UC2842ANG [ONSEMI]

1A SWITCHING CONTROLLER, 500kHz SWITCHING FREQ-MAX, PDIP8, LEAD FREE, PLASTIC, DIP-8;
UC2842ANG
型号: UC2842ANG
厂家: ONSEMI    ONSEMI
描述:

1A SWITCHING CONTROLLER, 500kHz SWITCHING FREQ-MAX, PDIP8, LEAD FREE, PLASTIC, DIP-8

开关 光电二极管
文件: 总18页 (文件大小:365K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UC3842A, UC3843A,  
UC2842A, UC2843A  
High Performance  
Current Mode Controllers  
The UC3842A, UC3843A series of high performance fixed  
frequency current mode controllers are specifically designed for  
off−line and DC−to−DC converter applications offering the designer a  
cost effective solution with minimal external components. These  
integrated circuits feature a trimmed oscillator for precise duty cycle  
control, a temperature compensated reference, high gain error  
amplifier, current sensing comparator, and a high current totem pole  
output ideally suited for driving a power MOSFET.  
Also included are protective features consisting of input and  
reference undervoltage lockouts each with hysteresis, cycle−by−cycle  
current limiting, programmable output deadtime, and a latch for single  
pulse metering.  
http://onsemi.com  
PDIP−8  
N SUFFIX  
CASE 626  
8
1
SOIC−14  
D SUFFIX  
CASE 751A  
14  
These devices are available in an 8−pin dual−in−line plastic package  
as well as the 14−pin plastic surface mount (SOIC−14). The SOIC−14  
package has separate power and ground pins for the totem pole output  
stage.  
The UCX842A has UYLO thresholds of 16 V (on) and 10 V (off),  
ideally suited for off−line converters. The UCX843A is tailored for  
lower voltage applications having UVLO thresholds of 8.5 V (on) and  
7.6 V (off).  
1
SOIC−8  
D1 SUFFIX  
CASE 751  
8
1
PIN CONNECTIONS  
Features  
Trimmed Oscillator Discharge Current for Precise Duty Cycle  
Control  
Current Mode Operation to 500 kHz  
Automatic Feed Forward Compensation  
Compensation  
Voltage Feedback  
Current Sense  
1
8
V
V
ref  
2
3
4
7
6
5
CC  
Output  
GND  
R /C  
T
T
Latching PWM for Cycle−By−Cycle Current Limiting  
Internally Trimmed Reference with Undervoltage Lockout  
High Current Totem Pole Output  
(Top View)  
1
14  
13  
Compensation  
NC  
V
ref  
Undervoltage Lockout with Hysteresis  
2
NC  
Low Startup and Operating Current  
Direct Interface with ON Semiconductor SENSEFETProducts  
Pb−Free Packages are Available  
3
4
12  
11  
Voltage Feedback  
NC  
V
CC  
V
C
5
6
7
10  
9
Current Sense  
NC  
Output  
GND  
R /C  
T
8
Power Ground  
T
(Top View)  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 15 of this data sheet.  
DEVICE MARKING INFORMATION  
See general marking information in the device marking  
section on page 16 of this data sheet.  
©
Semiconductor Components Industries, LLC, 2005  
1
Publication Order Number:  
November, 2005 − Rev. 8  
UC3842A/D  
UC3842A, UC3843A, UC2842A, UC2843A  
V
7(12)  
CC  
V
V
CC  
ref  
5.0V  
Reference  
Undervoltage  
Lockout  
8(14)  
R
R
V
ref  
V
C
Undervoltage  
Lockout  
7(11)  
R C  
T
Output  
T
Oscillator  
6(10)  
4(7)  
Latching  
PWM  
Power  
Ground  
5(8)  
Voltage  
Feedback  
Input  
+
2(3)  
Error  
Amplifier  
Current  
Sense  
Input  
Output  
Compensation  
1(1)  
3(5)  
GND 5(9)  
Pin numbers in parenthesis are for the D suffix SOIC−14 package.  
Figure 1. Simplified Block Diagram  
MAXIMUM RATINGS  
Rating  
Symbol  
, V  
Value  
Unit  
V
Bias and Driver Voltages (Zero Series Impedance, see also Total Device spec)  
Total Power Supply and Zener Current  
V
30  
CC  
C
(I + I )  
30  
mA  
A
CC  
Z
Output Current, Source or Sink (Note 1)  
I
1.0  
5.0  
O
Output Energy (Capacitive Load per Cycle)  
Current Sense and Voltage Feedback Inputs  
Error Amp Output Sink Current  
W
J  
V
V
in  
− 0.3 to + 5.5  
10  
I
mA  
O
Power Dissipation and Thermal Characteristics  
D Suffix, Plastic Package  
Maximum Power Dissipation @ T = 25°C  
Thermal Resistance, Junction−to−Air  
N Suffix, Plastic Package  
P
862  
145  
mW  
°C/W  
A
D
R
JA  
Maximum Power Dissipation @ T = 25°C  
P
1.25  
100  
W
°C/W  
A
D
Thermal Resistance, Junction−to−Air  
R
JA  
Operating Junction Temperature  
T
+ 150  
°C  
°C  
J
Operating Ambient Temperature  
UC3842A, UC3843A  
T
A
0 to + 70  
UC2842A, UC2843A  
− 25 to + 85  
Storage Temperature Range  
T
stg  
− 65 to + 150  
°C  
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit  
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,  
damage may occur and reliability may be affected.  
1. Maximum Package power dissipation limits must be observed.  
http://onsemi.com  
2
 
