UAA2016AD [ONSEMI]

Zero Voltage Switch Power Controller; 零电压开关电源控制器
UAA2016AD
型号: UAA2016AD
厂家: ONSEMI    ONSEMI
描述:

Zero Voltage Switch Power Controller
零电压开关电源控制器

模拟IC 开关 信号电路 光电二极管 控制器
文件: 总12页 (文件大小:103K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UAA2016  
Zero Voltage Switch  
Power Controller  
The UAA2016 is designed to drive triacs with the Zero Voltage  
technique which allows RFI−free power regulation of resistive loads.  
Operating directly on the AC power line, its main application is the  
precision regulation of electrical heating systems such as panel heaters  
or irons.  
http://onsemi.com  
A built−in digital sawtooth waveform permits proportional  
temperature regulation action over a 1°C band around the set point.  
For energy savings there is a programmable temperature reduction  
function, and for security a sensor failsafe inhibits output pulses when  
the sensor connection is broken. Preset temperature (i.e. defrost)  
application is also possible. In applications where high hysteresis is  
needed, its value can be adjusted up to 5°C around the set point. All  
these features are implemented with a very low external component  
count.  
ZERO VOLTAGE SWITCH  
POWER CONTROLLER  
MARKING  
DIAGRAMS  
PDIP−8  
UAA2016P  
P SUFFIX  
CASE 626  
AWL  
YYWWG  
8
1
Features  
Zero Voltage Switch for Triacs, up to 2.0 kW (MAC212A8)  
Direct AC Line Operation  
Proportional Regulation of Temperature over a 1°C Band  
Programmable Temperature Reduction  
Preset Temperature (i.e. Defrost)  
Sensor Failsafe  
Adjustable Hysteresis  
Low External Component Count  
Pb−Free Packages are Available  
8
1
SOIC−8  
D SUFFIX  
CASE 751  
8
2016x  
ALYW  
G
1
x
A
= A or D  
= Assembly Location  
WL, L = Wafer Lot  
YY, Y = Year  
WW, W = Work Week  
G, G  
= Pb−Free Package  
(Note: Microdot may be in either location)  
UAA2016  
Failsafe  
3
Sampling  
Full Wave  
Logic  
PIN CONNECTIONS  
6
Pulse  
Amplifier  
+
Sense Input  
Output  
V
1
2
Sync  
8
7
6
5
ref  
7
4
V
Internal  
Reference  
Hys. Adj.  
Sensor  
CC  
+
+
1/2  
+
+V  
Temperature  
Reduction  
CC  
3
4
Output  
V
Temp. Reduc.  
EE  
Synchronization  
4−Bit DAC  
2
(Top View)  
Supply  
Voltage  
Hysteresis  
Adjust  
11−Bit Counter  
(Sawtooth  
Generator)  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 9 of this data sheet.  
1
Voltage  
Reference  
8
5
Sync  
V
EE  
Figure 1. Representative Block Diagram  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
January, 2006 − Rev. 9  
UAA2016/D  
UAA2016  
MAXIMUM RATINGS (Voltages referenced to Pin 7)  
Rating  
Symbol  
Value  
15  
Unit  
mA  
mA  
mA  
V
Supply Current (I  
)
I
CC  
Pin 5  
Non−Repetitive Supply Current, (Pulse Width = 1.0 ms)  
AC Synchronization Current  
I
I
200  
3.0  
CCP  
sync  
Pin Voltages  
V
V
V
V
0; V  
0; V  
0; V  
Pin 2  
Pin 3  
Pin 4  
Pin 6  
ref  
ref  
ref  
EE  
0; V  
V
Current Sink  
I
1.0  
150  
mA  
mA  
ref  
Pin 1  
Output Current (Pin 6), (Pulse Width < 400 ms)  
Power Dissipation  
I
O
P
625  
mW  
°C/W  
°C  
D
Thermal Resistance, Junction−to−Air  
Operating Temperature Range  
R
100  
q
JA  
T
A
− 20 to + 85  
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit  
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,  
damage may occur and reliability may be affected.  
ELECTRICAL CHARACTERISTICS (T = 25°C, V = −7.0 V, voltages referred to Pin 7, unless otherwise noted.)  
A
EE  
Characteristic  
Symbol  
Min  
Typ  
0.9  
−9.0  
−5.5  
100  
Max  
1.5  
−8.0  
−4.5  
130  
10  
Unit  
mA  
V
Supply Current (Pins 6, 8 not connected), (T = − 20° to + 85°C)  
I
A
CC  
Stabilized Supply Voltage (Pin 5), (I = 2.0 mA)  
V
−10  
−6.5  
90  
CC  
EE  
Reference Voltage (Pin 1)  
V
I
V
ref  
Output Pulse Current (T = − 20° to + 85°C), (R = 60 W, V = − 8.0 V)  
mA  
mA  
A
out  
EE  
O
Output Leakage Current (V = 0 V)  
I
out  
OL  
Output Pulse Width (T = − 20° to + 85°C) (Note 1), (Mains = 220 Vrms, R  
= 220 kW)  
T
P
50  
100  
+10  
0.1  
ms  
A
sync  
Comparator Offset (Note 5)  
Sensor Input Bias Current  
Sawtooth Period (Note 2)  
Sawtooth Amplitude (Note 6)  
V
−10  
mV  
mA  
off  
IB  
I
T
A
40.96  
70  
sec  
mV  
mV  
mV  
mV  
mV  
S
50  
90  
S
Temperature Reduction Voltage (Note 3), (Pin 4 Connected to V  
Internal Hysteresis Voltage, (Pin 2 Not Connected)  
)
CC  
V
280  
350  
10  
420  
TR  
V
IH  
Additional Hysteresis (Note 4), (Pin 2 Connected to V  
)
CC  
V
280  
180  
350  
420  
300  
H
Failsafe Threshold (T = − 20° to + 85°C) (Note 7)  
V
FSth  
A
1. Output pulses are centered with respect to zero crossing point. Pulse width is adjusted by the value of R . Refer to application curves.  
sync  
