UC384XBDR2 [ONSEMI]

HIGH PERFORMANCE CURRENT MODE CONTROLLERS; 高性能电流模式控制器
UC384XBDR2
型号: UC384XBDR2
厂家: ONSEMI    ONSEMI
描述:

HIGH PERFORMANCE CURRENT MODE CONTROLLERS
高性能电流模式控制器

控制器
文件: 总20页 (文件大小:295K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UC3842B, UC3843B,  
UC2842B, UC2843B,  
NCV3843BV  
High Performance  
Current Mode Controllers  
http://onsemi.com  
The UC3842B, UC3843B series are high performance fixed  
frequency current mode controllers. They are specifically designed for  
Off–Line and dc–to–dc converter applications offering the designer a  
cost–effective solution with minimal external components. These  
integrated circuits feature a trimmed oscillator for precise duty cycle  
control, a temperature compensated reference, high gain error  
amplifier, current sensing comparator, and a high current totem pole  
output ideally suited for driving a power MOSFET.  
PDIP–8  
N SUFFIX  
CASE 626  
8
1
Also included are protective features consisting of input and  
reference undervoltage lockouts each with hysteresis, cycle–by–cycle  
current limiting, programmable output deadtime, and a latch for single  
pulse metering.  
SO–8  
D1 SUFFIX  
CASE 751  
8
1
These devices are available in an 8–pin dual–in–line and surface  
mount (SO–8) plastic package as well as the 14–pin plastic surface  
mount (SO–14). The SO–14 package has separate power and ground  
pins for the totem pole output stage.  
The UCX842B has UVLO thresholds of 16 V (on) and 10 V (off),  
ideally suited for off–line converters. The UCX843B is tailored for  
lower voltage applications having UVLO thresholds of 8.5 V (on) and  
7.6 V (off).  
SO–14  
D SUFFIX  
CASE 751A  
14  
1
PIN CONNECTIONS  
Trimmed Oscillator for Precise Frequency Control  
Oscillator Frequency Guaranteed at 250 kHz  
Current Mode Operation to 500 kHz  
1
2
3
4
8
7
6
5
Compensation  
Voltage Feedback  
Current Sense  
V
V
ref  
CC  
Output  
Gnd  
R /C  
T
T
Automatic Feed Forward Compensation  
Latching PWM for Cycle–By–Cycle Current Limiting  
Internally Trimmed Reference with Undervoltage Lockout  
High Current Totem Pole Output  
(Top View)  
Compensation  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
V
ref  
NC  
Voltage Feedback  
NC  
NC  
V
V
CC  
Undervoltage Lockout with Hysteresis  
C
Low Startup and Operating Current  
Current Sense  
NC  
Output  
V
CC  
7(12)  
Gnd  
8
R /C  
T
Power Ground  
T
V
V
CC  
ref  
5.0V  
Reference  
Undervoltage  
Lockout  
(Top View)  
8(14)  
R
R
V
ref  
V
C
Undervoltage  
Lockout  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
7(11)  
dimensions section on page 16 of this data sheet.  
R /C  
T
Output  
T
Oscillator  
6(10)  
4(7)  
Latching  
PWM  
Power  
Ground  
5(8)  
DEVICE MARKING INFORMATION  
See general marking information in the device marking  
section on page 17 of this data sheet.  
Voltage  
Feedback  
Input  
+
-
2(3)  
Error  
Amplifier  
Current  
Sense  
Input  
Output  
Compensation  
3(5)  
1(1)  
Gnd 5(9)  
Pin numbers in parenthesis are for the D suffix SO-14 package.  
Figure 1. Simplified Block Diagram  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
December, 2001 – Rev. 3  
UC3842B/D  
UC3842B, UC3843B, UC2842B, UC2843B, NCV3843BV  
MAXIMUM RATINGS  
Rating  
Symbol  
, V  
Value  
Unit  
Bias and Driver Voltages (Zero Series Impedance, see also Total Device spec)  
V
30  
V
CC  
C
Total Power Supply and Zener Current  
Output Current, Source or Sink (Note 1)  
Output Energy (Capacitive Load per Cycle)  
Current Sense and Voltage Feedback Inputs  
Error Amp Output Sink Current  
(I + I )  
30  
mA  
A
CC  
Z
I
O
1.0  
5.0  
W
µJ  
V
V
in  
– 0.3 to + 5.5  
10  
I
O
mA  
Power Dissipation and Thermal Characteristics  
D Suffix, Plastic Package, SO–14 Case 751A  
Maximum Power Dissipation @ T = 25°C  
Thermal Resistance, Junction–to–Air  
P
862  
145  
mW  
°C/W  
A
D
R
θ
JA  
D1 Suffix, Plastic Package, SO–8 Case 751  
Maximum Power Dissipation @ T = 25°C  
Thermal Resistance, Junction–to–Air  
N Suffix, Plastic Package, Case 626  
P
702  
178  
mW  
°C/W  
A
D
R
θ
JA  
Maximum Power Dissipation @ T = 25°C  
Thermal Resistance, Junction–to–Air  
P
1.25  
100  
W
°C/W  
A
D
R
θ
JA  
J
Operating Junction Temperature  
T
+150  
°C  
°C  
Operating Ambient Temperature  
UC3842B, UC3843B  
T
A
0 to + 70  
UC2842B, UC2843B  
UC3842BV, UC3843BV, NCV3843BV  
– 25 to + 85  
–40 to +105  
Storage Temperature Range  
T
stg  
– 65 to +150  
°C  
ELECTRICAL CHARACTERISTICS (V = 15 V [Note 2], R = 10 k, C = 3.3 nF. For typical values T = 25°C, for min/max values  
CC  
T
T
A
T is the operating ambient temperature range that applies [Note 3], unless otherwise noted.)  
A
UC284XB  
UC384XB, XBV  
Characteristics  
REFERENCE SECTION  
Reference Output Voltage (I = 1.0 mA, T = 25°C)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
V
ref  
4.95  
5.0  
2.0  
3.0  
0.2  
5.05  
20  
25  
4.9  
5.0  
2.0  
3.0  
0.2  
5.1  
20  
V
mV  
mV  
mV/°C  
V
O
J
Line Regulation (V = 12 V to 25 V)  
Reg  
CC  
line  
load  
S
Load Regulation (I = 1.0 mA to 20 mA)  
Reg  
25  
O
Temperature Stability  
T