UC3842A, UC3843A, UC2842A, UC2843A  
ELECTRICAL CHARACTERISTICS (V = 15 V, [Note 2], R = 10 k, C = 3.3 nF, T = T to T  
[Note 3],  
CC  
T
T
A
low  
high  
unless otherwise noted.)  
UC284XA  
UC384XA  
Typ  
Min  
Typ  
Max  
Min  
Max  
Characteristics  
REFERENCE SECTION  
Reference Output Voltage (I = 1.0 mA, T = 25°C)  
Symbol  
Unit  
V
ref  
4.95  
5.0  
2.0  
3.0  
0.2  
5.05  
20  
25  
4.9  
5.0  
2.0  
3.0  
0.2  
5.1  
20  
25  
V
mV  
mV  
mV/°C  
V
O
J
Line Regulation (V = 12 V to 25 V)  
Reg  
line  
CC  
Load Regulation (I = 1.0 mA to 20 mA)  
Reg  
T
O
load  
Temperature Stability  
S
Total Output Variation over Line, Load, Temperature  
V
ref  
4.9  
5.1  
4.82  
5.18  
Output Noise Voltage (f = 10 Hz to 10 kHz,  
V
50  
50  
V
n
T = 25°C)  
J
Long Term Stability (T = 125°C for 1000 Hours)  
S
5.0  
5.0  
mV  
mA  
A
Output Short Circuit Current  
I
− 30  
− 85  
− 180  
− 30  
− 85  
− 180  
SC  
OSCILLATOR SECTION  
Frequency  
f
kHz  
osc  
T = 25°C  
47  
46  
52  
57  
60  
47  
46  
52  
57  
60  
J
T = T  
to T  
A
low  
high  
Frequency Change with Voltage (V = 12 V to 25 V)  
f  
f  
0.2  
5.0  
1.0  
0.2  
5.0  
1.0  
%
%
CC  
osc/  
V
T
Frequency Change with Temperature  
osc/  
T = T  
A
to T  
high  
low  
Oscillator Voltage Swing (Peak−to−Peak)  
V
osc  
1.6  
1.6  
V
Discharge Current (V  
= 2.0 V)  
I
mA  
osc  
dischg  
T = 25°C  
7.5  
7.2  
8.4  
9.3  
9.5  
7.5  
7.2  
8.4  
9.3  
9.5  
J
T = T  
to T  
high  
A
low  
ERROR AMPLIFIER SECTION  
Voltage Feedback Input (V = 2.5 V)  
V
2.45  
2.5  
−0.1  
90  
2.55  
−1.0  
2.42  
2.5  
−0.1  
90  
2.58  
−2.0  
V
A  
O
FB  
Input Bias Current (V = 2.7 V)  
I
FB  
IB  
Open Loop Voltage Gain (V = 2.0 V to 4.0 V)  
A
VOL  
65  
65  
dB  
O
Unity Gain Bandwidth (T = 25°C)  
BW  
0.7  
60  
1.0  
70  
0.7  
60  
1.0  
70  
MHz  
dB  
J
Power Supply Rejection Ratio (V = 12 V to 25 V)  
PSRR  
CC  
Output Current  
mA  
Sink (V = 1.1 V, V = 2.7 V)  
2.0  
−0.5  
12  
−1.0  
2.0  
−0.5  
12  
−1.0  
I
O
FB  
Sink  
Source (V = 5.0 V, V = 2.3 V)  
O
FB  
I
Source  
Output Voltage Swing  
V
High State (R = 15 k to ground, V = 2.3 V)  
5.0  
6.2  
0.8  
1.1  
5.0  
6.2  
0.8  
1.1  
V
L
FB  
OH  
Low State (R = 15 k to V , V = 2.7 V)  
L
ref  
FB  
V
OL  
2. Adjust V above the Startup threshold before setting to 15 V.  
CC  
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
T
= 0°C for UC3842A, UC3843A  
−25°C for UC2842A, UC2843A  
T
= +70°C for UC3842A, UC3843A  
+85°C for UC2842A, UC2843A  
low  
high  
http://onsemi.com  
3
 
UC3842A, UC3843A, UC2842A, UC2843A  
ELECTRICAL CHARACTERISTICS (V = 15 V, [Note 4], R = 10 k, C = 3.3 nF, T = T to T  
[Note 5],  
CC  
T
T
A
low  
high  
unless otherwise noted.)  
UC284XA  
UC384XA  
Typ  
Characteristics  
CURRENT SENSE SECTION  
Symbol  
Min  
Typ  
Max  
Min  
Max  
Unit  
Current Sense Input Voltage Gain (Notes 6 & 7)  
Maximum Current Sense Input Threshold (Note 6)  
Power Supply Rejection Ratio  
A
2.85  
0.9  
3.0  
1.0  
3.15  
1.1  
2.85  
0.9  
3.0  
1.0  
3.15  
1.1  
V/V  
V
V
V
th  
PSRR  
dB  
V
= 12 to 25 V (Note 6)  
70  
70  
CC  
Input Bias Current  
I
−2.0  
150  
−10  
300  
−2.0  
150  
−10  
300  
A
IB  
Propagation Delay (Current Sense Input to Output)  
t
ns  
PLH(in/out)  
OUTPUT SECTION  
Output Voltage  
V
Low State (I  
Low State (I  
High State (I  
High State (I  
= 20 mA)  
= 200 mA)  
= 20 mA)  
= 200 mA)  
V
13  
12  
0.1  
1.6  
13.5  
13.4  
0.4  
2.2  
13  
12  
0.1  
1.6  
13.5  
13.4  
0.4  
2.2  
Sink  
Sink  
Sink  
Sink  
OL  
V
OH  
Output Voltage with UVLO Activated  
= 6.0 V, I = 1.0 mA  
V
V
OL(UVLO)  
V
0.1  
50  
50  
1.1  
150  
150  
0.1  
50  
50  
1.1  
150  
150  
CC  
Sink  
Output Voltage Rise Time (C = 1.0 nF, T = 25°C)  
t
ns  
ns  
L
J
r
Output Voltage Fall Time (C = 1.0 nF, T = 25°C)  
t
L
J
f
UNDERVOLTAGE LOCKOUT SECTION  
Startup Threshold  
UCX842A  
UCX843A  
V
V
V
th  
15  
7.8  
16  
8.4  
17  
9.0  
14.5  
7.8  
16  
8.4  
17.5  
9.0  
Minimum Operating Voltage After Turn−On  
V
CC(min)  
UCX842A  
UCX843A  
9.0  
7.0  
10  
7.6  
11  
8.2  
8.5  
7.0  
10  
7.6  
11.5  
8.2  
PWM SECTION  
Duty Cycle  
Maximum  
Minimum  
%
DC  
DC  
94  
96  
0
94  
96  
0
max  
min  
TOTAL DEVICE  
Power Supply Current (Note 4)  
Startup:  
I
mA  
V
CC  
(V = 6.5 V for UCX843A,  
0.5  
12  
1.0  
17  
0.5  
12  
1.0  
17  
CC  
(V = 14 V for UCX842A) Operating  
CC  
Power Supply Zener Voltage (I = 25 mA)  
V
30  
36  
30  
36  
CC  
Z
4. Adjust V above the Startup threshold before setting to 15 V.  
CC  
5. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
T
= 0°C for UC3842A, UC3843A  
T
= +70°C for UC3842A, UC3843A  
low  
high  
−25°C for UC2842A, UC2843A  
+85°C for UC2842A, UC2843A  
6. This parameter is measured at the latch trip point with V = 0 V.  
FB  
V
O
u
t
p
u
t
C
o
m
p
e
n
s
a
t
i
o
n
7. Comparator gain is defined as: A  
V
V
C
u
r
r
e
n
t
S
e
n
s
e
I
n
p
u
t
http://onsemi.com  
4
 