2. The actual sawtooth period depends on the AC power line frequency. It is exactly 2048 times the corresponding period. For the 50 Hz case  
it is 40.96 sec. For the 60 Hz case it is 34.13 sec. This is to comply with the European standard, namely that 2.0 kW loads cannot be connected  
or removed from the line more than once every 30 sec. The inertia of most heating systems combined with the UAA2016 will comply with  
the European Standard.  
3. 350 mV corresponds to 5°C temperature reduction. This is tested at probe using internal test pad. Smaller temperature reduction can be  
obtained by adding an external resistor between Pin 4 and V . Refer to application curves.  
CC  
4. 350 mV corresponds to a hysteresis of 5°C. This is tested at probe using internal test pad. Smaller additional hysteresis can be obtained  
by adding an external resistor between Pin 2 and V . Refer to application curves.  
CC  
5. Parameter guaranteed but not tested. Worst case 10 mV corresponds to 0.15°C shift on set point.  
6. Measured at probe by internal test pad. 70 mV corresponds to 1°C. Note that the proportional band is independent of the NTC value.  
7. At very low temperature the NTC resistor increases quickly. This can cause the sensor input voltage to reach the failsafe threshold, thus inhibiting  
output pulses; refer to application schematics. The corresponding temperature is the limit at which the circuit works in the typical application.  
By setting this threshold at 0.05 V , the NTC value can increase up to 20 times its nominal value, thus the application works below − 20°C.  
ref  
http://onsemi.com  
2
UAA2016  
S2  
S1  
R
S
UAA2016  
Failsafe  
R
R
R
R
3
def  
2
1
MAC212A8  
3
Sampling  
Full Wave  
Logic  
R
6
7
out  
+
Pulse  
Amplifier  
Sense Input  
Output  
4
Internal  
Reference  
+
+
+
1/2  
+V  
CC  
Temp. Red.  
C
F
4−Bit DAC  
2
Supply  
Voltage  
Hys  
Adj  
Load  
11−Bit Counter  
Synchronization  
1
V
ref  
5
8
Sync  
V
EE  
R
R
S
sync  
Figure 1. Application Schematic  
APPLICATION INFORMATION  
(For simplicity, the LED in series with R is omitted in  
The load current is then:  
out  
the following calculations.)  
Ǹ
I
+ (Vrms   2   sin(2pft)–V )ńR  
Load  
TM  
L
Triac Choice and Rout Determination  
where V is the maximum on state voltage of the triac, f is  
the line frequency.  
TM  
Depending on the power in the load, choose the triac that  
has the lowest peak gate trigger current. This will limit the  
output current of the UAA2016 and thus its power  
Set ILoad = ILatch for t = TP/2 to calculate TP.  
consumption. Use Figure 4 to determine R according to  
Figures 6 and 7 give the value of T which corresponds to  
P
out  
the triac maximum gate current (I ) and the application  
the higher of the values of I  
and I  
, assuming that  
GT  
Hold  
Latch  
low temperature limit. For a 2.0 kW load at 220 Vrms, a good  
triac choice is the ON Semiconductor MAC212A8. Its  
maximum peak gate trigger current at 25°C is 50 mA.  
V
= 1.6 V. Figure 8 gives the R  
that produces the  
TM  
sync  
corresponding T .  
P
RSupply and Filter Capacitor  
For an application to work down to − 20°C, R should be  
out  
With the output current and the pulse width determined as  
above, use Figures 9 and 10 to determine R , assuming  
that the sinking current at V pin (including NTC bridge  
60 W. It is assumed that: I (T) = I (25°C) exp (−T/125)  
GT  
GT  
Supply  
with T in °C, which applies to the MAC212A8.  
ref  
Output Pulse Width, Rsync  
current) is less than 0.5 mA. Then use Figure 11 and 12 to  
The pulse with T is determined by the triac’s I  
, I  
determine the filter capacitor (C ) according to the ripple  
P
Hold Latch  
F
together with the load value and working conditions  
(frequency and voltage):  
desired on supply voltage. The maximum ripple allowed is  
1.0 V.  
Given the RMS AC voltage and the load power, the load  
value is:  
Temperature Reduction Determined by R1  
RL = V2rms/POWER  
(Refer to Figures 13 and 14.)  
http://onsemi.com  
3
UAA2016  
Overshoot  
Proportional Band  
Room  
Temperature  
T (°C)  
Time (minutes, Typ.)  
Time (minutes, Typ.)  
Heating  
Power  
P(W)  
Time (minutes, Typ.)  
Time (minutes, Typ.)  
Proportional Temperature Control  
ON/OFF Temperature Control  
DꢀReduced Overshoot  
DꢀLarge Overshoot  
DꢀGood Stability  
DꢀMarginal Stability  
Figure 2. Comparison Between Proportional Control and ON/OFF Control  
T
is centered on the zero−crossing.  
P
T
P
AC Line  
Waveform  
I
Hold  
I
Latch  
Gate Current  
Pulse  
f = AC Line Frequency (Hz)  
Vrms = AC Line RMS Voltage (V)  
R = Synchronization Resistor (W)  
sync  
5
14xR  
sync)7 10  
T
+
(μs)  
P
Vrms Ǹ  
2xpf  
Figure 3. Zero Voltage Technique  
http://onsemi.com  
4
 