Total Output Variation over Line, Load, and Temperature  
Output Noise Voltage (f = 10 Hz to 10 kHz, T = 25°C)  
V
ref  
4.9  
5.1  
4.82  
5.18  
V
n
50  
50  
µV  
J
Long Term Stability (T = 125°C for 1000 Hours)  
S
5.0  
– 85  
5.0  
– 85  
mV  
mA  
A
Output Short Circuit Current  
I
– 30  
–180  
– 30  
–180  
SC  
OSCILLATOR SECTION  
Frequency  
f
kHz  
OSC  
T = 25°C  
49  
48  
52  
55  
56  
49  
48  
52  
55  
56  
J
T = T  
to T  
high  
A
low  
T = 25°C (R = 6.2 k, C = 1.0 nF)  
225  
250  
275  
225  
250  
275  
J
T
T
Frequency Change with Voltage (V = 12 V to 25 V)  
f  
f  
/V  
/T  
0.2  
1.0  
1.6  
1.0  
0.2  
0.5  
1.6  
1.0  
%
%
CC  
OSC  
Frequency Change with Temperature, T = T  
to T  
high  
A
low  
OSC  
Oscillator Voltage Swing (Peak–to–Peak)  
V
V
OSC  
Discharge Current (V  
= 2.0 V)  
I
mA  
OSC  
dischg  
T = 25°C  
7.8  
7.5  
8.3  
8.8  
8.8  
7.8  
7.6  
7.2  
8.3  
8.8  
8.8  
8.8  
J
T = T  
to T  
to T  
(UC284XB, UC384XB)  
(UC384XBV)  
A
low  
low  
high  
high  
T = T  
A
1. Maximum Package power dissipation limits must be observed.  
2. Adjust V above the Startup threshold before setting to 15 V.  
CC  
3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
T
T
= 0°C for UC3842B, UC3843B; –25°C for UC2842B, UC2843B; –40°C for UC3842BV, UC3843BV  
= +70°C for UC3842B, UC3843B; +85°C for UC2842B, UC2843B; +105°C for UC3842BV, UC3843BV  
low  
high  
NCV3843BV: T = –40°C, T  
= +105°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and  
low  
high  
change control.  
http://onsemi.com  
2
UC3842B, UC3843B, UC2842B, UC2843B, NCV3843BV  
ELECTRICAL CHARACTERISTICS (V = 15 V [Note 4], R = 10 k, C = 3.3 nF. For typical values T = 25°C, for min/max values  
CC  
T
T
A
T is the operating ambient temperature range that applies [Note 5], unless otherwise noted.)  
A
UC284XB  
UC384XB, XBV  
Characteristics  
ERROR AMPLIFIER SECTION  
Voltage Feedback Input (V = 2.5 V)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
V
FB  
2.45  
2.5  
– 0.1  
90  
2.55  
–1.0  
2.42  
2.5  
– 0.1  
90  
2.58  
V
µA  
O
Input Bias Current (V = 5.0 V)  
I
IB  
– 2.0  
FB  
Open Loop Voltage Gain (V = 2.0 V to 4.0 V)  
A
VOL  
65  
0.7  
60  
65  
0.7  
60  
dB  
O
Unity Gain Bandwidth (T = 25°C)  
BW  
1.0  
70  
1.0  
70  
MHz  
dB  
J
Power Supply Rejection Ratio (V = 12 V to 25 V)  
PSRR  
CC  
Output Current  
mA  
Sink (V = 1.1 V, V = 2.7 V)  
I
Sink  
I
Source  
2.0  
– 0.5  
12  
–1.0  
2.0  
– 0.5  
12  
–1.0  
O
FB  
Source (V = 5.0 V, V = 2.3 V)  
O
FB  
Output Voltage Swing  
V
High State (R = 15 k to ground, V = 2.3 V)  
V
OH  
5.0  
6.2  
5.0  
6.2  
L
FB  
Low State (R = 15 k to V , V = 2.7 V)  
V
OL  
L
ref  
FB  
(UC284XB, UC384XB)  
(UC384XBV)  
0.8  
1.1  
0.8  
0.8  
1.1  
1.2  
CURRENT SENSE SECTION  
Current Sense Input Voltage Gain (Notes 6 & 7)  
(UC284XB, UC384XB)  
A
V/V  
V
V
2.85  
3.0  
3.15  
2.85  
2.85  
3.0  
3.0  
3.15  
3.25  
(UC384XBV)  
Maximum Current Sense Input Threshold (Note 6)  
(UC284XB, UC384XB)  
V
th  
0.9  
1.0  
1.1  
0.9  
0.85  
1.0  
1.0  
1.1  
1.1  
(UC384XBV)  
Power Supply Rejection Ratio (V = 12 V to 25 V, Note 6)  
PSRR  
70  
70  
dB  
µA  
ns  
CC  
Input Bias Current  
I
– 2.0  
150  
–10  
300  
– 2.0  
150  
–10  
300  
IB  
PLH(In/Out)  
Propagation Delay (Current Sense Input to Output)  
t
OUTPUT SECTION  
Output Voltage  
V
Low State (I  
(I  
= 20 mA)  
= 200 mA) (UC284XB, UC384XB)  
(UC384XBV)  
= 20 mA) (UC284XB, UC384XB)  
(UC384XBV)  
= 200 mA)  
V
13  
12  
0.1  
1.6  
13.5  
0.4  
2.2  
13  
12.9  
12  
0.1  
1.6  
1.6  
13.5  
13.5  
13.4  
0.4  
2.2  
2.3  
Sink  
Sink  
OL  
High State (I  
(I  
V
OH  
Source  
13.4  
Source  
Output Voltage with UVLO Activated (V = 6.0 V, I  
= 1.0 mA)  
V
0.1  
50  
50  
1.1  
150  
150  
0.1  
50  
50  
1.1  
150  
150  
V
CC  
Sink  
OL(UVLO)  
Output Voltage Rise Time (C = 1.0 nF, T = 25°C)  
t
r
ns  
ns  
L
J
Output Voltage Fall Time (C = 1.0 nF, T = 25°C)  
t
f
L
J
UNDERVOLTAGE LOCKOUT SECTION  
Startup Threshold (V  
UCX842B, BV  
)
V
V
V
CC  
th  
15  
7.8  
16  
8.4  
17  
9.0  
14.5  
7.8  
16  
8.4  
17.5  
9.0  
UCX843B, BV  
Minimum Operating Voltage After Turn–On (V  
UCX842B, BV  
)
V
CC(min)  
CC  
9.0  
7.0  
10  
7.6  
11  
8.2  
8.5  
7.0  
10  
7.6  
11.5  
8.2  
UCX843B, BV  
4. Adjust V above the Startup threshold before setting to 15 V.  
CC  
5. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
T
T
= 0°C for UC3842B, UC3843B; –25°C for UC2842B, UC2843B; –40°C for UC3842BV, UC3843BV  
= +70°C for UC3842B, UC3843B; +85°C for UC2842B, UC2843B; +105°C for UC3842BV, UC3843BV  
low  
high  
NCV3843BV: T = –40°C, T  
= +125°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and  
low  
high  
change control.  
6. This parameter is measured at the latch trip point with V = 0 V.  
FB  
V Output Compensation  
V Current Sense Input  
7. Comparator gain is defined as: A  
V
http://onsemi.com  
3
UC3842B, UC3843B, UC2842B, UC2843B, NCV3843BV  
ELECTRICAL CHARACTERISTICS (V = 15 V [Note 8], R = 10 k, C = 3.3 nF, for typical values T = 25°C, for min/max values  
CC  
T
T
A
T is the operating ambient temperature range that applies [Note 9], unless otherwise noted.)  
