UC2844BD1G [ONSEMI]

暂无描述;
UC2844BD1G
型号: UC2844BD1G
厂家: ONSEMI    ONSEMI
描述:

暂无描述

文件: 总19页 (文件大小:393K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UC3844B, UC3845B,  
UC2844B, UC2845B  
High Performance  
Current Mode Controllers  
The UC3844B, UC3845B series are high performance fixed frequency  
current mode controllers. They are specifically designed for OffLine  
and dcdc converter applications offering the designer a costeffective  
solution with minimal external components. These integrated circuits  
feature an oscillator, a temperature compensated reference, high gain  
error amplifier, current sensing comparator, and a high current totem pole  
output ideally suited for driving a power MOSFET.  
Also included are protective features consisting of input and  
reference undervoltage lockouts each with hysteresis, cyclebycycle  
current limiting, a latch for single pulse metering, and a flipflop  
which blanks the output off every other oscillator cycle, allowing  
output deadtimes to be programmed from 50% to 70%.  
http://onsemi.com  
PDIP8  
N SUFFIX  
CASE 626  
8
1
These devices are available in an 8pin dualinline and surface  
mount (SOIC8) plastic package as well as the 14pin plastic surface  
mount (SOIC14). The SOIC14 package has separate power and  
ground pins for the totem pole output stage.  
SOIC14  
D SUFFIX  
CASE 751A  
14  
1
The UCX844B has UVLO thresholds of 16V (on) and 10V (off), ideally  
suited for offline converters. The UCX845B is tailored for lower voltage  
applications having UVLO thresholds of 8.5V (on) and 7.6V (off).  
Features  
SOIC8  
D1 SUFFIX  
CASE 751  
8
1
Trimmed Oscillator for Precise Frequency Control  
Oscillator Frequency Guaranteed at 250 kHz  
Current Mode Operation to 500 kHz Output Switching Frequency  
Output Deadtime Adjustable from 50% to 70%  
Automatic Feed Forward Compensation  
PIN CONNECTIONS  
1
2
3
4
8
7
6
5
Compensation  
Voltage Feedback  
Current Sense  
V
V
ref  
Latching PWM for CycleByCycle Current Limiting  
Internally Trimmed Reference with Undervoltage Lockout  
High Current Totem Pole Output  
CC  
Output  
R /C  
T
GN  
D
T
(Top View)  
Undervoltage Lockout with Hysteresis  
Low Startup and Operating Current  
Compensation  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
ref  
These Devices are PbFree and are RoHS Compliant  
NC  
Voltage Feedback  
NC  
NC  
NCV Prefix for Automotive and Other Applications Requiring  
Unique Site and Control Change Requirements; AECQ100  
Qualified and PPAP Capable  
V
V
CC  
C
Current Sense  
NC  
Output  
V
7(12)  
CC  
GND  
8
R /C  
T
Power Ground  
T
V
CC  
V
ref  
5.0V  
Reference  
(Top View)  
Undervoltage  
Lockout  
8(14)  
R
R
V
ref  
V
C
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 15 of this data sheet.  
Undervoltage  
Lockout  
7(11)  
Output  
R /C  
T
T
Oscillator  
6(10)  
Power  
Ground  
4(7)  
Latching  
PWM  
DEVICE MARKING INFORMATION  
See general marking information in the device marking  
section on page 16 of this data sheet.  
Voltage  
Feedback  
Input  
5(8)  
2(3)  
1(1)  
Error  
Amplifier  
Current  
Sense Input  
Output/  
Compensation  
3(5)  
GND  
5(9)  
Pin numbers in parenthesis are for the D suffix SOIC-14 package.  
Figure 1. Simplified Block Diagram  
© Semiconductor Components Industries, LLC, 2013  
1
Publication Order Number:  
August, 2013 Rev. 11  
UC3844B/D  
UC3844B, UC3845B, UC2844B, UC2845B  
MAXIMUM RATINGS  
Rating  
Symbol  
, V  
Value  
Unit  
V
Bias and Driver Voltages (Zero Series Impedance, see also Total Device spec) (Note 1)  
Total Power Supply and Zener Current  
V
CC  
36  
C
(I + I )  
30  
mA  
A
CC  
Z
Output Current, Source or Sink (Note 2)  
I
O
1.0  
5.0  
Output Energy (Capacitive Load per Cycle)  
Current Sense and Voltage Feedback Inputs  
Error Amp Output Sink Current  
W
mJ  
V
V
in  
0.3 to + 5.5  
10  
I
O
mA  
Power Dissipation and Thermal Characteristics  
D Suffix, Plastic Package, SOIC14 Case 751A  
Maximum Power Dissipation @ T = 25°C  
P
862  
145  
mW  
°C/W  
A
D
Thermal Resistance, JunctiontoAir  
R
q
JA  
D1 Suffix, Plastic Package, SOIC8 Case 751  
Maximum Power Dissipation @ T = 25°C  
P
702  
178  
mW  
°C/W  
A
D
Thermal Resistance, JunctiontoAir  
R
q
JA  
N Suffix, Plastic Package, Case 626  
Maximum Power Dissipation @ T = 25°C  
1.25  
100  
W
°C/W  
P
A
D
Thermal Resistance, JunctiontoAir  
Operating Junction Temperature  
Operating Ambient Temperature  
R
q
JA  
T
+150  
°C  
°C  
J
UC3844B, UC3845B  
UC2844B, UC2845B  
UC3844BV, UC3845BV  
T
A
0 to +70  
25 to +85  
40 to +105  
Storage Temperature Range  
T
stg  
65 to +150  
°C  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. The voltage is clamped by a zener diode (see page 9 Under Voltage Lockout section). Therefore this voltage may be exceeded as long as  
the total power supply and zener current is not exceeded.  
2. Maximum package power dissipation limits must be observed.  
3. This device series contains ESD protection and exceeds the following tests: Human Body Model 4000 V per JEDEC Standard  
JESD22-A114B, Machine Model Method 200 V per JEDEC Standard JESD22-A115-A  
4. This device contains latch-up protection and exceeds 100 mA per JEDEC Standard JESD78  
ELECTRICAL CHARACTERISTICS (V = 15 V [Note 5], R = 10 k, C = 3.3 nF. For typical values T = 25°C, for min/max values  
CC  
T
T
A
T is the operating ambient temperature range that applies [Note 6], unless otherwise noted.)  
A
UC284xB  
UC384xB, xBV, NCV384xBV  
Characteristic  
REFERENCE SECTION  
Reference Output Voltage (I = 1.0 mA, T = 25°C)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
V
ref  
4.95  
5.0  
2.0  
3.0  
0.2  
5.05  
20  
25  
4.9  
5.0  
2.0  
3.0  
0.2  
5.1  
20  
V
mV  
mV  
mV/°C  
V
O
J
Line Regulation (V = 12 V to 25 V)  
Reg  
CC  
line  
load  
S
Load Regulation (I = 1.0 mA to 20 mA)  
Reg  
25  
O
Temperature Stability  
T
Total Output Variation over Line, Load, & Temperature  
Output Noise Voltage (f = 10 Hz to 10 kHz, T = 25°C)  
V
ref  
4.9  
5.1  
4.82  
5.18  
V
n
50  
50  
mV  
J
Long Term Stability (T = 125°C for 1000 Hours)  
S
5.0  
85  
5.0  
85  
mV  
mA  
A
Output Short Circuit Current  
I
30  
180  
30  
180  
SC  
OSCILLATOR SECTION  
Frequency  
T = 25°C  
f
49  
48  
52  
55  
56  
49  
48  
52  
55  
56  
kHz  
J
OSC  
T = T  
A
to T  
low  
high  
T = 25°C (R = 6.2 k, C = 1.0 nF)  
225  
250  
275  
225  
250  
275  
J
T
T
Frequency Change with Voltage (V = 12 V to 25 V)  
Df  
Df  
/DV  
/DT  
0.2  
1.0  
1.6  
1.0  
0.2  
0.5  
1.6  
1.0  
%
%
V
CC  
OSC  
Frequency Change w/ Temperature (T = T  
to T  
)
A
low  
high  
OSC  
Oscillator Voltage Swing (PeaktoPeak)  
V
OSC  
5. Adjust V above the Startup threshold before setting to 15 V.  
CC  
6. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
T
low  
= 0°C for UC3844B, UC3845B  
= 25°C for UC2844B, UC2845B  
= 40°C for UC384xBV, NCV384xBV  
T
high  
= + 70°C for UC3844B, UC3845B  
= + 85°C for UC2844B, UC2845B  
=+105°C for UC3844BV, UC3845BV  
= +125°C for NCV384xBV  
http://onsemi.com  
2
 