UC3842A, UC3843A, UC2842A, UC2843A  
80  
50  
100  
V
= 15 V  
CC  
50  
20  
T = 25°C  
A
20  
8.0  
5.0  
10  
5.0  
V
= 15 V  
2.0  
0.8  
CC  
2.0  
1.0  
T = 25°C  
A
10 k  
20 k  
50 k  
100 k  
200 k  
500 k  
1.0 M  
10 k  
20 k  
50 k  
100 k  
200 k  
500 k  
1.0 M  
f , OSCILLATOR FREQUENCY (Hz)  
OSC  
f , OSCILLATOR FREQUENCY (Hz)  
OSC  
Figure 2. Timing Resistor versus  
Oscillator Frequency  
Figure 3. Output Deadtime versus  
Oscillator Frequency  
9.0  
8.5  
8.0  
7.5  
7.0  
100  
90  
80  
70  
60  
V
= 15 V  
C = 3.3 nF  
CC  
V
V
= 15 V  
= 2.0 V  
CC  
T
OSC  
T = 25°C  
A
I
= 7.2 mA  
dischg  
50  
40  
I
= 9.5 mA  
dischg  
800 1.0 k  
2.0 k  
3.0 k 4.0 k  
6.0 k 8.0 k  
−55  
−25  
0
25  
50  
75  
100  
125  
T , AMBIENT TEMPERATURE (°C)  
A
R , TIMING RESISTOR ()  
T
Figure 4. Oscillator Discharge Current  
versus Temperature  
Figure 5. Maximum Output Duty Cycle  
versus Timing Resistor  
V
A = −1.0  
T = 25°C  
A
= 15 V  
V
A = −1.0  
T = 25°C  
A
= 15 V  
CC  
CC  
3.0 V  
2.5 V  
2.0 V  
V
V
2.55 V  
2.5 V  
2.45 V  
0.5 s/DIV  
0.1 s/DIV  
Figure 6. Error Amp Small Signal  
Transient Response  
Figure 7. Error Amp Large Signal  
Transient Response  
http://onsemi.com  
5
 
UC3842A, UC3843A, UC2842A, UC2843A  
100  
80  
60  
40  
20  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0
V
V
= 15 V  
= 2.0 V to 4.0 V  
CC  
V
= 15 V  
CC  
O
30  
60  
90  
120  
R = 100 K  
L
T = 25°C  
A
Gain  
T = 25°C  
A
T = 125°C  
A
Phase  
T = −55°C  
A
0
150  
180  
−ꢀ20  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
10 M  
0
2.0  
4.0  
6.0  
8.0  
f, FREQUENCY (Hz)  
V , ERROR AMP OUTPUT VOLTAGE (V)  
O
Figure 8. Error Amp Open Loop Gain and  
Phase versus Frequency  
Figure 9. Current Sense Input Threshold  
versus Error Amp Output Voltage  
0
−4.0  
−8.0  
−12  
−16  
−20  
−24  
110  
90  
V
= 15 V  
CC  
V
= 15 V  
CC  
R 0.1  
L
70  
T = 125°C  
A
T = 55°C  
A
T = 25°C  
A
50  
0
20  
I
40  
60  
80  
100  
120  
−55  
−25  
0
25  
50  
75  
100  
125  
, REFERENCE SOURCE CURRENT (mA)  
T , AMBIENT TEMPERATURE (°C)  
ref  
A
Figure 10. Reference Voltage Change  
versus Source Current  
Figure 11. Reference Short Circuit Current  
versus Temperature  
V
= 15 V  
I = 1.0 mA to 20 mA  
CC  
V
= 12 V to 25 V  
CC  
O
T = 25°C  
A
T = 25°C  
A
2.0 ms/DIV  
2.0 ms/DIV  
Figure 13. Reference Line Regulation  
Figure 12. Reference Load Regulation  
http://onsemi.com  
6
 
UC3842A, UC3843A, UC2842A, UC2843A  
0
−1.0  
−2.0  
Source Saturation  
(Load to Ground)  
V
= 15 V  
CC  
80 s Pulsed Load  
V
CC  
V
= 15 V  
CC  
C = 1.0 nF  
T
= 25°C  
90%  
120 Hz Rate  
L
A
T = 25°C  
A
T
= −55°C  
A
3.0  
2.0  
1.0  
0
T
A
= −55°C  
T
= 25°C  
A
10%  
Sink Saturation  
)
GND  
(Load to V  
CC  
50 ns/DIV  
0
200  
400  
600  
800  
I , OUTPUT LOAD CURRENT (mA)  
O
Figure 14. Output Saturation Voltage  
versus Load Current  
Figure 15. Output Waveform  
25  
20  
V
= 30 V  
C = 15 pF  
CC  
L
T = 25°C  
A
15  
10  
R = 10 k  
T
C = 3.3 nF  
T
V
= 0 V  
FB  
5
0
I
= 0 V  
Sense  
T = 25°C  
A
0
10  
20  
30  
40  
100 ns/DIV  
V
, SUPPLY VOLTAGE  
CC  
Figure 16. Output Cross Conduction  
Figure 17. Supply Current versus  
Supply Voltage  
http://onsemi.com  
7
UC3842A, UC3843A, UC2842A, UC2843A  
V
in  
V
CC  
V
CC  
7(12)  
36V  
V
+
ref  
Reference  
Regulator  
8(14)  
V
CC  
UVLO  
+
R
R
Internal  
Bias  
2.5V  
+
V
C
+
R
T
7(11)  
V
ref  
UVLO  
3.6V  
Q1  
Output  
6(10)  
Oscillator  
4(7)  
T Q  
+
C
T
1.0mA  
Power Ground  
5(8)  
S
R
+
Q
+
Voltage Feedback  
Input  
PWM  
Latch  
2R  
2(3)  
Error  
Amplifier  
R
Current Sense Input  
3(5)  
1.0V  
Output  
Compensation  
1(1)  
Current Sense  
Comparator  
R
S
GND 5(9)  
+
Sink Only  
Positive True Logic  
=
Pin numbers in parenthesis are for the D suffix SOIC−14 package.  
Figure 18. Representative Block Diagram  
Capacitor C  
T
Latch  
‘‘Set’’ Input  
Output/  
Compensation  
Current Sense  
Input  
Latch  
‘‘Reset’’ Input  
Output  
Large R /Small C  
T
Small R /Large C  
T T  
T
Figure 19. Timing Diagram  
http://onsemi.com  
8
 