A
UC284XB  
UC384XB, BV  
Typ  
Characteristics  
Symbol  
Min  
Typ  
Max  
Min  
Max  
Unit  
PWM SECTION  
Duty Cycle  
%
Maximum (UC284XB, UC384XB)  
Maximum (UC384XBV)  
Minimum  
DC  
94  
96  
0
94  
93  
96  
96  
0
(max)  
DC  
(min)  
TOTAL DEVICE  
Power Supply Current  
Startup (V = 6.5 V for UCX843B,  
I
+ I  
mA  
V
CC  
C
0.3  
0.5  
0.3  
0.5  
CC  
Startup (V 14 V for UCX842B, BV)  
CC  
Operating (Note 8)  
12  
36  
17  
12  
36  
17  
Power Supply Zener Voltage (I = 25 mA)  
V
Z
30  
30  
CC  
8. Adjust V above the Startup threshold before setting to 15 V.  
CC  
9. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.  
T
T
= 0°C for UC3842B, UC3843B; –25°C for UC2842B, UC2843B; –40°C for UC3842BV, UC3843BV  
= +70°C for UC3842B, UC3843B; +85°C for UC2842B, UC2843B; +105°C for UC3842BV, UC3843BV  
low  
high  
NCV3843BV: T = –40°C, T  
= +125°C. Guaranteed by design. NCV prefix is for automotive and other applications requiring site and  
low  
high  
change control.  
80  
50  
100  
1. C = 10 nF  
T
2. C = 5.0 nF  
4
50  
T
3. C = 2.0 nF  
3
T
4. C = 1.0 nF  
2
T
5. C = 500 pF  
20  
20  
10  
T
6. C = 200 pF  
1
T
7. C = 100 pF  
T
8.0  
5.0  
7
6
5
5.0  
V
= 15 V  
2.0  
0.8  
CC  
V
= 15 V  
2.0  
1.0  
CC  
T = 25°C  
A
T = 25°C  
A
10 k  
20 k  
50 k  
100 k  
200 k  
500 k  
1.0 M  
10 k  
20 k  
50 k  
100 k  
200 k  
500 k  
1.0 M  
f
, OSCILLATOR FREQUENCY (kHz)  
f
OSC  
, OSCILLATOR FREQUENCY (kHz)  
OSC  
Figure 2. Timing Resistor  
versus Oscillator Frequency  
Figure 3. Output Deadtime  
versus Oscillator Frequency  
9.0  
8.5  
8.0  
7.5  
7.0  
100  
90  
80  
70  
60  
50  
40  
V
V
= 15 V  
= 2.0 V  
CC  
OSC  
I
= 7.5 mA  
dischg  
I
= 8.8 mA  
dischg  
V
= 15 V  
C = 3.3 nF  
CC  
T
T = 25°C  
A
-Ă55  
-Ă25  
0
25  
50  
75  
100  
125  
0.8 1.0  
2.0  
3.0  
4.0 5.0 6.0 7.0 8.0  
T , AMBIENT TEMPERATURE (°C)  
A
R , TIMING RESISTOR (k)  
T
Figure 4. Oscillator Discharge Current  
versus Temperature  
Figure 5. Maximum Output Duty Cycle  
versus Timing Resistor  
http://onsemi.com  
4
UC3842B, UC3843B, UC2842B, UC2843B, NCV3843BV  
2.55 V  
2.50 V  
2.45 V  
V
CC  
A = -1.0  
T = 25°C  
A
= 15 V  
V
CC  
A = -1.0  
T = 25°C  
A
= 15 V  
3.0 V  
V
V
2.5 V  
2.0 V  
0.5 µs/DIV  
1.0 µs/DIV  
Figure 6. Error Amp Small Signal  
Transient Response  
Figure 7. Error Amp Large Signal  
Transient Response  
100  
80  
60  
40  
20  
1.2  
0
V
V
= 15 V  
= 2.0 V to 4.0 V  
CC  
V
CC  
= 15 V  
O
1.0  
0.8  
0.6  
0.4  
0.2  
0
30  
60  
90  
120  
R = 100 K  
L
T = 25°C  
A
Gain  
T = 25°C  
A
T = 125°C  
A
Phase  
T = -55°C  
A
0
150  
180  
-Ă20  
10  
100  
1.0 k  
10 k  
100 k  
1.0 M  
10 M  
0
2.0  
4.0  
6.0  
8.0  
f, FREQUENCY (Hz)  
V , ERROR AMP OUTPUT VOLTAGE (V)  
O
Figure 8. Error Amp Open Loop Gain and  
Phase versus Frequency  
Figure 9. Current Sense Input Threshold  
versus Error Amp Output Voltage  
0
-Ă4.0  
-Ă8.0  
-12  
110  
V
= 15 V  
CC  
V
= 15 V  
CC  
R 0.1 Ω  
L
90  
70  
50  
T = -55°C  
A
T = 125°C  
A
-16  
-Ă20  
-Ă24  
T = 25°C  
A
0
20  
I
40  
60  
80  
100  
120  
-Ă55  
-Ă25  
0
25  
50  
75  
100  
125  
, REFERENCE SOURCE CURRENT (mA)  
T , AMBIENT TEMPERATURE (°C)  
ref  
A
Figure 10. Reference Voltage Change  
versus Source Current  
Figure 11. Reference Short Circuit Current  
versus Temperature  
http://onsemi.com  
5
UC3842B, UC3843B, UC2842B, UC2843B, NCV3843BV  
V
= 15 V  
= 1.0 mA to 20 mA  
CC  
V
= 12 V to 25  
CC  
I
O
T = 25°C  
A
T = 25°C  
A
2.0 ms/DIV  
2.0 ms/DIV  
Figure 12. Reference Load Regulation  
Figure 13. Reference Line Regulation  
0
-1.0  
-Ă2.0  
Source Saturation  
(Load to Ground)  
V
= 15 V  
CC  
V
CC  
80 µs Pulsed Load  
120 Hz Rate  
T = 25°C  
A
V
= 15 V  
C = 1.0 nF  
CC  
90%  
L
T = 25°C  
A
T = -Ă55°C  
A
3.0  
2.0  
1.0  
0
T = -Ă55°C  
A
T = 25°C  
A
Sink Saturation  
)
Gnd  
600  
10%  
(Load to V  
CC  
0
200  
400  
800  
50 ns/DIV  
I , OUTPUT LOAD CURRENT (mA)  
O
Figure 14. Output Saturation Voltage  
versus Load Current  
Figure 15. Output Waveform  
25  
20  
15  
10  
5
V
= 30 V  
C = 15 pF  
CC  
L
T = 25°C  
A
R = 10 k  
T
C = 3.3 nF  
T
V
FB  
= 0 V  
I
= 0 V  
Sense  
T = 25°C  
A
0
0
10  
20  
, SUPPLY VOLTAGE (V)  
30  
40  
100 ns/DIV  
V
CC  
Figure 16. Output Cross Conduction  
Figure 17. Supply Current versus Supply Voltage  
http://onsemi.com  
6
UC3842B, UC3843B, UC2842B, UC2843B, NCV3843BV  
PIN FUNCTION DESCRIPTION  
Pin  
8–Pin  
14–Pin  
Function  
Description  
1
2
1
3
Compensation  
This pin is the Error Amplifier output and is made available for loop compensation.  
Voltage  
Feedback  
This is the inverting input of the Error Amplifier. It is normally connected to the switching  
power supply output through a resistor divider.  
3
4
5
7
Current  
Sense  
A voltage proportional to inductor current is connected to this input. The PWM uses this  
information to terminate the output switch conduction.  
R /C  
The Oscillator frequency and maximum Output duty cycle are programmed by  
T
T
connecting resistor R to V and capacitor C to ground. Operation to 500 kHz  
T
ref  
T
is possible.  
5
6