UC3844B, UC3845B, UC2844B, UC2845B  
ELECTRICAL CHARACTERISTICS (V = 15 V [Note 7], R = 10 k, C = 3.3 nF. For typical values T = 25°C, for min/max values  
CC  
T
T
A
T is the operating ambient temperature range that applies [Note 8], unless otherwise noted.)  
A
UC284xB  
UC384xB, xBV,  
NCV384xBV  
Characteristic  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
OSCILLATOR SECTION  
Discharge Current (V  
= 2.0 V)  
T = 25°C  
(UC284XB, UC384XB)  
(UC384XBV)  
I
dischg  
7.8  
7.5  
8.3  
8.8  
8.8  
7.8  
7.6  
7.2  
8.3  
8.8  
8.8  
8.8  
mA  
OSC  
J
T = T  
to T  
A
low  
high  
ERROR AMPLIFIER SECTION  
Voltage Feedback Input (V = 2.5 V)  
V
2.45  
2.5  
0.1  
90  
2.55  
1.0  
2.42  
2.5  
0.1  
90  
2.58  
2.0  
V
mA  
O
FB  
Input Bias Current (V = 5.0 V)  
I
IB  
FB  
Open Loop Voltage Gain (V = 2.0 V to 4.0 V)  
A
VOL  
65  
65  
dB  
O
Unity Gain Bandwidth (T = 25°C)  
BW  
0.7  
60  
1.0  
70  
0.7  
60  
1.0  
70  
MHz  
dB  
J
Power Supply Rejection Ratio (V = 12 V to 25 V)  
PSRR  
CC  
Output Current Sink (V = 1.1 V, V = 2.7 V)  
I
Sink  
2.0  
0.5  
12  
1.0  
2.0  
0.5  
12  
1.0  
mA  
O
FB  
Output Current Source (V = 5.0 V, V = 2.3 V)  
I
O
FB  
Source  
Output Voltage Swing  
High State (R = 15 k to ground, V = 2.3 V)  
V
V
OH  
5.0  
6.2  
5.0  
6.2  
L
FB  
Low State (R = 15 k to V , V = 2.7 V)  
V
OL  
L
ref  
FB  
(UC284XB, UC384XB)  
(UC384XBV)  
0.8  
1.1  
0.8  
0.8  
1.1  
1.2  
CURRENT SENSE SECTION  
Current Sense Input Voltage Gain (Notes 9 & 10)  
(UC284XB, UC384XB)  
(UC384XBV)  
A
V/V  
V
V
2.85  
3.0  
3.15  
2.85  
2.85  
3.0  
3.0  
3.15  
3.25  
Maximum Current Sense Input Threshold (Note 9)  
(UC284XB, UC384XB)  
(UC384XBV)  
V
th  
0.9  
1.0  
1.1  
0.9  
0.85  
1.0  
1.0  
1.1  
1.1  
Power Supply Rejection Ratio (V = 12 V to 25 V) (Note 9)  
PSRR  
70  
70  
dB  
mA  
ns  
CC  
Input Bias Current  
I
2.0  
150  
10  
300  
2.0  
150  
10  
300  
IB  
PLH(In/Out)  
Propagation Delay (Current Sense Input to Output)  
t
OUTPUT SECTION  
Output Voltage  
V
Low State (I  
= 20 mA)  
= 200 mA, UC284XB, UC384XB)  
= 200 mA, UC384XBV)  
= 20 mA, UC284XB, UC384XB)  
= 20 mA, UC384XBV)  
= 200 mA)  
V
13  
12  
0.1  
1.6  
13.5  
0.4  
2.2  
13  
12.9  
12  
0.1  
1.6  
1.6  
13.5  
0.4  
2.2  
2.3  
Sink  
OL  
(I  
Sink  
(I  
Sink  
High State (I  
V
OH  
Source  
Source  
Source  
(I  
(I  
13.4  
13.4  
Output Voltage with UVLO Activated (V = 6.0 V, I  
= 1.0 mA)  
V
0.1  
50  
50  
1.1  
150  
150  
0.1  
50  
50  
1.1  
150  
150  
V
CC  
Sink  
OL(UVLO)  
Output Voltage Rise Time (C = 1.0 nF, T = 25°C)  
t
r
ns  
ns  
L
J
Output Voltage Fall Time (C = 1.0 nF, T = 25°C)  
t
f
L
J
UNDERVOLTAGE LOCKOUT SECTION  
Startup Threshold  
UCX844B, BV  
UCX845B, BV  
V
15  
7.8  
16  
8.4  
17  
9.0  
14.5  
7.8  
16  
8.4  
17.5  
9.0  
V
V
th  
Minimum Operating Voltage After TurnOn  
UCX844B, BV  
UCX845B, BV  
V
9.0  
7.0  
10  
7.6  
11  
8.2  
8.5  
7.0  
10  
7.6  
11.5  
8.2  
CC(min)  
7. Adjust V above the Startup threshold before setting to 15 V.  
CC  
8. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
T
= 0°C for UC3844B, UC3845B  
T
= + 70°C for UC3844B, UC3845B  
= + 85°C for UC2844B, UC2845B  
= +105°C for UC3844BV, UC3845BV  
= +125°C for NCV384xBV  
low  
high  
= 25°C for UC2844B, UC2845B  
= 40°C for UC384xBV, NCV384xBV  
9. This parameter is measured at the latch trip point with V = 0 V.  
10.Comparator gain is defined as: A =  
FB  
DV Output/Compensation  
DV Current Sense Input  
V
http://onsemi.com  
3
 