UC3842A, UC3843A, UC2842A, UC2843A  
OPERATING DESCRIPTION  
The UC3842A, UC3843A series are high performance,  
is removed, or at the beginning of a soft−start interval  
(Figures 24, 25). The Error Amp minimum feedback  
resistance is limited by the amplifier’s source current  
fixed frequency, current mode controllers. They are  
specifically designed for Off−Line and DC−to−DC  
converter applications offering the designer a cost effective  
(0.5 mA) and the required output voltage (V ) to reach the  
OH  
solution with minimal external components.  
representative block diagram is shown in Figure 18.  
A
comparator’s 1.0 V clamp level:  
3.0 (1.0 V) + 1.4 V  
Rf(min)  
= 8800 ꢃ  
0.5 mA  
Oscillator  
The oscillator frequency is programmed by the values  
selected for the timing components R and C . Capacitor C  
Current Sense Comparator and PWM Latch  
T
T
T
The UC3842A, UC3843A operate as a current mode  
controller, whereby output switch conduction is initiated by  
the oscillator and terminated when the peak inductor current  
reaches the threshold level established by the Error  
Amplifier Output/Compensation (Pin 1). Thus the error  
is charged from the 5.0 V reference through resistor R to  
T
approximately 2.8 V and discharged to 1.2 V by an internal  
current sink. During the discharge of C , the oscillator  
T
generates and internal blanking pulse that holds the center  
input of the NOR gate high. This causes the Output to be in  
a low state, thus producing a controlled amount of output  
signal controls the peak inductor current on  
a
cycle−by−cyclebasis. The current Sense Comparator PWM  
Latch configuration used ensures that only a single pulse  
appears at the Output during any given oscillator cycle. The  
inductor current is converted to a voltage by inserting the  
deadtime. Figure 2 shows R versus Oscillator Frequency  
T
and Figure 3, Output Deadtime versus Frequency, both for  
given values of C . Note that many values of R and C will  
T
T
T
give the same oscillator frequency but only one combination  
will yield a specific output deadtime at a given frequency.  
The oscillator thresholds are temperature compensated, and  
the discharge current is trimmed and guaranteed to within  
ground referenced sense resistor R in series with the source  
S
of output switch Q1. This voltage is monitored by the  
Current Sense Input (Pin 3) and compared a level derived  
from the Error Amp Output. The peak inductor current under  
normal operating conditions is controlled by the voltage at  
pin 1 where:  
10% at T = 25°C. These internal circuit refinements  
J
minimize variations of oscillator frequency and maximum  
output duty cycle. The results are shown in Figures 4 and 5.  
In many noise sensitive applications it may be desirable to  
frequency−lock the converter to an external system clock.  
This can be accomplished by applying a clock signal to the  
circuit shown in Figure 21. For reliable locking, the  
free−running oscillator frequency should be set about 10%  
less than the clock frequency. A method for multi unit  
synchronization is shown in Figure 22. By tailoring the  
clock waveform, accurate Output duty cycle clamping can  
be achieved.  
V(Pin 1) − 1.4 V  
Ipk  
=
3 RS  
Abnormal operating conditions occur when the power  
supply output is overloaded or if output voltage sensing is  
lost. Under these conditions, the Current Sense Comparator  
threshold will be internally clamped to 1.0 V. Therefore the  
maximum peak switch current is:  
1.0 V  
RS  
Ipk(max)  
=
When designing a high power switching regulator it  
becomes desirable to reduce the internal clamp voltage in  
Error Amplifier  
A fully compensated Error Amplifier with access to the  
inverting input and output is provided. It features a typical  
dc voltage gain of 90 dB, and a unity gain bandwidth of  
1.0 MHz with 57 degrees of phase margin (Figure 8). The  
noninverting input is internally biased at 2.5 V and is not  
pinned out. The converter output voltage is typically divided  
down and monitored by the inverting input. The maximum  
input bias current is −2.0 A which can cause an output  
voltage error that is equal to the product of the input bias  
current and the equivalent input divider source resistance.  
The Error Amp Output (Pin 1) is provide for external loop  
compensation (Figure 31). The output voltage is offset by  
two diode drops (1.4 V) and divided by three before it  
connects to the inverting input of the Current Sense  
Comparator. This guarantees that no drive pulses appear at  
order to keep the power dissipation of R to a reasonable  
S
level. A simple method to adjust this voltage is shown in  
Figure 23. The two external diodes are used to compensate  
the internal diodes yielding a constant clamp voltage over  
temperature. Erratic operation due to noise pickup can result  
if there is an excessive reduction of the I  
voltage.  
clamp  
pk(max)  
A narrow spike on the leading edge of the current  
waveform can usually be observed and may cause the power  
supply to exhibit an instability when the output is lightly  
loaded. This spike is due to the power transformer  
interwinding capacitance and output rectifier recovery time.  
The addition of an RC filter on the Current Sense Input with  