Gnd  
This pin is the combined control circuitry and power ground.  
10  
Output  
This output directly drives the gate of a power MOSFET. Peak currents up to 1.0 A are  
sourced and sunk by this pin.  
7
8
12  
14  
8
V
This pin is the positive supply of the control IC.  
CC  
V
This is the reference output. It provides charging current for capacitor C through resistor R .  
ref  
T
T
Power  
Ground  
This pin is a separate power ground return that is connected back to the power source. It is  
used to reduce the effects of switching transient noise on the control circuitry.  
11  
V
C
The Output high state (V ) is set by the voltage applied to this pin. With a separate  
OH  
power source connection, it can reduce the effects of switching transient noise on the  
control circuitry.  
9
Gnd  
NC  
This pin is the control circuitry ground return and is connected back to the power  
source ground.  
2,4,6,13  
No connection. These pins are not internally connected.  
http://onsemi.com  
7
UC3842B, UC3843B, UC2842B, UC2843B, NCV3843BV  
OPERATING DESCRIPTION  
The UC3842B, UC3843B series are high performance,  
This occurs when the power supply is operating and the load  
is removed, or at the beginning of a soft–start interval  
(Figures 24, 25). The Error Amp minimum feedback  
resistance is limited by the amplifier’s source current  
fixed frequency, current mode controllers. They are  
specifically designed for Off–Line and dc–to–dc converter  
applications offering the designer a cost–effective solution  
with minimal external components. A representative block  
diagram is shown in Figure 18.  
(0.5 mA) and the required output voltage (V ) to reach the  
OH  
comparator’s 1.0 V clamp level:  
3.0 (1.0 V) + 1.4 V  
Rf(min)  
= 8800 Ω  
Oscillator  
0.5 mA  
The oscillator frequency is programmed by the values  
selected for the timing components R and C . Capacitor C  
T
T
T
Current Sense Comparator and PWM Latch  
is charged from the 5.0 V reference through resistor R to  
T
The UC3842B, UC3843B operate as a current mode  
controller, whereby output switch conduction is initiated by  
the oscillator and terminated when the peak inductor current  
reaches the threshold level established by the Error  
Amplifier Output/Compensation (Pin 1). Thus the error  
approximately 2.8 V and discharged to 1.2 V by an internal  
current sink. During the discharge of C , the oscillator  
T
generates an internal blanking pulse that holds the center  
input of the NOR gate high. This causes the Output to be in  
a low state, thus producing a controlled amount of output  
signal controls the peak inductor current on  
a
deadtime. Figure 2 shows R versus Oscillator Frequency  
T
cycle–by–cycle basis. The Current Sense Comparator PWM  
Latch configuration used ensures that only a single pulse  
appears at the Output during any given oscillator cycle. The  
inductor current is converted to a voltage by inserting the  
and Figure 3, Output Deadtime versus Frequency, both for  
given values of C . Note that many values of R and C will  
T
T
T
give the same oscillator frequency but only one combination  
will yield a specific output deadtime at a given frequency.  
The oscillator thresholds are temperature compensated to  
within ±6% at 50 kHz. Also because of industry trends  
moving the UC384X into higher and higher frequency  
applications, the UC384XB is guaranteed to within ±10% at  
250 kHz. These internal circuit refinements minimize  
variations of oscillator frequency and maximum output duty  
cycle. The results are shown in Figures 4 and 5.  
In many noise–sensitive applications it may be desirable  
to frequency–lock the converter to an external system clock.  
This can be accomplished by applying a clock signal to the  
circuit shown in Figure 21. For reliable locking, the  
free–running oscillator frequency should be set about 10%  
less than the clock frequency. A method for multi–unit  
synchronization is shown in Figure 22. By tailoring the  
clock waveform, accurate Output duty cycle clamping can  
be achieved.  
ground–referenced sense resistor R in series with the  
S
source of output switch Q1. This voltage is monitored by the  
Current Sense Input (Pin 3) and compared to a level derived  
from the Error Amp Output. The peak inductor current under  
normal operating conditions is controlled by the voltage at  
pin 1 where:  
V(Pin 1) – 1.4 V  
Ipk  
=
3 RS  
Abnormal operating conditions occur when the power  
supply output is overloaded or if output voltage sensing is  
lost. Under these conditions, the Current Sense Comparator  
threshold will be internally clamped to 1.0 V. Therefore the  
maximum peak switch current is:  
1.0 V  
RS  
Ipk(max)  
=
When designing a high power switching regulator it  
becomes desirable to reduce the internal clamp voltage in  
Error Amplifier  
order to keep the power dissipation of R to a reasonable  
A fully compensated Error Amplifier with access to the  
inverting input and output is provided. It features a typical  
dc voltage gain of 90 dB, and a unity gain bandwidth of  
1.0 MHz with 57 degrees of phase margin (Figure 8). The  