UC3844B, UC3845B, UC2844B, UC2845B  
ELECTRICAL CHARACTERISTICS (V = 15 V [Note 11], R = 10 k, C = 3.3 nF. For typical values T = 25°C, for min/max  
CC  
T
T
A
values T is the operating ambient temperature range that applies [Note 12], unless otherwise noted.)  
A
UC284xB  
Typ  
UC384xB, xBV, NCV384xBV  
Characteristic  
Symbol  
Min  
Max  
Min  
Typ  
Max  
Unit  
PWM SECTION  
Duty Cycle  
%
Maximum (UC284XB, UC384XB)  
Maximum (UC384XBV)  
Minimum  
DC  
47  
48  
50  
0
47  
46  
48  
48  
50  
50  
0
(max)  
DC  
(min)  
TOTAL DEVICE  
Power Supply Current  
I
mA  
V
CC  
Startup (V = 6.5 V for UCX845B,  
0.3  
0.5  
0.3  
0.5  
CC  
Startup (V = 14 V for UCX844B, BV)  
CC  
Operating (Note 11)  
12  
36  
17  
12  
36  
17  
Power Supply Zener Voltage (I = 25 mA)  
V
30  
30  
CC  
Z
11. Adjust V above the Startup threshold before setting to 15 V.  
CC  
12.Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
T
low  
= 0°C for UC3844B, UC3845B  
= 25°C for UC2844B, UC2845B  
= 40°C for UC384xBV, NCV384xBV  
T
high  
= + 70°C for UC3844B, UC3845B  
= + 85°C for UC2844B, UC2845B  
= +105°C for UC3844BV, UC3845BV  
=+125°C for NCV384xBV  
80  
50  
75  
V
= 15 V  
CC  
3
1.ꢀC = 10 nF  
T
2.ꢀC = 5.0 nF  
T = 25°C  
A
T
3.ꢀC = 2.0 nF  
70  
65  
T
4.ꢀC = 1.0 nF  
2
T
5.ꢀC = 500 pF  
4
20  
T
6.ꢀC = 200 pF  
T
7.ꢀC = 100 pF  
1
T
8.0  
5.0  
60  
55  
7
5
2.0  
0.8  
NOTE: Output switches at  
1/2 the oscillator frequency  
6
50  
10 k  
20 k  
50 k  
100 k  
200 k  
500 k  
1.0 M  
10 k  
20 k  
50 k 100 k  
200 k  
500 k 1.0 M  
f
, OSCILLATOR FREQUENCY (kHz)  
f
, OSCILLATOR FREQUENCY (kHz)  
OSC  
OSC  
1.72  
RTCT  
For RT u 5 Kf X  
Figure 2. Timing Resistor  
versus Oscillator Frequency  
Figure 3. Output Deadtime  
versus Oscillator Frequency  
V
CC  
A = -1.0  
T = 25°C  
A
= 15 V  
V
CC  
A = -1.0  
T = 25°C  
A
= 15 V  
V
V
2.55 V  
3.0 V  
2.5 V  
2.5 V  
2.0 V  
2.45 V  
0.5 ms/DIV  
1.0 ms/DIV  
Figure 4. Error Amp Small Signal  
Transient Response  
Figure 5. Error Amp Large Signal  
Transient Response  
http://onsemi.com  
4
 
UC3844B, UC3845B, UC2844B, UC2845B  
0
30  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
100  
80  
V
CC  
= 15 V  
V
V
= 15 V  
= 2.0 V to 4.0 V  
CC  
O
R = 100 k  
L
T = 25°C  
A
Gain  
60  
60  
T = 25°C  
A
90  
40  
T = 125°C  
A
Phase  
120  
150  
180  
20  
T = -ꢁ55°C  
A
0
-ꢁ20  
0
2.0  
4.0  
6.0  
8.0  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
10 M  
V , ERROR AMP OUTPUT VOLTAGE (V )  
O O  
f, FREQUENCY (Hz)  
Figure 6. Error Amp Open Loop Gain and  
Phase versus Frequency  
Figure 7. Current Sense Input Threshold  
versus Error Amp Output Voltage  
0
110  
V
= 15 V  
CC  
V
CC  
= 15 V  
R 0.1 W  
L
-ꢁ4.0  
-ꢁ8.0  
-ꢁ12  
-ꢁ16  
-ꢁ20  
-ꢁ24  
90  
70  
50  
T = -ꢂ55°C  
A
T = 125°C  
A
T = 25°C  
A
0
20  
40  
60  
80  
100  
120  
-ꢁ55  
-ꢁ25  
0
25  
50  
75  
100  
125  
I , REFERENCE SOURCE CURRENT (mA)  
ref  
T , AMBIENT TEMPERATURE (°C)  
A
Figure 8. Reference Voltage Change  
versus Source Current  
Figure 9. Reference Short Circuit Current  
versus Temperature  
V
= 15 V  
= 1.0 mA to 20 mA  
CC  
V
= 12 V to 25 V  
CC  
I
O
T = 25°C  
A
T = 25°C  
A
2.0 ms/DIV  
2.0 ms/DIV  
Figure 10. Reference Load Regulation  
Figure 11. Reference Line Regulation  
http://onsemi.com  
5
 