UAA2016  
CIRCUIT FUNCTIONAL DESCRIPTION  
Sawtooth Generator  
Power Supply (Pin 5 and Pin 7)  
The application uses a current source supplied by a single  
high voltage rectifier in series with a power dropping  
In order to comply with European norms, the ON/OFF  
period on the load must exceed 30 seconds. This is achieved  
by an internal digital sawtooth which performs the  
proportional regulation without any additional components.  
The sawtooth signal is added to the reference applied to the  
comparator inverting input. Figure 2 shows the regulation  
improvement using the proportional band action. Figure 4  
displays a timing diagram of typical system performance  
using the UAA2016. The internal sawtooth generator runs  
at a typical 40.96 sec period. The output duty cycle drive  
waveform is adjusted depending on the time within the  
40.96 sec period the drive needs to turn on. This occurs when  
the voltage on the sawtooth waveform is above the voltage  
provided at the Sense Input.  
resistor. An integrated shunt regulator delivers a V  
EE  
voltage of − 8.6 V with respect to Pin 7. The current used by  
the total regulating system can be shared in four functional  
blocks: IC supply, sensing bridge, triac gate firing pulses and  
zener current. The integrated zener, as in any shunt  
regulator, absorbs the excess supply current. The 50 Hz  
pulsed supply current is smoothed by the large value  
capacitor connected between Pins 5 and 7.  
Temperature Sensing (Pin 3)  
The actual temperature is sensed by a negative  
temperature coefficient element connected in a resistor  
divider fashion. This two element network is connected  
between the ground terminal Pin 5 and the reference voltage  
− 5.5 V available on Pin 1. The resulting voltage, a function  
of the measured temperature, is applied to Pin 3 and  
internally compared to a control voltage whose value  
depends on several elements: Sawtooth, Temperature  
Reduction and Hysteresis Adjust. (Refer to Application  
Information.)  
Noise Immunity  
The noisy environment requires good immunity. Both the  
voltage reference and the comparator hysteresis minimize  
the noise effect on the comparator input. In addition the  
effective triac triggering is enabled every 1/3 sec.  
Failsafe  
Output pulses are inhibited by the “failsafe” circuit if the  
comparator input voltage exceeds the specified threshold  
voltage. This would occur if the temperature sensor circuit  
is open.  
Temperature Reduction  
For energy saving, a remotely programmable temperature  
reduction is available on Pin 4. The choice of resistor R  
1
connected between Pin 4 and V  
reduction level.  
sets the temperature  
CC  
Sampling Full Wave Logic  
Two consecutive zero−crossing trigger pulses are  
generated at every positive mains half−cycle. This ensures  
that the number of delivered pulses is even in every case. The  
pulse length is selectable by R  
pulse is centered on the zero−crossing mains waveform.  
Comparator  
When the noninverting input (Pin 3) receives a voltage  
less than the internal reference value, the comparator allows  
the triggering logic to deliver pulses to the triac gate. To  
improve the noise immunity, the comparator has an  
adjustable hysteresis. The external resistor R connected to  