non–inverting input is internally biased at 2.5 V and is not  
pinned out. The converter output voltage is typically divided  
down and monitored by the inverting input. The maximum  
input bias current is –2.0 µA which can cause an output  
voltage error that is equal to the product of the input bias  
current and the equivalent input divider source resistance.  
The Error Amp Output (Pin 1) is provided for external  
loop compensation (Figure 32). The output voltage is offset  
by two diode drops (1.4 V) and divided by three before it  
connects to the non–inverting input of the Current Sense  
Comparator. This guarantees that no drive pulses appear at  
S
level. A simple method to adjust this voltage is shown in  
Figure 23. The two external diodes are used to compensate  
the internal diodes, yielding a constant clamp voltage over  
temperature. Erratic operation due to noise pickup can result  
if there is an excessive reduction of the I  
voltage.  
clamp  
pk(max)  
A narrow spike on the leading edge of the current  
waveform can usually be observed and may cause the power  
supply to exhibit an instability when the output is lightly  
loaded. This spike is due to the power transformer  
interwinding capacitance and output rectifier recovery time.  
The addition of an RC filter on the Current Sense Input with  
a time constant that approximates the spike duration will  
usually eliminate the instability (refer to Figure 27).  
the Output (Pin 6) when pin 1 is at its lowest state (V ).  
OL  
http://onsemi.com  
8
UC3842B, UC3843B, UC2842B, UC2843B, NCV3843BV  
V
CC  
V
in  
V
CC 7(12)  
36V  
V
ref  
Reference  
Regulator  
8(14)  
(See  
Text)  
+
-
V
CC  
UVLO  
R
R
V
C
Internal  
Bias  
2.5V  
R
C
T
7(11)  
+
3.6V  
V
ref  
UVLO  
-
Output  
Q1  
Oscillator  
4(7)  
6(10)  
T
+
1.0mA  
S
Power Ground  
2R  
Q
Voltage  
Feedback  
Input  
PWM  
Latch  
R
5(8)  
2(3)  
1(1)  
R
Error  
Amplifier  
1.0V  
Current Sense Input  
Output/  
Compensation  
Current Sense  
Comparator  
3(5)  
R
S
Gnd 5(9)  
Pin numbers adjacent to terminals are for the 8-pin dual-in-line package.  
Pin numbers in parenthesis are for the D suffix SO-14 package.  
= Sink Only Positive True Logic  
Figure 18. Representative Block Diagram  
Capacitor C  
T
Latch  
Set" Input  
Output/  
Compensation  
Current Sense  
Input  
Latch  
Reset" Input  
Output  
Small R /Large C  
T
T
Large R /Small C  
T
T
Figure 19. Timing Diagram  
http://onsemi.com  
9
UC3842B, UC3843B, UC2842B, UC2843B, NCV3843BV  
Undervoltage Lockout  
Design Considerations  
Two undervoltage lockout comparators have been  
incorporated to guarantee that the IC is fully functional  
before the output stage is enabled. The positive power  
Do not attempt to construct the converter on  
wire–wrap or plug–in prototype boards. High frequency  
circuit layout techniques are imperative to prevent  
pulse–width jitter. This is usually caused by excessive noise  
pick–up imposed on the Current Sense or Voltage Feedback  
inputs. Noise immunity can be improved by lowering circuit  
impedances at these points. The printed circuit layout should  
contain a ground plane with low–current signal and  
high–current switch and output grounds returning on  
separate paths back to the input filter capacitor. Ceramic  
supply terminal (V ) and the reference output (V ) are  
CC  
ref  
each monitored by separate comparators. Each has built–in  
hysteresis to prevent erratic output behavior as their  
respective thresholds are crossed. The V  
comparator  
CC  
upper and lower thresholds are 16 V/10 V for the UCX842B,  
and 8.4 V/7.6 V for the UCX843B. The V comparator  
ref  
upper and lower thresholds are 3.6 V/3.4 V. The large  
hysteresis and low startup current of the UCX842B makes  
it ideally suited in off–line converter applications where  
efficient bootstrap startup techniques are required  
(Figure 34). The UCX843B is intended for lower voltage  
dc–to–dc converter applications. A 36 V zener is connected  
bypass capacitors (0.1 µF) connected directly to V , V ,  
CC  
C
and V may be required depending upon circuit layout.  
ref  
This provides a low impedance path for filtering the high  
frequency noise. All high current loops should be kept as  
short as possible using heavy copper runs to minimize  
radiated EMI. The Error Amp compensation circuitry and  
the converter output voltage divider should be located close  
to the IC and as far as possible from the power switch and  
other noise–generating components.  
Current mode converters can exhibit subharmonic  
oscillations when operating at a duty cycle greater than 50%  
with continuous inductor current. This instability is  
independent of the regulator’s closed loop characteristics  
and is caused by the simultaneous operating conditions of  
fixed frequency and peak current detecting. Figure 20A  
as a shunt regulator from V to ground. Its purpose is to  
CC  
protect the IC from excessive voltage that can occur during  
system startup. The minimum operating voltage (V ) for  
CC  
the UCX842B is 11 V and 8.2 V for the UCX843B.  