UC3844B, UC3845B, UC2844B, UC2845B  
0
-1.0  
-ꢁ2.0  
Source Saturation  
(Load to Ground)  
V
= 15 V  
80 ms Pulsed Load  
CC  
V
CC  
V
= 15 V  
C = 1.0 nF  
CC  
T = 25°C  
A
L
90  
%
120 Hz Rate  
T = 25°C  
A
T = -ꢁ55°C  
A
3.0  
2.0  
1.0  
0
T = -ꢁ55°C  
A
T = 25°C  
A
10  
%
Sink Saturation  
)
GND  
600  
(Load to V  
CC  
0
200  
400  
800  
50 ns/DIV  
Iꢁ , OUTPUT LOAD CURRENT (mA)  
O
Figure 12. Output Saturation Voltage  
versus Load Current  
Figure 13. Output Waveform  
25  
V
= 30 V  
C = 15 pF  
CC  
L
20  
15  
10  
5
T = 25°C  
A
R = 10 k  
T
C = 3.3 nF  
T
V
FB  
= 0 V  
I
= 0 V  
Sense  
T = 25°C  
A
0
0
10  
20  
, SUPPLY VOLTAGE (V)  
30  
40  
100 ns/DIV  
V
CC  
Figure 14. Output Cross Conduction  
Figure 15. Supply Current versus Supply Voltage  
PIN FUNCTION DESCRIPTION  
Pin  
8Pin  
14Pin  
Function  
Description  
1
2
1
3
Compensation This pin is the Error Amplifier output and is made available for loop compensation.  
Voltage  
This is the inverting input of the Error Amplifier. It is normally connected to the switching power  
supply output through a resistor divider.  
Feedback  
3
4
5
7
Current Sense A voltage proportional to inductor current is connected to this input. The PWM uses this  
information to terminate the output switch conduction.  
R /C  
The Oscillator frequency and maximum Output duty cycle are programmed by connecting resistor  
R to V and capacitor C to ground. Oscillator operation to 1.0 kHz is possible.  
T
T
T
ref  
T
5
6
GND  
This pin is the combined control circuitry and power ground.  
10  
Output  
This output directly drives the gate of a power MOSFET. Peak currents up to 1.0 A are sourced  
and sunk by this pin. The output switches at onehalf the oscillator frequency.  
7
8
12  
14  
8
V
This pin is the positive supply of the control IC.  
CC  
V
This is the reference output. It provides charging current for capacitor C through resistor R .  
T T  
ref  
Power  
Ground  
This pin is a separate power ground return that is connected back to the power source. It is used  
to reduce the effects of switching transient noise on the control circuitry.  
11  
V
The Output high state (V ) is set by the voltage applied to this pin. With a separate power source  
C
OH  
connection, it can reduce the effects of switching transient noise on the control circuitry.  
This pin is the control circuitry ground return and is connected back to the powersource ground.  
No connection. These pins are not internally connected.  
9
GND  
NC  
2,4,6,13  
http://onsemi.com  
6
UC3844B, UC3845B, UC2844B, UC2845B  
OPERATING DESCRIPTION  
The UC3844B, UC3845B series are high performance,  
Comparator. This guarantees that no drive pulses appear at  
fixed frequency, current mode controllers. They are  
specifically designed for OffLine and DCDC converter  
applications offering the designer a costeffective solution  
with minimal external components. A representative block  
diagram is shown in Figure 16.  
the Output (Pin 6) when Pin 1 is at its lowest state (V ).  
OL  
This occurs when the power supply is operating and the load  
is removed, or at the beginning of a softstart interval  
(Figures 21, 22). The Error Amp minimum feedback  
resistance is limited by the amplifier’s source current  
(0.5 mA) and the required output voltage (V ) to reach the  
comparator’s 1.0 V clamp level:  
OH  
Oscillator  
The oscillator frequency is programmed by the values  
selected for the timing components R and C . Capacitor C  
is charged from the 5.0 V reference through resistor R to  
3.0 (1.0 V) + 1.4 V  
Rf(min)  
= 8800 W  
T
T
T
0.5 mA  
T
approximately 2.8 V and discharged to 1.2 V by an internal  
Current Sense Comparator and PWM Latch  
current sink. During the discharge of C , the oscillator  
T
The UC3844B, UC3845B operate as a current mode  
controller, whereby output switch conduction is initiated by  
the oscillator and terminated when the peak inductor current  
reaches the threshold level established by the Error  
Amplifier Output/Compensation (Pin 1). Thus the error  
generates an internal blanking pulse that holds the center  
input of the NOR gate high. This causes the Output to be in  
a low state, thus producing a controlled amount of output  
deadtime. An internal flipflop has been incorporated in the  
UCX844/5B which blanks the output off every other clock  
cycle by holding one of the inputs of the NOR gate high. This  
signal controls the peak inductor current on  
a
cyclebycyclebasis. The Current Sense Comparator PWM  
Latch configuration used ensures that only a single pulse  
appears at the Output during any given oscillator cycle. The  
inductor current is converted to a voltage by inserting the  
in combination with the C discharge period yields output  
T
deadtimes programmable from 50% to 70%. Figure 2 shows  
R
T
versus Oscillator Frequency and Figure 3, Output  
Deadtime versus Frequency, both for given values of C .  
T
groundreferenced sense resistor R in series with the  
S
Note that many values of R and C will give the same  
T
T
source of output switch Q1. This voltage is monitored by the  