a time constant that approximates the spike duration will  
usually eliminate the instability; refer to Figure 27.  
the Output (Pin 6) when Pin 1 is at its lowest state (V ).  
OL  
This occurs when the power supply is operating and the load  
http://onsemi.com  
9
UC3842A, UC3843A, UC2842A, UC2843A  
PIN FUNCTION DESCRIPTION  
Pin  
8−Pin  
14−Pin  
Function  
Description  
1
2
1
3
Compensation  
This pin is Error Amplifier output and is made available for loop compensation.  
Voltage  
Feedback  
This is the inverting input of the Error Amplifier. It is normally connected to the switching pow-  
er supply output through a resistor divider.  
3
4
5
7
Current Sense  
A voltage proportional to inductor current is connected to this input. The PWM uses this infor-  
mation to terminate the output switch conduction.  
R /C  
The Oscillator frequency and maximum Output duty cycle are programmed by connecting  
T
T
resistor R to V and capacitor C to ground. Operation to 500 kHz is possible.  
T
ref  
T
5
6
GND  
This pin is the combined control circuitry and power ground (8−pin package only).  
10  
Output  
This output directly drives the gate of a power MOSFET. Peak currents up to 1.0 A are  
sourced and sunk by this pin.  
7
8
12  
14  
V
This pin is the positive supply of the control IC.  
CC  
V
This is the reference output. It provides charging current for capacitor C through  
T
ref  
resistor R .  
T
8
Power Ground  
This pin is a separate power ground return (14−pin package only) that is connected back  
to the power source. It is used to reduce the effects of switching transient noise on the control  
circuitry.  
11  
V
The Output high state (V ) is set by the voltage applied to this pin (14−pin package only).  
C
OH  
With a separate power source connection, it can reduce the effects of switching transient  
noise on the control circuitry.  
9
GND  
NC  
This pin is the control circuitry ground return (14−pin package only) and is connected back to  
the power source ground.  
2,4,6,13  
No connection (14−pin package only). These pins are not internally connected.  
Undervoltage Lockout  
and has a typical rise and fall time of 50 ns with a 1.0 nF load.  
Two undervoltage lockout comparators have been  
incorporated to guarantee that the IC is fully functional  
before the output stage is enabled. The positive power  
supply terminal (V ) and the reference output (V ) are  
Additional internal circuitry has been added to keep the  
Output in a sinking mode whenever an undervoltage lockout  
is active. This characteristic eliminates the need for an  
external pull−down resistor.  
CC  
ref  
each monitored by separate comparators. Each has built−in  
hysteresis to prevent erratic output behavior as their  
The SOIC−14 surface mount package provides separate  
pins for V (output supply) and Power Ground. Proper  
C
respective thresholds are crossed. The V  
upper and lower thresholds are 16 V/10 V for the UCX842A,  
comparator  
implementation will significantly reduce the level of  
switching transient noise imposed on the control circuitry.  
CC  
and 8.4 V/7.6 V for the UCX843A. The V comparator  
This becomes particularly useful when reducing the I  
ref  
pk(max)  
upper and lower thresholds are 3.6V/3.4 V. The large  
hysteresis and low startup current of the UCX842A makes  
it ideally suited in off−line converter applications where  
efficient bootstrap startup techniques are required  
(Figure 34). The UCX843A is intended for lower voltage dc  
to dc converter applications. A 36 V zener is connected as  
clamp level. The separate V supply input allows the  
designer added flexibility in tailoring the drive voltage  
C
independent of V . A zener clamp is typically connected  
CC  
to this input when driving power MOSFETs in systems  
where V is greater than 20 V. Figure 26 shows proper  
CC  
power and control ground connections in a current sensing  
power MOSFET application.  
a shunt regulator form V to ground. Its purpose is to  
CC  
protect the IC from excessive voltage that can occur during  
system startup. The minimum operating voltage for the  
UCX842A is 11 V and 8.2 V for the UCX843A.  
Reference  
The 5.0 V bandgap reference is trimmed to 1.0%  
tolerance at T = 25°C on the UC284XA, and 2.0% on the  
UC384XA. Its primary purpose is to supply charging current  
to the oscillator timing capacitor. The reference has short  
circuit protection and is capable of providing in excess of  
20 mA for powering additional control system circuitry.  
J
Output  
These devices contain a single totem pole output stage that  
was specifically designed for direct drive of power  
MOSFETs. It is capable of up to 1.0 A peak drive current  
http://onsemi.com  
10  
UC3842A, UC3843A, UC2842A, UC2843A  
DESIGN CONSIDERATIONS  
Do not attempt to construct the converter on  
wire−wrap or plug−in prototype boards. High Frequency  
circuit layout techniques are imperative to prevent pulse  
width jitter. This is usually caused by excessive noise  
pick−up imposed on the Current Sense or Voltage Feedback  
inputs. Noise immunity can be improved by lowering circuit  
impedances at these points. The printed circuit layout should  
contain a ground plane with low−current signal and  