These devices contain a single totem pole output stage that  
was specifically designed for direct drive of power  
MOSFETs. It is capable of up to ±1.0 A peak drive current  
and has a typical rise and fall time of 50 ns with a 1.0 nF load.  
Additional internal circuitry has been added to keep the  
Output in a sinking mode whenever an undervoltage lockout  
is active. This characteristic eliminates the need for an  
external pull–down resistor.  
shows the phenomenon graphically. At t , switch  
0
conduction begins, causing the inductor current to rise at a  
The SO–14 surface mount package provides separate pins  
slope of m . This slope is a function of the input voltage  
1
for V (output supply) and Power Ground. Proper  
divided by the inductance. At t , the Current Sense Input  
C
1
implementation will significantly reduce the level of  
switching transient noise imposed on the control circuitry.  
reaches the threshold established by the control voltage.  
This causes the switch to turn off and the current to decay at  
This becomes particularly useful when reducing the I  
a slope of m , until the next oscillator cycle. The unstable  
pk(max)  
2
clamp level. The separate V supply input allows the  
designer added flexibility in tailoring the drive voltage  
condition can be shown if a perturbation is added to the  
control voltage, resulting in a small I (dashed line). With  
a fixed oscillator period, the current decay time is reduced,  
C
independent of V . A zener clamp is typically connected  
CC  
to this input when driving power MOSFETs in systems  
and the minimum current at switch turn–on (t ) is increased  
2
where V is greater than 20 V. Figure 26 shows proper  
byI + I m /m . The minimum current at the next cycle (t )  
2 1 3  
CC  
power and control ground connections in a current–sensing  
power MOSFET application.  
decreases to (I + I m /m ) (m /m ). This perturbation is  
2 1 2 1  
multiplied by m /m on each succeeding cycle, alternately  
2
1
increasing and decreasing the inductor current at switch  
turn–on. Several oscillator cycles may be required before  
the inductor current reaches zero causing the process to  
Reference  
The 5.0 V bandgap reference is trimmed to ±1.0%  
tolerance at T = 25°C on the UC284XB, and ±2.0% on the  
UC384XB. Its primary purpose is to supply charging current  
to the oscillator timing capacitor. The reference has short–  
circuit protection and is capable of providing in excess of  
20 mA for powering additional control system circuitry.  
J
commence again. If m /m is greater than 1, the converter  
2
1
will be unstable. Figure 20B shows that by adding an  
artificial ramp that is synchronized with the PWM clock to  
the control voltage, the I perturbation will decrease to zero  
on succeeding cycles. This compensating ramp (m ) must  
3
have a slope equal to or slightly greater than m /2 for  
2
stability. With m /2 slope compensation, the average  
2
inductor current follows the control voltage, yielding true  
current mode operation. The compensating ramp can be  
derived from the oscillator and added to either the Voltage  
Feedback or Current Sense inputs (Figure 33).  
http://onsemi.com  
10  
UC3842B, UC3843B, UC2842B, UC2843B, NCV3843BV  
(A)  
I  
Control Voltage  
m
2
m
1
Inductor  
Current  
m
m
2
1
Dl ) Dl  
V
m
m
m
m
2
1
2
1
ref  
Dl ) Dl ĂĂĂ  
8(14)  
R
R
Oscillator Period  
Bias  
R
T
t
0
t
1
t
2
t
3
(B)  
External  
Sync  
Input  
Osc  
4(7)  
C
T
Control Voltage  
+
m
3
0.01  
2R  
I  
R
2(3)  
1(1)  
EA  
47  
m
1
m
2
Inductor  
Current  
5(9)  
Oscillator Period  
The diode clamp is required if the Sync amplitude is large enough to cause the bottom  
side of C to go more than 300 mV below ground.  
T
t
4
t
5
t
6
Figure 20. Continuous Current Waveforms  
Figure 21. External Clock Synchronization  
V
V
in  
CC  
7(12)  
5.0V Ref  
8(14)  
R
R
+
-
Bias  
8(14)  
R
R
R
A
B
7(11)  
6(10)  
Bias  
+
-
R
8
4
Q1  
Osc  
5.0k  
5.0k  
5.0k  
3
7
6
4(7)  
V
+
Clamp  
1.0V  
Osc  
R
R
S
2
S
R
4(7)  
1.0 mA  
2R  
+
5
2
Q
Q
5(8)  
3(5)  
2R  
EA  
2(3)  
1(1)  
R
Comp/Latch  
R
2(3)  
1(1)  
EA  
C
MC1455  
R
S
1
R
1
5(9)  
1.67  
R R  
Where: 0 V  
1.0 V  
1
2
-3  
+ 0.33x10  
Clamp  
5(9)  
ǒ
Ǔ
) R  
2
V
Clamp  
To Additional  
UCX84XBs  
R
1
R
R
2
1
ǒ
) 1Ǔ  
V
Clamp  
1.44  
(R Ă )Ă 2R )C  
R
B
+Ă  
D
Ă+Ă  
I
Ă [Ă  
(max)  
pk(max)  
R
Ă)Ă 2R  
R
S
A
B
A
B
Figure 22. External Duty Cycle Clamp and  
Multi–Unit Synchronization  
Figure 23. Adjustable Reduction of Clamp Level  
http://onsemi.com  
11  
UC3842B, UC3843B, UC2842B, UC2843B, NCV3843BV  
V
V
in  
CC  
7(12)  
5.0V Ref  
8(14)  
R
+
-
Bias  
5.0V Ref  
R
7(11)  
6(10)  
+
-
8(14)  
R
R
Q1  
Bias  
Osc  
4(7)  
V
+
Clamp  
+
S
R
-
1.0 mA  
2R  
Q
Osc  
5(8)  
3(5)  
4(7)  
2(3)  
EA  
2(3)  
1(1)  
R
+
Comp/Latch  
1.0V  
5(9)  
R
2
S
R
1.0mA  
Q
R
S
2R  
R
R
1
C
MPSA63  
1.0V  
EA  
1.0M  
1.67  
Where: 0 V  
1.0 V  
V
Ă[Ă  
Clamp  
Clamp  
R
R
2
ǒ
) 1Ǔ  
1(1)  
+ * Inƪ11 *Ă  
ƫĂC  
C
V
Clamp  
V
R ĂR  
1 2  
C
5(9)  
t
I
Ă [Ă  
SoftĆStart  
pk(max)  
t
3600C in µF  
Soft-Start  
3ĂV  
R
Ă)Ă R  
R
S
Clamp  
1
2
Figure 24. Soft–Start Circuit  