Current Sense Input (Pin 3) and compared to a level derived  
from the Error Amp Output. The peak inductor current under  
normal operating conditions is controlled by the voltage at  
Pin 1 where:  
oscillator frequency but only one combination will yield a  
specific output deadtime at a given frequency. The oscillator  
thresholds are temperature compensated to within 6%  
at 50 kHz. Also, because of industry trends moving the  
UC384X into higher and higher frequency applications, the  
UC384XB is guaranteed to within 10% at 250 kHz.  
In many noisesensitive applications it may be desirable  
to frequencylock the converter to an external system clock.  
This can be accomplished by applying a clock signal to the  
circuit shown in Figure 18. For reliable locking, the  
freerunning oscillator frequency should be set about 10%  
less than the clock frequency. A method for multiunit  
synchronization is shown in Figure 19. By tailoring the  
clock waveform, accurate Output duty cycle clamping can  
be achieved to realize output deadtimes of greater than 70%.  
V(Pin 1) 1.4 V  
Ipk  
=
3 RS  
Abnormal operating conditions occur when the power  
supply output is overloaded or if output voltage sensing is  
lost. Under these conditions, the Current Sense Comparator  
threshold will be internally clamped to 1.0 V. Therefore the  
maximum peak switch current is:  
1.0 V  
Ipk(max)  
=
RS  
When designing a high power switching regulator it  
becomes desirable to reduce the internal clamp voltage in order  
Error Amplifier  
A fully compensated Error Amplifier with access to the  
inverting input and output is provided. It features a typical  
dc voltage gain of 90 dB, and a unity gain bandwidth of  
1.0 MHz with 57 degrees of phase margin (Figure 6). The  
noninverting input is internally biased at 2.5 V and is not  
pinned out. The converter output voltage is typically divided  
down and monitored by the inverting input. The maximum  
input bias current is 2.0 mA which can cause an output  
voltage error that is equal to the product of the input bias  
current and the equivalent input divider source resistance.  
The Error Amp Output (Pin 1) is provided for external  
loop compensation (Figure 29). The output voltage is offset  
by two diode drops (1.4 V) and divided by three before it  
connects to the inverting input of the Current Sense  
to keep the power dissipation of R to a reasonable level. A  
S
simple method to adjust this voltage is shown in Figure 20. The  
two external diodes are used to compensate the internal diodes,  
yielding a constant clamp voltage over temperature. Erratic  
operation due to noise pickup can result if there is an excessive  
reduction of the I  
clamp voltage.  
pk(max)  
A narrow spike on the leading edge of the current  
waveform can usually be observed and may cause the power  
supply to exhibit an instability when the output is lightly  
loaded. This spike is due to the power transformer  
interwinding capacitance and output rectifier recovery time.  
The addition of an RC filter on the Current Sense Input with  
a time constant that approximates the spike duration will  
usually eliminate the instability (refer to Figure 24).  
http://onsemi.com  
7
UC3844B, UC3845B, UC2844B, UC2845B  
V
CC  
V
in  
V
CC 7(12)  
36V  
V
ref  
Reference  
Regulator  
8(14)  
(See  
Text)  
+
-
V
CC  
UVLO  
R
R
V
C
Internal  
Bias  
2.5V  
R
C
T
7(11)  
+
3.6V  
V
ref  
UVLO  
-
Output  
Q1  
Oscillator  
4(7)  
6(10)  
T
T
+
1.0mA  
S
Power Ground  
2R  
Q
Voltage  
Feedback  
Input  
PWM  
Latch  
R
5(8)  
2(3)  
1(1)  
R
Error  
Amplifier  
1.0V  
Current Sense Input  
Output/  
Compensation  
Current Sense  
Comparator  
3(5)  
R
S
GND 5(9)  
Pin numbers adjacent to terminals are for the 8-pin dual-in-line package.  
Pin numbers in parenthesis are for the D suffix SOIC-14 package.  
= Sink Only Positive True Logic  
Figure 16. Representative Block Diagram  
Capacitor C  
T
Latch “Set"  
Input  
Output/  
Compensation  
Current Sense  
Input  
Latch “Reset"  
Input  
Output  
Small R /Large C  
T
T
Large R /Small C  
T
T
Figure 17. Timing Diagram  
http://onsemi.com  
8
UC3844B, UC3845B, UC2844B, UC2845B  
Undervoltage Lockout  
designer added flexibility in tailoring the drive voltage  
Two undervoltage lockout comparators have been  
incorporated to guarantee that the IC is fully functional  
before the output stage is enabled. The positive power  
supply terminal (V ) and the reference output (V ) are  
each monitored by separate comparators. Each has builtin  
hysteresis to prevent erratic output behavior as their  
independent of V . A Zener clamp is typically connected  
to this input when driving power MOSFETs in systems  
CC  
where V is greater than 20 V. Figure 23 shows proper  
CC  
power and control ground connections in a currentsensing  
power MOSFET application.  
CC  
ref  
Reference  
respective thresholds are crossed. The V  
comparator  
CC  
The 5.0 V bandgap reference is trimmed to 1.0%  
upper and lower thresholds are 16 V/10 V for the UCX844B,  
tolerance at T = 25°C on the UC284XB, and 2.0% on the  