high−current switch and output grounds returning on  
separate paths back to the input filter capacitor. Ceramic  
(t ) decreases to (I + I m /m ) (m /m ). This perturbation  
3 2 1 2 1  
is multiplied by m .m on each succeeding cycle, alternately  
2
1
increasing and decreasing the inductor current at switch  
turn−on. Several oscillator cycles may be required before  
the inductor current reaches zero causing the process to  
commence again. If m /m is greater than 1, the converter  
2
1
will be unstable. Figure 20B shows that by adding an  
artificial ramp that is synchronized with the PWM clock to  
the control voltage, the I perturbation will decrease to zero  
on succeeding cycles. This compensation ramp (m ) must  
3
bypass capacitors (0.1 F) connected directly to V , V ,  
have a slope equal to or slightly greater than m /2 for  
CC  
C
2
and V may be required depending upon circuit layout.  
stability. With m /2 slope compensation, the average  
ref  
2
This provides a low impedance path for filtering the high  
frequency noise. All high current loops should be kept as  
short as possible using heavy copper runs to minimize  
radiated EMI. The Error Amp compensation circuitry and  
the converter output voltage divider should be located close  
to the IC and as far as possible from the power switch and  
other noise generating components.  
inductor current follows the control voltage yielding true  
current mode operation. The compensating ramp can be  
derived from the oscillator and added to either the Voltage  
Feedback or Current Sense inputs (Figure 33).  
(A)  
I  
Control Voltage  
Current mode converters can exhibit subharmonic  
oscillations when operating at a duty cycle greater than 50%  
with continuous inductor current. This instability is  
independent of the regulators closed−loop characteristics  
and is caused by the simultaneous operating conditions of  
fixed frequency and peak current detecting. Figure 20A  
m2  
m1  
m
m
2
1
I + I  
Inductor  
Current  
m
m
m
m
2
2
1
I + I  
1
Oscillator Period  
t
3
t
1
t
2
t
0
shows the phenomenon graphically. At t , switch  
conduction begins, causing the inductor current to rise at a  
0
(B)  
Control Voltage  
m3  
slope of m . This slope is a function of the input voltage  
1
divided by the inductance. At t , the Current Sense Input  
reaches the threshold established by the control voltage.  
This causes the switch to turn off and the current to decay at  
1
I  
m1  
m2  
Inductor  
Current  
a slope of m until the next oscillator cycle. The unstable  
2
Oscillator Period  
condition can be shown if a perturbation is added to the  
control voltage, resulting in a small I (dashed line). With  
a fixed oscillator period, the current decay time is reduced,  
t
t
t
6
4
5
Figure 20. Continuous Current Waveforms  
and the minimum current at switch turn−on (t ) is increased  
2
by I + I m2/m1. The minimum current at the next cycle  
http://onsemi.com  
11  
UC3842A, UC3843A, UC2842A, UC2843A  
V
ref  
8(14)  
R
8(14)  
4(7)  
R
R
Bias  
R
A
R
T
R
Bias  
4
8
R
B
5.0k  
6
Osc  
+
External  
Sync  
Input  
Osc  
+
4(7)  
R
S
C
T
3
0.01  
+
5
2
Q
+
+
+
2R  
7
EA  
47  
2(3)  
1(1)  
2R  
R
5.0k  
1
EA  
2(3)  
1(1)  
C
MC1455  
R
5(9)  
5(9)  
To  
Additional  
UCX84XA’s  
R
B
1.44  
(R + 2R )C  
The diode clamp is required if the Sync amplitude is large enough to  
cause the bottom side of CT to go more than 300 mV below ground.  
f =  
D
max  
=
R
A
+ 2R  
B
A
B
Figure 22. External Duty Cycle Clamp and  
Multi Unit Synchronization  
Figure 21. External Clock Synchronization  
V
CC  
V
in  
7(12)  
+
5.0V  
ref  
+
8(14)  
4(7)  
R
R
Bias  
+
+
7(11)  
6(10)  
5(8)  
5.0V  
ref  
Q1  
8(14)  
R
R
Osc  
Bias  
+
+
V
Clamp  
+
1.0mA  
2R  
S
R
+
Q
R2  
+
Osc  
EA  
2(3)  
1(1)  
Comp/Latch  
R
+
4(7)  
2(3)  
1.0V  
3(5)  
S
R
1.0mA  
2R  
+
Q
R
S
R1  
+
EA  
5(9)  
R
1.0M  
1.0V  
1.67  
2
R
R
2
1(1)  
t
1
VClamp  
RS  
C
V
=
+ 0.33 x 10 −  
3
I
=
Clamp  
pk(max)  
R
+ R  
2
1
R
R
5(9)  
+ 1  
3600C in F  
Soft−Start  
Where: 0 V  
1.0 V  
Clamp  
1
Figure 23. Adjustable Reduction of Clamp Level  
Figure 24. Soft−Start Circuit  
V
CC  
R
I
r
pk DS(on)  
S
V
in  
V
CC  
V
5 =  
Pin  
V
in  
(12)  
r
+ R  
S
DM(on)  
7(12)  
If: SENSEFET = MTP10N10M  
= 200  
+
R
S
5.0V  
+
ref  
+
5.0V  
ref  
Then: V 5 = 0.075 I  
pin  
+
pk  
8(14)  
4(7)  
R
R
+
D
SENSEFET  
Bias  
+
+
(11)  
(10)  
(8)  
+
S
7(11)  
6(10)  
5(8)  
Q1  
Osc  
G
K
M
+
V
Clamp  
S
R
S
R
Q
1.0mA  
2R  
+
Q
+
Power Ground  
To Input Source  
Return  
+
Comp/Latch  
EA  
2(3)  
1(1)  
Comp/Latch  
R
R2  
(5)  
R
1.0V  
S
3(5)  
1/4 W  
R
S
Control CIrcuitry  
Ground:  
To Pin (9)  
5(9)  
=
MPSA63  
C
R1  
1.67  
2
VClamp  
RS  
V
=
Clamp  
I
Where: 0 V  
1.0 V  
pk(max)  
Clamp  
R
R
Virtually lossless current sensing can be achieved with the implementation of a  
SENSEFET power switch. For proper operation during over current conditions, a  
+ 1  
V
R R  
1 2  
C
1
t
= − In  
1 −  
C
Softstart  
3V  
R + R  
1 2  
reduction of the I  
clamp level must be implemented. Refer to Figures 23 and 25.  
Clamp  
pk(max)  
Figure 25. Adjustable Buffered Reduction of  
Clamp Level with Soft−Start  
Figure 26. Current Sensing Power MOSFET  
http://onsemi.com  
12  
 