Pin 2 sets the hysteresis level. Setting Pin 2 open makes a  
10 mV hysteresis level, corresponding to 0.15°C. Maximum  
hysteresis is obtained by connecting Pin 2 to V . In that  
case the level is set at 5°C. This configuration can be useful  
for low temperature inertia systems.  
connected on Pin 8. The  
sync  
Pulse Amplifier  
3
The pulse amplifier circuit sinks current pulses from Pin  
6 to V . The minimum amplitude is 70 mA. The triac is  
EE  
then triggered in quadrants II and III. The effective output  
current amplitude is given by the external resistor R  
Eventually, an LED can be inserted in series with the Triac  
gate (see Figure 1).  
CC  
.
out  
http://onsemi.com  
5
UAA2016  
Triac On  
Load Voltage  
Triac Off  
Output Pin  
1/2 V  
CC  
40.96 sec  
From Temperature  
Sensor (Sense Input)  
Figure 4.  
200  
180  
160  
140  
120  
100  
80  
100  
80  
60  
40  
20  
0
T
= +10°C  
A
T
A
= 0°C  
T
= + 85°C  
A
T
A
= − 20°C  
T
A
= − 20°C  
60  
T
= −10°C  
A
40  
20  
30  
40  
50  
60  
40  
60  
80  
100  
120  
140  
160  
180 200  
I , TRIAC GATE CURRENT SPECIFIED AT 25°C (mA)  
GT  
R , OUTPUT RESISTOR (W)  
out  
Figure 5. Output Resistor versus  
Triac Gate Current  
Figure 6. Minimum Output Current  
versus Output Resistor  
http://onsemi.com  
6
UAA2016  
120  
100  
80  
120  
F = 50 Hz  
2.0 kW Loads  
100  
80  
60  
40  
20  
V
T
= 1.6 V  
TM  
= 25°C  
A
110 Vrms  
220 Vrms  
110 Vrms  
220 Vrms  
60  
F = 50 Hz  
1.0 kW Loads  
40  
20  
V
T
= 1.6 V  
TM  
= 25°C  
A
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
I
, MAXIMUM TRIAC LATCH CURRENT (mA)  
I
, MAXIMUM TRIAC LATCH CURRENT (mA)  
Latch(max)  
Latch(max)  
Figure 7. Output Pulse Width versus  
Maximum Triac Latch Current  
Figure 8. Output Pulse Width versus  
Maximum Triac Latch Current  
400  
60  
50  
40  
30  
F = 50 Hz  
V = 220 Vrms  
F = 50 Hz  
300  
200  
100  
0
220 Vrms  
110 Vrms  
80  
T
= 50 ms  
P
100 ms  
150 ms  
200 ms  
20  
0
20  
40  
60  
100  
25  
50  
I , OUTPUT CURRENT (mA)  
75  
100  
T , OUTPUT PULSE WIDTH (ms)  
P
O
Figure 9. Synchronization Resistor  
versus Output Pulse Width  
Figure 10. Maximum Supply  
Resistor versus Output Current  
30  
90  
80  
70  
60  
50  
Ripple = 1.0 Vp−p  
F = 50 Hz  
V = 110 Vrms  
F = 50 Hz  
25  
20  
15  
10  
200 ms  
T
= 50 ms  
P
150 ms  
100 ms  
100 ms  
150 ms  
T
= 50 ms  
P
200 ms  
40  
0
0
25  
50  
I , OUTPUT CURRENT (mA)  
75  
100  
20  
40  
60  
80  
100  
I , OUTPUT CURRENT (mA)  
O
O
Figure 11. Maximum Supply Resistor  
versus Output Current  
Figure 12. Minimum Filter Capacitor  
versus Output Current  
http://onsemi.com  
7
UAA2016  
7.0  
180  
160  
140  
120  
100  
80  
Setpoint = 20°C  
Ripple = 0.5 V  
F = 50 Hz  
p−p  
6.0  
5.0  
4.0  
3.0  
2.0  
200 ms  
150 ms  
100 ms  
10 kW NTC  
1.0  
0
100 kW NTC  
T
= 50 ms  
P
0
20  
40  
60  
80  
100  
0
10  
20  
30  
40 50  
60  
70  
80 90 100  
I , OUTPUT CURRENT (mA)  
O
R , TEMPERATURE REDUCTION RESISTOR (kW)  
1
Figure 13. Minimum Filter Capacitor  
versus Output Current  
Figure 14. Temperature Reduction versus R1  
4
3
2
6.0  
5.6  
5.2  
R = 0  
1
100 kW NTC  
10 kW NTC  
10 kW NTC  
4.8  
100 kW NTC  
1
0
4.4  
4.0  
10  
14  
18  
22  
26  
30  
0
5
10  