J
and 8.4 V/7.6 V for the UCX845B. The V comparator  
ref  
UC384XB. Its primary purpose is to supply charging current  
to the oscillator timing capacitor. The reference has  
shortcircuit protection and is capable of providing in  
excess of 20 mA for powering additional control system  
circuitry.  
upper and lower thresholds are 3.6 V/3.4 V. The large  
hysteresis and low startup current of the UCX844B makes  
it ideally suited in offline converter applications where  
efficient bootstrap startup techniques are required  
(Figure 30). The UCX845B is intended for lower voltage  
dcdc converter applications. A 36 V Zener is connected as  
Design Considerations  
a shunt regulator from V to ground. Its purpose is to  
CC  
Do not attempt to construct the converter on  
wirewrap or plugin prototype boards. High frequency  
circuit layout techniques are imperative to prevent  
pulsewidth jitter. This is usually caused by excessive noise  
pickup imposed on the Current Sense or Voltage Feedback  
inputs. Noise immunity can be improved by lowering circuit  
impedances at these points. The printed circuit layout should  
contain a ground plane with lowcurrent signal and  
highcurrent switch and output grounds returning on  
separate paths back to the input filter capacitor. Ceramic  
protect the IC from excessive voltage that can occur during  
system startup. The minimum operating voltage for the  
UCX844B is 11 V and 8.2 V for the UCX845B.  
Output  
These devices contain a single totem pole output stage that  
was specifically designed for direct drive of power  
MOSFETs. It is capable of up to 1.0 A peak drive current  
and has a typical rise and fall time of 50 ns with a 1.0 nF load.  
Additional internal circuitry has been added to keep the  
Output in a sinking mode whenever an undervoltage lockout  
is active. This characteristic eliminates the need for an  
external pulldown resistor.  
bypass capacitors (0.1 mF) connected directly to V , V ,  
CC  
C
and V may be required depending upon circuit layout.  
ref  
This provides a low impedance path for filtering the high  
frequency noise. All high current loops should be kept as  
short as possible using heavy copper runs to minimize  
radiated EMI. The Error Amp compensation circuitry and  
the converter output voltage divider should be located close  
to the IC and as far as possible from the power switch and  
other noisegenerating components.  
The SOIC14 surface mount package provides separate  
pins for V (output supply) and Power Ground. Proper  
C
implementation will significantly reduce the level of  
switching transient noise imposed on the control circuitry.  
This becomes particularly useful when reducing the I  
pk(max)  
clamp level. The separate V supply input allows the  
C
V
ref  
8(14)  
8(14)  
R
R
R
R
A
B
Bias  
Bias  
R
T
R
8
4
R
5.0k  
5.0k  
6
3
7
Osc  
2R  
Osc  
4(7)  
4(7)  
C
R
S
T
+
+
5
2
Q
0.01  
2R  
External  
Sync  
Input  
EA  
R
EA  
R
2(3)  
1(1)  
2(3)  
1(1)  
5.0k  
1
47  
C
MC1455  
5(9)  
5(9)  
To Additional  
UCX84XBs  
The diode clamp is required if the Sync amplitude is large enough to cause  
the bottom side of C to go more than 300 mV below ground.  
1.44  
(R ꢁ )ꢁ 2R )C  
R
A
fꢁ +ꢁ  
D
+ꢁ  
(max)  
T
R ꢁ )ꢁ 2R  
A B  
A
B
Figure 18. External Clock Synchronization  
Figure 19. External Duty Cycle Clamp and  
MultiUnit Synchronization  
http://onsemi.com  
9
UC3844B, UC3845B, UC2844B, UC2845B  
V
V
in  
CC  
7(12)  
5.0V Ref  
8(14)  
R
R
5.0V Ref  
Bias  
8(14)  
R
R
+
-
Bias  
+
-
7(11)  
6(10)  
+
-
Osc  
Q1  
4(7)  
T
Osc  
+
4(7)  
T
S
R
1.0mA  
V
+
Clamp  
1.0V  
2(3)  
1.0M  
1(1)  
Q
R
R
2
S
R
1.0 mA  
2R  
2R  
R
Q
EA  
5(8)  
3(5)  
EA  
2(3)  
1(1)  
R
1.0V  
Comp/Latch  
R
S
C
5(9)  
1
5(9)  
t
3600C in mF  
Soft-Start  
R R  
1 2  
R ) R  
1 2  
1.67  
2
1
Where: 0 V  
1.0 V  
-3  
ǒ
Ǔ
Clamp  
V
Clamp  
+ 0.33x10  
R
R
ǒ
) 1Ǔ  
V
Clamp  
R
I
[ꢁ  
pk(max)  
S
Figure 20. Adjustable Reduction of Clamp Level  
Figure 21. SoftStart Circuit  
V
V
in  
CC  
V
V
in  
CC  
R
ꢁI ꢁr  
S pk DS(on)  
V
[ꢁ  
Pinꢁ5  
(12)  
7(12)  
r
)ꢁ R  
S
DM(on)  
If: SENSEFET  
R
=
=
MTP10N10M  
200  
S
5.0V Ref  
5.0V Ref  
Then :ꢁ V  
[ꢁ 0.075ꢁI  
Pinꢁ5 pk  
8(14)  
+
-
R
R
+
-
Bias  
D
SENSEFET  
(11)  
(10)  
7(11)  
6(10)  
+
-
+
-
S
K
G
Q1  
Osc  
T
4(7)  
T
M
+
V
Clamp  
S
R
S
R
1.0 mA  
2R  
Q
Q
(8)  
(5)  
5(8)  
3(5)  
EA  
2(3)  
1(1)  
R
Comp/Latch  
Comp/Latch  
1.0V  
5(9)  
Power Ground:  
To Input Source  
Return  
R
2
R
1/4 W  
S
R
S
R
1
Control Circuitry Ground:  
To Pin (9)  
MPSA63  
1.67  
2
1
Where: 0 V  
1.0 V  
V
Clamp  
Clamp  
Virtually lossless current sensing can be achieved with the implementation  
of a SENSEFETt power switch. For proper operation during over-current  
R
R
ǒ
) 1Ǔ  
conditions, a reduction of the I  
Refer to Figures 20 and 22.  
clamp level must be implemented.  
pk(max)  
R ꢁR  
1
V
2
V
Clamp  
R
S
C
Clamp  
+ * Inƪ1 *ꢁ  
ƫꢁC  
t
I
[ꢁ  
SoftStart  
pk(max)  
3V  
R ) R  
1
2
Figure 22. Adjustable Buffered Reduction of  
Figure 23. Current Sensing Power MOSFET  
Clamp Level with SoftStart  
http://onsemi.com  
10  
 
