0.010  
C A  
END VIEW  
SIDE VIEW  
http://onsemi.com  
16  
TL431, A, B Series, NCV431A, B  
PACKAGE DIMENSIONS  
Micro8  
DM SUFFIX  
CASE 846A02  
ISSUE G  
NOTES:  
D
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE  
BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED  
0.15 (0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE.  
5. 846A-01 OBSOLETE, NEW STANDARD 846A-02.  
H
E
E
MILLIMETERS  
INCHES  
NOM  
−−  
0.003  
0.013  
0.007  
0.118  
DIM  
A
A1  
b
c
D
MIN  
−−  
0.05  
0.25  
0.13  
2.90  
2.90  
NOM  
−−  
MAX  
MIN  
−−  
0.002  
0.010  
0.005  
0.114  
0.114  
MAX  
0.043  
0.006  
0.016  
0.009  
0.122  
0.122  
PIN 1 ID  
1.10  
0.15  
0.40  
0.23  
3.10  
3.10  
e
0.08  
b 8 PL  
0.33  
M
S
S
0.08 (0.003)  
T
B
A
0.18  
3.00  
E
3.00  
0.118  
e
L
0.65 BSC  
0.55  
4.90  
0.026 BSC  
0.021  
0.193  
0.40  
4.75  
0.70  
5.05  
0.016  
0.187  
0.028  
0.199  
SEATING  
PLANE  
H
E
T−  
A
0.038 (0.0015)  
L
A1  
c
SOLDERING FOOTPRINT*  
1.04  
0.38  
8X  
8X 0.041  
0.015  
3.20  
4.24  
5.28  
0.126  
0.167 0.208  
0.65  
6X0.0256  
SCALE 8:1  
mm  
inches  
ǒ
Ǔ
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
17  
TL431, A, B Series, NCV431A, B  
PACKAGE DIMENSIONS  
SOIC8  
D SUFFIX  
CASE 75107  
ISSUE AK  
NOTES:  
X−  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
8
5
4
S
M
M
B
0.25 (0.010)  
Y
1
K
Y−  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
C
N X 45  
_
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
SEATING  
PLANE  
Z−  
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
M
J
H
D
8
0
_
_
_
_
M
S
S
0.25 (0.010)  
Z
Y
X
0.25  
5.80  
0.50 0.010  
6.20 0.228  
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
Micro8 is a trademark of International Rectifier.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
TL431/D  

相关型号:

TL431BW5-7

ADJUSTABLE PRECISION SHUNT REGULATOR
DIODES

TL431C

Adjustable precision shunt regulators
NXP

TL431C

PROGRAMMABLE VOLTAGE REFERENCE
STMICROELECTR

TL431C

Programmable Output Voltage to 40V
HTC

TL431CA3

Adjustable Precision Shunt Regulators
CYSTEKEC

TL431CCT

Programmable voltage reference
STMICROELECTR

TL431CD

Programmable Shunt Regulator
FAIRCHILD

TL431CD

PROGRAMMABLE PRECISION REFERENCES
MOTOROLA

TL431CD

Adjustable precision shunt regulators
NXP

TL431CD

PROGRAMMABLE PRECISION REFERENCES
ONSEMI

TL431CD

PROGRAMMABLE VOLTAGE REFERENCE
STMICROELECTR

TL431CD

ADJUSTABLE PRECISION SHUNT REGULATORS
TI