UC3842A, UC3843A, UC2842A, UC2843A  
V
CC  
V
V
in  
CC  
V
in  
7(12)  
7(12)  
+
5.0V  
+
ref  
5.0V  
+
ref  
+
+
+
+
+
7(11)  
6(10)  
5(8)  
7(11)  
6(10)  
5(8)  
R
g
Q1  
Q1  
S
R
S
R
Q
Q
+
+
Comp/Latch  
R
Comp/Latch  
3(5)  
3(5)  
R
S
C
R
S
Series gate resistor R will damp any high frequency parasitic oscillations  
g
caused by the MOSFET input capacitance and any series wiring inductance  
in the gate−source circuit.  
The addition of the RC filter will eliminate instability caused by the leading  
edge spike on the current waveform.  
Figure 27. Current Waveform Spike Suppression  
Figure 28. MOSFET Parasitic Oscillations  
I
B
V
in  
+
V
V
in  
CC  
7(12)  
0
Base  
Charge  
Removal  
+
Isolation  
Boundary  
5.0V  
ref  
+
C
1
+
V
Waveforms  
GS  
Q1  
+
7(11)  
6(1)  
5(8)  
Q1  
+
0
+
0
6(1)  
5(8)  
50% DC  
25% DC  
S
R
V
− 1.4  
N
N
(pin 1)  
P
Q
I
=
pk  
+
S
3 R  
S
R
Comp/Latch  
3(5)  
R
S
3(5)  
C
N
S
R
S
N
p
The totem−pole output can furnish negative base current for enhanced  
transistor turn−off, with the addition of capacitor C .  
1
Figure 29. Bipolar Transistor Drive  
Figure 30. Isolated MOSFET Drive  
From V  
O
2.5V  
+
R
1.0mA  
2R  
i
2(3)  
+
8(14)  
4(7)  
R
R
EA  
R
d
C
I
Bias  
R
f
R
1(1)  
Osc  
5(9)  
+
1.0mA  
2R  
Error Amp compensation circuit for stabilizing any current−mode topology except  
for boost and flyback converters operating with continuous inductor current.  
+
EA  
2(3)  
1(1)  
R
From V  
O
2.5V  
+
1.0mA  
2R  
R
p
2N  
3905  
2(3)  
5(9)  
MCR  
101  
R
i
+
EA  
2N  
3903  
C
I
R
R
f
d
R
C
p
1(1)  
5(9)  
The MCR101 SCR must be selected for a holding of less than 0.5 mA at T  
The simple two transistor circuit can be used in place of the SCR as shown. All  
resistors are 10 k.  
.
A(min)  
Error Amp compensation circuit for stabilizing current−mode boost and flyback  
topologies operating with continuous inductor current.  
Figure 31. Latched Shutdown  
Figure 32. Error Amplifier Compensation  
http://onsemi.com  
13  
UC3842A, UC3843A, UC2842A, UC2843A  
V
CC  
V
in  
7(12)  
8(14)  
+
5.0V  
ref  
+
R
R
R
T
Bias  
+
MPS3904  
+
7(11)  
6(10)  
5(8)  
4(7)  
R
O
Slope  
Osc  
From V  
C
T
+
−m  
1.0mA  
S
R
R
i
2(3)  
+
Q
+
2R  
R
EA  
Comp/Latch  
C
f
1.0V  
R
f
R
d
m
3(5)  
R
S
1(1)  
−3.0 m  
5(9)  
The buffered oscillator ramp can be resistively summed with either the voltage feedback or current sense inputs to provide slope compensation.  
Figure 33. Slope Compensation  
L1  
MBR1635  
+
4.7ꢃ  
3300pF  
1N4935  
MDA  
202  
4.7k  
250  
5.0V/4.0A  
T1  
+
+
+
+
2200  
1000  
56k  
115Va  
c
5.0V RTN  
12V/0.3A  
MUR110  
1000  
1N4935  
68  
L2  
10  
7(12)  
+
+
12V RTN  
47  
100  
1000  
10  
L3  
8(14)  
+
+
+
5.0V  
ref  
−12V/0.3A  
+
0.01  
MUR110  
680pF  
1N4937  
Bias  
+
+
10k  
7(11)  
1N4937  
2.7k  
4(7)  
2(3)  
22ꢃ  
Osc  
6(10)  
4700pF  
+
MTP  
4N50  
L1 − 15 H at 5.0 A, Coilcraft Z7156.  
L2, L3 − 25 H at 1.0 A, Coilcraft Z7157.  
18k  
S
+
Q
+
5(8)  
3(5)  
R
EA  
Comp/Latch  
4.7k  
1.0k  
T1 − Primary: 45 Turns # 26 AWG  
T1 − Secondary 12 V: 9 Turns # 30 AWG  
T1 − (2 strands) Bifiliar Wound  
470pF  
1(1)  
0.5ꢃ  
T1 − Secondary 5.0 V: 4 Turns (six strands)  
T1 − #26 Hexfiliar Wound  
5(9)  
T1 − Secondary Feedback: 10 Turns #30 AWG  
T1 − (2 strands) Bifiliar Wound  
T1 − Core: Ferroxcube EC35−3C8  
T1 − Bobbin: Ferroxcube EC35PCB1  
T1 − Gap 0.01" for a primary inductance of 1.0 mH  
Figure 34. 27 Watt Off−Line Flyback Regulator  
Test  
Conditions  
Results  
Line Regulation: 5.0 V  
12 V  
V
in  
= 95 Vac to 130 Vac  
= 50 mV or 0.5%  
= 24 mV or 0.1%  
Load Regulation: 5.0 V  
12 V  
V
V
= 115 Vac, I = 1.0 A to 4.0 A  
= 300 mV or 3.0%  
= 60 mV or 0.25%  
in  
out  
= 115 Vac, I = 100 mA to 300 mA  
in  
out  
Output Ripple:  
5.0 V  
12 V  
V
in  
= 115 Vac  
40 mV  
80 mV  
pp  
pp  
Efficiency  
V
in  
= 115 Vac  
70%  
All outputs are at nominal load currents, unless otherwise noted.  
http://onsemi.com  
14  
UC3842A, UC3843A, UC2842A, UC2843A  
ORDERING INFORMATION  
Device  
Operating Temperature Range  
Package  
Shipping  
UC3842AN  
PDIP−8  
UC3842ANG  
PDIP−8  
(Pb−Free)  
50 Units / Rail  
UC3842AN2  
PDIP−8  
UC3842AN2G  
PDIP−8  
(Pb−Free)  
UC3842AD  
SOIC−14  
55 Units / Rail  
55 Units / Rail  
UC3842ADG  
SOIC−14  
(Pb−Free)  
UC3842ADR2  
SOIC−14  
2500 / Tape & Reel  
2500 / Tape & Reel  
UC3842ADR2G  
SOIC−14  
(Pb−Free)  
UC3843AN  
PDIP−8  
UC3843ANG  
PDIP−8  
(Pb−Free)  
50 Units / Rail  
UC3843AN2  
PDIP−8  
T = 0° to +70°C  
A
UC3843AN2G  
PDIP−8  
(Pb−Free)  
UC3843AD  
SOIC−14  
55 Units / Rail  
55 Units / Rail  
UC3843ADG  
SOIC−14  
(Pb−Free)  
UC3843ADR2  
SOIC−14  
2500 / Tape & Reel  