UC3844B, UC3845B, UC2844B, UC2845B  
V
V
in  
CC  
7(12)  
5.0V Ref  
+
-
7(11)  
+
The addition of the RC filter will eliminate  
instability caused by the leading edge spike  
on the current waveform.  
-
Q1  
T
6(10)  
5(8)  
S
R
Q
3(5)  
R
Comp/Latch  
C
R
S
Figure 24. Current Waveform Spike Suppression  
V
V
in  
CC  
I
B
7(12)  
+
0
V
in  
Base Charge  
Removal  
5.0V Ref  
-
+
-
C1  
+
-
7(11)  
R
Q1  
g
Q1  
6(10)  
T
6(10)  
S
R
Q
5(8)  
3(5)  
5(8)  
3(5)  
Comp/Latch  
R
S
R
S
Series gate resistor R will damp any high frequency  
g
The totem pole output can furnish negative base current  
for enhanced transistor turn-off, with the addition of  
capacitor C .  
parasitic oscillations caused by the MOSFET input  
capacitance and any series wiring inductance in the  
gate-source circuit.  
1
Figure 25. MOSFET Parasitic Oscillations  
Figure 26. Bipolar Transistor Drive  
http://onsemi.com  
11  
UC3844B, UC3845B, UC2844B, UC2845B  
V
in  
V
CC  
7(12)  
Isolation  
Boundary  
5.0V Ref  
+
-
V
Waveforms  
+
GS  
+
0
-
+
-
7(11)  
Q1  
0
-
50% DC  
25% DC  
T
6(10)  
5(8)  
S
R
V
- 1.4  
Q
(Pinꢁ1)  
N
S
p
ǒ Ǔ  
I
=
pk  
N
3 R  
S
R
3(5)  
Comp/Latch  
C
R
N
S
S
N
P
Figure 27. Isolated MOSFET Drive  
8(14)  
R
Bias  
R
Osc  
4(7)  
+
1.0 mA  
2R  
R
2(3)  
1(1)  
EA  
MCR  
101  
2N  
3905  
5(9)  
2N  
3903  
The MCR101 SCR must be selected for a holding of < 0.5 mA @ T  
. The  
A(min)  
simple two transistor circuit can be used in place of the SCR as shown. All  
resistors are 10 k.  
Figure 28. Latched Shutdown  
2.5V  
2.5V  
From V  
From V  
O
O
+
+
1.0mA  
1.0mA  
2R  
2R  
R
R
p
i
R
2(3)  
2(3)  
i
R
R
C
EA  
C
EA  
C
f
R
f
R
p
f
f
R
R
d
d
1(1)  
1(1)  
R 8.8k  
f
5(9)  
5(9)  
Error Amp compensation circuit for stabilizing any current mode topology except  
for boost and flyback converters operating with continuous inductor current.  
Error Amp compensation circuit for stabilizing current mode boost  
and flyback topologies operating with continuous inductor current.  
Figure 29. Error Amplifier Compensation  
http://onsemi.com  
12  
UC3844B, UC3845B, UC2844B, UC2845B  
L1  
MBR1635  
2200  
5.0V/4.0A  
4.7W  
+
T1  
4.7k  
+
+
+
+
250  
MDA  
202  
3300  
pF  
1000  
56k  
115 Vac  
5.0V RTN  
12V/0.3A  
MUR110  
1000  
1N4935 1N4935  
L2  
10  
68  
7(12)  
+
+
47  
100  
12V RTN  
5.0V Ref  
1000  
10  
L3  
1N4937  
+
+
0.01  
8(14)  
33k  
+
-
R
R
-12V/0.3A  
MUR110  
Bias  
7(11)  
6(10)  
+
-
680pF  
1N4937  
2.7k  
22  
Osc  
4(7)  
2(3)  
MTP  
4N50  
T
1.0nF  
+
1N5819  
S
R
18k  
Q
5(8)  
3(5)  
100  
pF  
EA  
150k  
1(1)  
1.0k  
Comp/Latch  
4.7k  
0.5  
470pF  
5(9)  
T1 -Primary: 45 Turns #26 AWG  
L1  
- 15 mH at 5.0 A, Coilcraft Z7156  
L2, L3  
- 25 mH at 5.0 A, Coilcraft Z7157  
Secondary 12 V: 9 Turns #30 AWG (2 Strands) Bifiliar Wound  
Secondary 5.0 V: 4 Turns (six strands) #26 Hexfiliar Wound  
Secondary Feedback: 10 Turns #30 AWG (2 strands) Bifiliar Wound  
Core: Ferroxcube EC35-3C8  
Bobbin: Ferroxcube EC35PCB1  
Gap: 0.10" for a primary inductance of 1.0 mH  
Figure 30. 7 W OffLine Flyback Regulator  
Test  
Conditions  
Results  
Line Regulation: 5.0 V  
12 V  
V
in  
= 95 Vac to 130 Vac  
D = 50 mV or 0.5%  
D = 24 mV or 0.1%  
Load Regulation: 5.0 V  
12 V  
V
in  
V
in  
= 115 Vac, I = 1.0 A to 4.0 A  
D = 300 mV or 3.0%  
D = 60 mV or 0.25%  
out  
= 115 Vac, I = 100 mA to 300 mA  
out  
Output Ripple:  
5.0 V  
12 V  
V
in  
= 115 Vac  
40 mV  
80 mV  
pp  
pp  
Efficiency  
V
in  
= 115 Vac  
70%  
All outputs are at nominal load currents unless otherwise noted.  
http://onsemi.com  
13  
UC3844B, UC3845B, UC2844B, UC2845B  
Output Load Regulation  
(Open Loop Configuration)  
V
in  
= 15V  
7(12)  
I
O
(mA)  
V (V)  
O
UC3845B  
+
47  
0
2
9
18  
36  
29.9  
28.8  
28.3  
27.4  
24.4  
34V  
Reference  
Regulator  
8(14)  
10k  
V
CC  
UVLO  
+
-
R
R
1N5819  
2.5V  
7(11)  
6(10)  
Internal  
Bias  
+
-
V
ref  
UVLO  
3.6V  
15 10  
1N5819  
Osc  
V
O
2 (V )  
in  
+
4(7)  
2(3)  
1.0nF  
T
+
+
Connect to  
Pin 2 for  
closed loop  
operation.  
47  
S
R
0.5mA  
5(8)  
3(5)  
R2  
R1  
2R  
Q
PWM  
Latch  
1.0V  
R
Error  
Amplifier  
Current Sense  
Comparator  
1(1)  
R2  
R1  
ǒ
) 1Ǔ  
V
O
= 2.5  
5(9)  
The capacitor's equivalent series resistance must limit the Drive Output current to 1.0 A. An additional series resistor  
may be required when using tantalum or other low ESR capacitors. The converter's output can provide excellent line  
and load regulation by connecting the R2/R1 resistor divider as shown.  
Figure 31. StepUp Charge Pump Converter  
V
in  
= 15V  
Output Load Regulation  
UC3845B  
7(12)  
I
O
(mA)  
V (V)  
O
+
47  
0
2
9
18  
32  
14.4  
13.2  
12.5  
11.7  
10.6  
34V  
Reference  
Regulator  
8(14)  
R
R
+
-
V
CC  
UVLO  
2.5V  
7(11)  
6(10)  
Internal  
Bias  
10k  
+
-
V
ref  
UVLO  
3.6V  
15 10  
1N5819  
V
O
-V  
in  
Osc  
4(7)  
2(3)  
1.0nF  
T
+
1N5819  
+
47  
S
R
0.5mA  
5(8)  
3(5)  
2R  
Q
PWM  
Latch  
1.0V  
R
Error  
Amplifier  
Current Sense  
Comparator  
1(1)  
5(9)  
The capacitor's equivalent series resistance must limit the Drive Output current to 1.0 A.  
An additional series resistor may be required when using tantalum or other low ESR capacitors.  
Figure 32. VoltageInverting Charge Pump Converter  
http://onsemi.com  
14  
UC3844B, UC3845B, UC2844B, UC2845B  
ORDERING INFORMATION  
Device  
Operating Temperature Range  
Package  
Shipping  
UC384xBDG  
SOIC14  
(PbFree)  
55 Units/Rail  
2500 Tape & Reel  
98 Units/Rail  
UC384xBDR2G  
UC384xBD1G  
SOIC14  
(PbFree)  
SOIC8  
(PbFree)  
T = 0° to +70°C  
A
UC384xBD1R2G  
UC384xBNG  
SOIC8  
(PbFree)  
2500 Tape & Reel  
50 Units/Rail  
PDIP8  
(PbFree)  
UC284xBDG  
SOIC14  
(PbFree)  
55 Units/Rail  
UC284xBDR2G  
UC284xBD1G  
SOIC14  
(PbFree)  
2500 Tape & Reel  
98 Units/Rail  
SOIC8  