Figure 25. Adjustable Buffered Reduction of  
Clamp Level with Soft–Start  
V
V
in  
CC  
R
I
r
S pk DS(on)  
) R  
V
V
in  
V
[
CC  
(12)  
Pin 5  
r
DM(on)  
S
If: SENSEFET = MTP10N10M  
= 200  
7(12)  
R
S
5.0V Ref  
Then :Ă V Ă [Ă 0.075ĂI  
PinĂ5 pk  
+
-
5.0V Ref  
+
-
D
SENSEFET  
(11)  
(10)  
+
-
7(11)  
S
K
+
-
G
Q1  
M
6(10)  
5(8)  
S
R
Q
S
R
(8)  
(5)  
Q
Comp/Latch  
Power Ground:  
To Input Source  
Return  
3(5)  
R
Comp/Latch  
R
1/4 W  
S
C
R
S
Control Circuitry Ground:  
To Pin (9)  
Virtually lossless current sensing can be achieved with the implementation of a  
SENSEFET power switch. For proper operation during over-current conditions,  
reduction of the I clamp level must be implemented. Refer to Figures 23 and 25.  
a
The addition of the RC filter will eliminate instability caused by the leading  
edge spike on the current waveform.  
pk(max)  
Figure 26. Current Sensing Power MOSFET  
Figure 27. Current Waveform Spike Suppression  
http://onsemi.com  
12  
UC3842B, UC3843B, UC2842B, UC2843B, NCV3843BV  
V
V
in  
CC  
I
B
7(12)  
V
in  
+
0
5.0V Ref  
Base Charge  
Removal  
+
-
-
7(11)  
+
-
C1  
R
g
Q1  
Q1  
6(10)  
6(10)  
S
R
Q
5(8)  
3(5)  
5(8)  
3(5)  
Comp/Latch  
R
S
R
S
Series gate resistor R will damp any high frequency parasitic oscillations  
g
The totem pole output can furnish negative base current for enhanced  
transistor turn-off, with the addition of capacitor C .  
1
caused by the MOSFET input capacitance and any series wiring inductance in  
the gate-source circuit.  
Figure 28. MOSFET Parasitic Oscillations  
Figure 29. Bipolar Transistor Drive  
V
in  
V
CC  
8(14)  
R
Bias  
7(12)  
R
Isolation  
Boundary  
5.0V Ref  
Osc  
4(7)  
+
-
+
V
Waveforms  
+
GS  
1.0 mA  
2R  
+
0
-
7(11)  
Q1  
+
-
R
EA  
2(3)  
1(1)  
0
-
50% DC  
25% DC  
6(10)  
5(8)  
S
R
MCR  
101  
2N  
3905  
V
* 1.4  
(Pin1)  
3ĂR  
N
S
N
5(9)  
Q
Ă ǒ Ǔ  
I k +  
p
S
p
2N  
3903  
R
3(5)  
Comp/Latch  
C
R
N
S
S
N
P
The MCR101 SCR must be selected for a holding of < 0.5 mA @ T  
. The simple two  
A(min)  
transistor circuit can be used in place of the SCR as shown. All resistors are 10 k.  
Figure 30. Isolated MOSFET Drive  
Figure 31. Latched Shutdown  
http://onsemi.com  
13  
UC3842B, UC3843B, UC2842B, UC2843B, NCV3843BV  
From V  
O
2.5V  
+
1.0mA  
R
2R  
i
2(3)  
EA  
R
C
f
R
f
R
d
1(1)  
R 8.8 k  
f
5(9)  
Error Amp compensation circuit for stabilizing any current mode topology except for boost and flyback  
converters operating with continuous inductor current.  
From V  
2.5V  
O
+
1.0mA  
R
p
2R  
R
2(3)  
i
R
EA  
C
C
f
R
f
p
R
d
1(1)  
5(9)  
Error Amp compensation circuit for stabilizing current mode boost and flyback  
topologies operating with continuous inductor current.  
Figure 32. Error Amplifier Compensation  
V
CC  
V
in  
7(12)  
36V  
5.0V Ref  
+
-
8(14)  
R
R
R
T
Bias  
MPS3904  
+
-
7(11)  
6(10)  
Osc  
R
Slope  
From V  
4(7)  
2(3)  
O
C
T
+
-m  
S
R
1.0mA  
R
R
i
2R  
Q
5(8)  
3(5)  
EA  
R
C
1.0V  
f
Comp/Latch  
R
f
d
m
R
S
1(1)  
- 3.0m  
5(9)  
The buffered oscillator ramp can be resistively summed with either the voltage  
feedback or current sense inputs to provide slope compensation.  
Figure 33. Slope Compensation  
http://onsemi.com  
14  
UC3842B, UC3843B, UC2842B, UC2843B, NCV3843BV  
L1  
MBR1635  
5.0V/4.0A  
4.7Ω  
+
T1  
4.7k  
+
+
250  
MDA  
202  
3300  
pF  
2200  
1000  
56k  
115 Vac  
5.0V RTN  
12V/0.3A  
MUR110  
1000  
1N4935 1N4935  
L2  
10  
+
+
+
+
7(12)  
68  
+
+
47  
±12V RTN  
100  
1000  
10  
L3  
1N4937  
5.0V Ref  
-12V/0.3A  
0.01  
8(14)  
10k  
R
R
+
-
MUR110  
680pF  
Bias  
7(11)  
+
-
1N4937  
2.7k  
22  
Osc  
4(7)  
2(3)  
MTP  
4N50  
4700pF  
6(10)  
+
1N5819  
S
R
18k  
L1 - 15 µH at 5.0 A, Coilcraft Z7156  
L2, L3 - 25 µH at 5.0 A, Coilcraft Z7157  
Q
5(8)  
3(5)  
EA  
100  
pF  
150k  
1(1)  
1.0k  
Comp/Latch  
4.7k  
T1 - Primary: 45 Turns #26 AWG  
Secondary ±12 V: 9 Turns #30 AWG  
(2 Strands) Bifiliar Wound  
0.5  
470pF  
5(9)  
Secondary 5.0 V: 4 Turns (six strands)  
#26 Hexfiliar Wound  
Secondary Feedback: 10 Turns  
#30 AWG (2 strands) Bifiliar Wound  
Core: Ferroxcube EC35-3C8  
Bobbin: Ferroxcube EC35PCB1  
Gap: 0.10" for a primary inductance  
of 1.0 mH  
Figure 34. 27 W Off–Line Flyback Regulator  
Test  
Conditions  
Results  
Line Regulation: 5.0 V  
V
in  
= 95 to 130 Vac  
= 50 mV or ± 0.5%  
= 24 mV or ± 0.1%  
±12V  
Load Regulation: 5.0 V  
V
V
= 115 Vac,  
= 300 mV or ± 3.0%  
= 60 mV or ± 0.25%  
in  
I
= 1.0 A to 4.0 A  
out  
±12V  
= 115 Vac,  
in  
I
= 100 mA to 300 mA  
out  
Output Ripple:  
Efficiency  
5.0 V  
±12V  
V
= 115 Vac  
40 mV  
80 mV  
in  
pp  
pp  
V
in  
= 115 Vac  
70%  
All outputs are at nominal load currents, unless otherwise noted  
http://onsemi.com  
15  
UC3842B, UC3843B, UC2842B, UC2843B, NCV3843BV  
ORDERING INFORMATION  
Operating  
Temperature Range  
Device  
Package  
SO–14  
SO–14  
SO–8  
Shipping  
55 Units/Rail  
UC384XBD  
UC384XBDR2  
UC384XBD1  
UC384XBD1R2  
UC384XBN  
2500 Tape & Reel  
98 Units/Rail  
T = 0° to +70°C  
A
SO–8  
2500 Tape & Reel  
50 Units/Rail  
PDIP–8  
PDIP–8  
SO–14  
SO–14  