2500 / Tape & Reel  
UC3843ADR2G  
SOIC−14  
(Pb−Free)  
UC3843AD1  
SOIC−8  
98 Units / Rail  
98 Units / Rail  
UC3843AD1G  
SOIC−8  
(Pb−Free)  
UC3843AD1R2  
SOIC−8  
UC3843AD1R2G  
SOIC−8  
(Pb−Free)  
2500 / Tape & Reel  
UC3843AD2R2  
SOIC−14  
UC3843AD2R2G  
SOIC−14  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
15  
UC3842A, UC3843A, UC2842A, UC2843A  
ORDERING INFORMATION  
Device  
Operating Temperature Range  
Package  
Shipping  
UC2842AN  
PDIP−8  
50 Units / Rail  
50 Units / Rail  
UC2842ANG  
PDIP−8  
(Pb−Free)  
UC2842AD  
SOIC−14  
55 Units / Rail  
55 Units / Rail  
UC2842ADG  
SOIC−14  
(Pb−Free)  
UC2842ADR2  
SOIC−14  
2500 / Tape & Reel  
2500 / Tape & Reel  
UC2842ADR2G  
SOIC−14  
(Pb−Free)  
UC2843AN  
PDIP−8  
50 Units / Rail  
50 Units / Rail  
UC2843ANG  
PDIP−8  
(Pb−Free)  
T = −25° to +85°C  
A
UC2843AD  
SOIC−14  
55 Units / Rail  
55 Units / Rail  
UC2843ADG  
SOIC−14  
(Pb−Free)  
UC2843ADR2  
SOIC−14  
2500 / Tape & Reel  
2500 / Tape & Reel  
UC2843ADR2G  
SOIC−14  
(Pb−Free)  
UC2843AD1  
SOIC−8  
98 Units / Rail  
98 Units / Rail  
UC2843AD1G  
SOIC−8  
(Pb−Free)  
UC2843AD1R2  
SOIC−8  
2500 / Tape & Reel  
2500 / Tape & Reel  
UC2843AD1R2G  
SOIC−8  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
MARKING DIAGRAMS  
PDIP−8  
N SUFFIX  
CASE 626  
SOIC−14  
D SUFFIX  
CASE 751A  
SOIC−8  
D1 SUFFIX  
CASE 751  
8
14  
8
UCx84xAN  
AWL  
YYWWG  
x843  
ALYW  
G
UCx84xADG  
AWLYWW  
1
1
1
x
= 2 or 3  
A
= Assembly Location  
WL, L = Wafer Lot  
YY, Y = Year  
WW, W = Work Week  
G or G = Pb−Free Package  
http://onsemi.com  
16  
UC3842A, UC3843A, UC2842A, UC2843A  
PACKAGE DIMENSIONS  
PDIP−8  
N SUFFIX  
CASE 626−05  
ISSUE L  
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
8
5
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
−B−  
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
1
4
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MIN  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
A
B
C
D
F
9.40  
6.10  
3.94  
0.38  
1.02  
0.370  
0.240  
0.155  
0.015  
0.040  
F
−A−  
NOTE 2  
L
G
H
J
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.050  
0.012  
0.135  
K
L
C
7.62 BSC  
0.300 BSC  
M
N
−−−  
0.76  
10  
_
1.01  
−−−  
0.030  
10  
0.040  
_
J
−T−  
SEATING  
PLANE  
N
M
D
K
G
H
M
M
M
B
0.13 (0.005)  
T A  
SOIC−14  
D SUFFIX  
CASE 751A−03  
ISSUE G  
NOTES:  
−A−  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
14  
8
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
−B−  
P 7 PL  
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.127  
(0.005) TOTAL IN EXCESS OF THE D  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
M
M
B
0.25 (0.010)  
7
1
G
F
R X 45  
_
C
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
A
B
C
D
F
G
J
K
M
P
R
8.55  
3.80  
1.35  
0.35  
0.40  
8.75 0.337 0.344  
4.00 0.150 0.157  
1.75 0.054 0.068  
0.49 0.014 0.019  
1.25 0.016 0.049  
0.050 BSC  
0.25 0.008 0.009  
0.25 0.004 0.009  
−T−  
SEATING  
PLANE  
J
M
K
D 14 PL  
M
S
S
0.25 (0.010)  
T B  
A
1.27 BSC  
0.19  
0.10  
0
7
0
7
_
_
_
_
5.80  
0.25  
6.20 0.228 0.244  
0.50 0.010 0.019  
http://onsemi.com  
17  
UC3842A, UC3843A, UC2842A, UC2843A  
PACKAGE DIMENSIONS  
SOIC−8  
D1 SUFFIX  
CASE 751−07  
ISSUE AG  
NOTES:  
−X−  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW  
STANDARD IS 751−07.  
8
5
4
S
M
M
B
0.25 (0.010)  
Y
1
K
−Y−  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
C
N X 45  
_
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
SEATING  
PLANE  
−Z−  
0.10 (0.004)  
1.27 BSC  
0.050 BSC  
M
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
J
H
D
8
0
_
_
_
_
M
S
S
X
0.25 (0.010)  
Z
Y
0.25  
5.80  
0.50 0.010  
6.20 0.228  
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
0.275  
4.0  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
SENSEFET is a trademark of Semiconductor Components Industries, LLC.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
UC3842A/D  

相关型号:

UC2842ANG4

Current Mode PWM Controller
TI

UC2842AQ

Current-Mode SMPS Controller
TI

UC2842AQD

CURRENT-MODE PWM CONTROLLER
TI

UC2842AQD8

CURRENT-MODE PWM CONTROLLER
TI

UC2842AQD8R

CURRENT-MODE PWM CONTROLLER
TI

UC2842AQDR

CURRENT-MODE PWM CONTROLLER
TI

UC2842AQTR

Current-Mode SMPS Controller
TI

UC2842AY

Switching Controller, Current-mode, 1A, 500kHz Switching Freq-Max, BIPolar, CDIP8, CERAMIC, DIP-8
MICROSEMI

UC2842B

HIGH PERFORMANCE CURRENT MODE PWM CONTROLLER
STMICROELECTR

UC2842B

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
ONSEMI

UC2842BD

High Performance Current Mode Controllers
ONSEMI

UC2842BD

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
MOTOROLA