(PbFree)  
T = 25° to +85°C  
A
UC284xBD1R2G  
UC284xBNG  
SOIC8  
(PbFree)  
2500 Tape & Reel  
50 Units/Rail  
PDIP8  
(PbFree)  
UC384xBVDG  
UC384xBVDR2G  
UC384xBVD1G  
UC384xBVD1R2G  
UC384xBVNG  
NCV3845BVD1R2G*  
SOIC14  
(PbFree)  
55 Units/Rail  
SOIC14  
(PbFree)  
2500 Tape & Reel  
98 Units/Rail  
SOIC8  
(PbFree)  
T = 40° to +105°C  
A
SOIC8  
(PbFree)  
2500 Tape & Reel  
50 Units/Rail  
PDIP8  
(PbFree)  
SOIC8  
(PbFree)  
2500 Tape & Reel  
T = 40° to +125°C  
A
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
x indicates either a 4 or 5 to define specific device part numbers.  
*NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AECQ100 Qualified and PPAP  
Capable.  
http://onsemi.com  
15  
UC3844B, UC3845B, UC2844B, UC2845B  
MARKING DIAGRAMS  
PDIP8  
N SUFFIX  
CASE 626  
8
1
8
1
8
1
UC384xBN  
AWL  
YYWWG  
UC384xBVN  
AWL  
UC284xBN  
AWL  
YYWWG  
YYWWG  
SOIC14  
D SUFFIX  
CASE 751A  
14  
14  
14  
UC384xBDG  
AWLYWW  
UC384xBVDG  
AWLYWW  
UC284xBDG  
AWLYWW  
1
1
1
SOIC8  
D1 SUFFIX  
CASE 751  
8
8
8
1
384xB  
384xB  
ALYWV  
G
284xB  
ALYW  
G
ALYW  
G
1
1
x
= 4 or 5  
A
= Assembly Location  
WL, L = Wafer Lot  
YY, Y = Year  
WW, W = Work Week  
G or G = PbFree Package  
http://onsemi.com  
16  
UC3844B, UC3845B, UC2844B, UC2845B  
PACKAGE DIMENSIONS  
PDIP8  
N SUFFIX  
CASE 62605  
ISSUE N  
NOTES:  
D
A
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.  
E
2. CONTROLLING DIMENSION: INCHES.  
3. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-  
AGE SEATED IN JEDEC SEATING PLANE GAUGE GS3.  
4. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH  
OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE  
NOT TO EXCEED 0.10 INCH.  
H
8
5
4
E1  
5. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM  
PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR  
TO DATUM C.  
1
6. DIMENSION E3 IS MEASURED AT THE LEAD TIPS WITH THE  
LEADS UNCONSTRAINED.  
7. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE  
LEADS, WHERE THE LEADS EXIT THE BODY.  
8. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE  
CORNERS).  
NOTE 8  
c
b2  
B
END VIEW  
WITH LEADS CONSTRAINED  
NOTE 5  
TOP VIEW  
INCHES  
DIM MIN MAX  
−−−− 0.210  
A1 0.015 −−−−  
A2 0.115 0.195  
MILLIMETERS  
A2  
A
MIN  
−−−  
0.38  
2.92  
0.35  
MAX  
5.33  
−−−  
4.95  
0.56  
e/2  
A
NOTE 3  
L
b
b2  
C
0.014 0.022  
0.060 TYP  
0.008 0.014  
0.355 0.400  
1.52 TYP  
0.20  
9.02  
0.13  
7.62  
6.10  
0.36  
10.16  
−−−  
8.26  
7.11  
D
SEATING  
D1 0.005  
0.300 0.325  
E1 0.240 0.280  
−−−−  
PLANE  
A1  
D1  
E
C
M
e
eB  
L
0.100 BSC  
−−−− 0.430  
0.115 0.150  
2.54 BSC  
−−−  
2.92  
−−−  
10.92  
3.81  
10°  
e
eB  
8X  
b
END VIEW  
M
−−−−  
10°  
NOTE 6  
M
M
M
B
0.010  
C A  
SIDE VIEW  
http://onsemi.com  
17  
UC3844B, UC3845B, UC2844B, UC2845B  
PACKAGE DIMENSIONS  
SOIC8 NB  
CASE 75107  
ISSUE AK  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
X−  
ANSI Y14.5M, 1982.  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
8
5
4
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 75101 THRU 75106 ARE OBSOLETE. NEW  
STANDARD IS 75107.  
S
M
M
B
0.25 (0.010)  
Y
1
K
Y−  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
C
N X 45  
_
SEATING  
PLANE  
Z−  
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
M
J
H
D
8
0
_
_
_
_
0.25  
5.80  
0.50 0.010  
6.20 0.228  
M
S
S
X
0.25 (0.010)  
Z
Y
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
http://onsemi.com  
18  
UC3844B, UC3845B, UC2844B, UC2845B  
PACKAGE DIMENSIONS  
SOIC14  
CASE 751A03  
ISSUE H  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
A−  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
14  
8
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.127  
(0.005) TOTAL IN EXCESS OF THE D  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
B−  
P 7 PL  
M
M
B
0.25 (0.010)  
7
1
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
F
R X 45  
_
C
A
B
C
D
F
G
J
K
M
P
R
8.55  
3.80  
1.35  
0.35  
0.40  
8.75 0.337 0.344  
4.00 0.150 0.157  
1.75 0.054 0.068  
0.49 0.014 0.019  
1.25 0.016 0.049  
0.050 BSC  
0.25 0.008 0.009  
0.25 0.004 0.009  
T−  
SEATING  
PLANE  
J
M
K
1.27 BSC  
D 14 PL  
0.19  
0.10  
0
M
S
S
0.25 (0.010)  
T
B
A
7
0
7
_
_
_
_
5.80  
0.25  
6.20 0.228 0.244  
0.50 0.010 0.019  
SOLDERING FOOTPRINT  
7X  
7.04  
14X  
1.52  
1
14X  
0.58  
1.27  
PITCH  
DIMENSIONS: MILLIMETERS  
SENSEFET is a trademark of Semiconductor Components Industries, LLC.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,  
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. SCILLC  
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications  
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC  
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where  
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,  
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture  
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
UC3844B/D  

相关型号:

UC2844BD1R2

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
ONSEMI

UC2844BD1R2

1A SWITCHING CONTROLLER, 500kHz SWITCHING FREQ-MAX, PDSO8, PLASTIC, SO-8
MOTOROLA

UC2844BD1R2G

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
ONSEMI

UC2844BDG

暂无描述
ONSEMI

UC2844BDR2

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
ONSEMI

UC2844BDR2

1A SWITCHING CONTROLLER, 500kHz SWITCHING FREQ-MAX, PDSO14, PLASTIC, SO-14
MOTOROLA

UC2844BDR2G

High Performance Current Mode Controllers
ONSEMI

UC2844BG

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
ONSEMI

UC2844BL

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
ONSEMI

UC2844BN

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
ONSEMI

UC2844BN

HIGH PERFORMANCE CURRENT MODE PWM CONTROLLER
STMICROELECTR

UC2844BNG

High Performance Current Mode PWM Controller, 8 LEAD PDIP, 50-TUBE
ONSEMI