SO–8  
UC3842BN1  
UC284XBD  
50 Units/Rail  
55 Units/Rail  
UC2843BDR2  
UC284XBD1  
UC284XBD1R2  
UC284XBN  
2500 Tape & Reel  
98 Units/Rail  
T = –25° to +85°C  
A
SO–8  
2500 Tape & Reel  
50 Units/Rail  
PDIP–8  
SO–14  
SO–14  
SO–8  
UC3843BVD  
UC384XBVDR2  
UC384XBVD1  
55 Units/Rail  
2500 Tape & Reel  
98 Units/Rail  
T = –40° to +105°C  
A
UC384XBVD1R2  
UC3843BVN  
SO–8  
2500 Tape & Reel  
50 Units/Rail  
PDIP–8  
SO–14  
NCV3843BVDR2  
2500 Tape & Reel  
X indicates either a 2 or 3 to define specific device part numbers.  
http://onsemi.com  
16  
UC3842B, UC3843B, UC2842B, UC2843B, NCV3843BV  
MARKING DIAGRAMS  
PDIP–8  
N SUFFIX  
CASE 626  
8
8
8
UC384xBN  
UC3843BVN  
AWL  
UC284xBN  
FAWL  
AWL  
YYWW  
YYWW  
YYWW  
1
1
1
SO–8  
D1 SUFFIX  
CASE 751  
8
8
8
1
384xB  
ALYW  
384xB  
284xB  
ALYW  
ALYWV  
1
1
SO–14  
D SUFFIX  
CASE 751A  
14  
1
14  
1
14  
*
UC384xBD  
AWLYWW  
UC384xBVD  
AWLYWW  
UC284xBD  
AWLYWW  
1
x
A
= 2 or 3  
= Assembly Location  
WL, L = Wafer Lot  
YY, Y = Year  
WW, W = Work Week  
*This marking diagram also applies to NCV3843BV.  
http://onsemi.com  
17  
UC3842B, UC3843B, UC2842B, UC2843B, NCV3843BV  
PACKAGE DIMENSIONS  
PDIP–8  
N SUFFIX  
CASE 626–05  
ISSUE L  
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
8
5
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–B–  
MILLIMETERS  
INCHES  
1
4
DIM MIN  
MAX  
10.16  
6.60 0.240  
4.45 0.155  
0.51 0.015  
1.78 0.040  
MIN  
0.370  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
A
B
C
D
F
9.40  
6.10  
3.94  
0.38  
1.02  
F
–A–  
NOTE 2  
L
G
H
J
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
1.27 0.030  
0.30 0.008  
3.43  
0.050  
0.012  
0.135  
K
L
0.115  
C
7.62 BSC  
0.300 BSC  
M
N
---  
0.76  
10  
---  
1.01 0.030  
10  
0.040  
_
_
J
–T–  
SEATING  
PLANE  
N
M
D
K
G
H
M
M
M
0.13 (0.005)  
T
A
B
SO–8  
D1 SUFFIX  
CASE 751–07  
ISSUE W  
–X–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
8
5
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER  
SIDE.  
S
M
M
B
0.25 (0.010)  
Y
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN  
EXCESS OF THE D DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
1
4
K
–Y–  
G
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
5.00  
4.00  
1.75  
0.51  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
4.80  
3.80  
1.35  
0.33  
0.189  
0.150  
0.053  
0.013  
0.050 BSC  
0.004  
C
N X 45  
_
SEATING  
PLANE  
–Z–  
1.27 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25  
0.25  
1.27  
8
0.010  
0.010  
0.050  
8
0.007  
0.016  
0
M
J
H
D
K
M
N
S
_
_
_
_
0.25  
5.80  
0.50  
6.20  
0.010  
0.228  
0.020  
0.244  
M
S
S
X
0.25 (0.010)  
Z
Y
http://onsemi.com  
18  
UC3842B, UC3843B, UC2842B, UC2843B, NCV3843BV  
PACKAGE DIMENSIONS  
SO–14  
D SUFFIX  
CASE 751A–03  
ISSUE F  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
–A–  
14  
1
8
7
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
–B–  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
P 7 PL  
M
M
B
0.25 (0.010)  
MILLIMETERS  
DIM MIN MAX  
INCHES  
G
MIN  
MAX  
0.344  
0.157  
0.068  
0.019  
0.049  
F
R X 45  
_
C
A
B
C
D
F
8.55  
3.80  
1.35  
0.35  
0.40  
8.75 0.337  
4.00 0.150  
1.75 0.054  
0.49 0.014  
1.25 0.016  
–T–  
SEATING  
PLANE  
J
M
G
J
1.27 BSC  
0.050 BSC  
K
D 14 PL  
0.19  
0.10  
0
0.25 0.008  
0.25 0.004  
0.009  
0.009  
7
0.244  
0.019  
M
S
S
0.25 (0.010)  
T
B
A
K
M
P
R
7
0
_
_
_
_
5.80  
0.25  
6.20 0.228  
0.50 0.010  
http://onsemi.com  
19  
UC3842B, UC3843B, UC2842B, UC2843B, NCV3843BV  
SENSEFET is a trademark of Semiconductor Components Industries, LLC.  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
Literature Fulfillment:  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local  
Sales Representative.  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
UC3842B/D  

相关型号:

UC384XBDR2G

HIGH PERFORMANCE CURRENT MODE CONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ONSEMI

UC384XBN

HIGH PERFORMANCE CURRENT MODE CONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MOTOROLA

UC384XBN

HIGH PERFORMANCE CURRENT MODE CONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ONSEMI

UC384XBNG

HIGH PERFORMANCE CURRENT MODE CONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ONSEMI

UC384XBVD

HIGH PERFORMANCE CURRENT MODE CONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MOTOROLA

UC384XBVD

HIGH PERFORMANCE CURRENT MODE CONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ONSEMI

UC384XBVD1

HIGH PERFORMANCE CURRENT MODE CONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
MOTOROLA

UC384XBVD1

HIGH PERFORMANCE CURRENT MODE CONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ONSEMI

UC384XBVD1G

HIGH PERFORMANCE CURRENT MODE CONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ONSEMI

UC384XBVD1R2

HIGH PERFORMANCE CURRENT MODE CONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ONSEMI

UC384XBVD1R2G

HIGH PERFORMANCE CURRENT MODE CONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ONSEMI

UC384XBVDG

HIGH PERFORMANCE CURRENT MODE CONTROLLERS

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ONSEMI