T , PRESET TEMPERATURE (°C)  
DEF  
15  
20  
25  
30  
T , TEMPERATURE SETPOINT (°C)  
S
Figure 15. Temperature Reduction versus  
Temperature Setpoint  
Figure 16. RDEF versus Preset Temperature  
8
6
4
2
0
0.5  
T
= 4°C  
DEF  
0.4  
0.3  
0.2  
0.1  
10 kW NTC  
= 29 kW  
R
DEF  
100 kW NTC  
= 310 kW  
R
DEF  
0
0
100  
200  
300  
400  
10  
14  
18  
22  
26  
30  
34  
R , HYSTERESIS ADJUST RESISTOR (kW)  
3
T , TEMPERATURE SETPOINT (°C)  
S
Figure 17. RS + R2 versus Preset Setpoint  
Figure 18. Comparator Hysteresis versus R3  
http://onsemi.com  
8
UAA2016  
ORDERING INFORMATION  
Device  
Operating Temperature Range  
Package  
Shipping  
UAA2016D  
SOIC−8  
98 Units / Rail  
98 Units / Rail  
UAA2016DG  
SOIC−8  
(Pb−Free)  
UAA2016AD  
SOIC−8  
98 Units / Rail  
98 Units / Rail  
T = −20° to +85°C  
A
UAA2016ADG  
SOIC−8  
(Pb−Free)  
UAA2016P  
PDIP−8  
1000 Units / Rail  
1000 Units / Rail  
UAA2016PG  
PDIP−8  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
9
UAA2016  
PACKAGE DIMENSIONS  
PDIP−8  
P SUFFIX  
CASE 626−05  
ISSUE L  
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
8
5
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
−B−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
1
4
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
A
B
C
D
F
9.40  
6.10  
3.94  
0.38  
1.02  
10.16 0.370  
6.60 0.240  
4.45 0.155  
0.51 0.015  
1.78 0.040  
F
−A−  
NOTE 2  
L
G
H
J
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
1.27 0.030  
0.30 0.008  
3.43  
0.050  
0.012  
0.135  
K
L
0.115  
C
7.62 BSC  
0.300 BSC  
M
N
−−−  
0.76  
10  
−−−  
1.01 0.030  
10  
0.040  
_
_
J
−T−  
SEATING  
PLANE  
N
M
D
K
G
H
M
M
M
B
0.13 (0.005)  
T
A
http://onsemi.com  
10  
UAA2016  
PACKAGE DIMENSIONS  
SOIC−8  
D SUFFIX  
CASE 751−07  
ISSUE AG  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
−X−  
A
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW  
STANDARD IS 751−07.  
S
M
M
B
0.25 (0.010)  
Y
1
K
−Y−  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
−Z−  
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
11  
UAA2016  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
UAA2016/D  

相关型号:

UAA2016ADG

Zero Voltage Switch Power Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ONSEMI

UAA2016D

ZERO VOLTAGE SWITCH POWER CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ONSEMI

UAA2016DG

Zero Voltage Switch Power Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ONSEMI

UAA2016DR2

Analog Circuit, 1 Func, PDSO8, PLASTIC, SOP-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MOTOROLA

UAA2016DR2

SPECIALTY ANALOG CIRCUIT, PDSO8, SOIC-8

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ONSEMI

UAA2016P

ZERO VOLTAGE SWITCH POWER CONTROLLER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ONSEMI

UAA2016PG

Zero Voltage Switch Power Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ONSEMI

UAA2016_06

Zero Voltage Switch Power Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ONSEMI

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

UAA2050T

IC TELECOM, PAGING RECEIVER, PDSO28, Paging Circuit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

UAA2050T-T

IC TELECOM, PAGING RECEIVER, PDSO28, Paging Circuit

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP