PMS154B-M10 [PADAUK]

8bit OTP Type IO Controller;
PMS154B-M10
型号: PMS154B-M10
厂家: PADAUK Technology    PADAUK Technology
描述:

8bit OTP Type IO Controller

文件: 总85页 (文件大小:1819K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PMS154B  
8bit OTP Type IO Controller  
Datasheet  
Version 1.02 – Nov. 27, 2018  
Copyright 2018 by PADAUK Technology Co., Ltd., all rights reserved.  
6F-6, No.1, Sec. 3, Gongdao 5th Rd., Hsinchu City 30069, Taiwan, R.O.C.  
TEL: 886-3-572-8688 www.padauk.com.tw  
PMS154B  
8bit IO-Type Controller  
IMPORTANT NOTICE  
PADAUK Technology reserves the right to make changes to its products or to terminate  
production of its products at any time without notice. Customers are strongly  
recommended to contact PADAUK Technology for the latest information and verify  
whether the information is correct and complete before placing orders.  
PADAUK Technology products are not warranted to be suitable for use in life-support  
applications or other critical applications. PADAUK Technology assumes no liability for  
such applications. Critical applications include, but are not limited to, those that may  
involve potential risks of death, personal injury, fire or severe property damage.  
PADAUK Technology assumes no responsibility for any issue caused by a customer’s  
product design. Customers should design and verify their products within the ranges  
guaranteed by PADAUK Technology. In order to minimize the risks in customers’  
products, customers should design a product with adequate operating safeguards.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 2 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
PMS154B  
8bit IO-Type Controller  
Table of Contents  
1. Features...............................................................................................................................9  
1.1.  
1.2.  
1.3.  
1.4.  
Special Features ...................................................................................................................9  
System Features...................................................................................................................9  
CPU Features .......................................................................................................................9  
Package Information .............................................................................................................9  
2. General Description and Block Diagram ........................................................................10  
3. Pin Definition and Functional Description......................................................................11  
4. Device Characteristics .....................................................................................................16  
4.1.  
4.2.  
4.3.  
4.4.  
4.5.  
4.6.  
4.7.  
4.8.  
4.9.  
DC/AC Characteristics ........................................................................................................16  
Absolute Maximum Ratings.................................................................................................17  
Typical IHRC Frequency vs. VDD (calibrated to 16MHz).....................................................18  
Typical ILRC Frequency vs. VDD........................................................................................18  
Typical IHRC Frequency vs. Temperature (calibrated to 16MHz)........................................19  
Typical ILRC Frequency vs. Temperature ...........................................................................19  
Typical Operating Current vs. VDD and CLK=IHRC/n.........................................................20  
Typical Operating Current vs. VDD and CLK=ILRC/n..........................................................20  
Typical Operating Current vs. VDD and CLK=32KHz EOSC / n..........................................21  
4.10. Typical Operating Current vs. VDD and CLK=1MHz EOSC / n............................................21  
4.11. Typical Operating Current vs. VDD and CLK=4MHz EOSC / n............................................22  
4.12. Typical IO pull high resistance.............................................................................................22  
4.13. Typical IO input high/low threshold voltage (VIH/VIL) ............................................................23  
4.14. Typical IO driving current (IOH) and sink current (IOL) ...........................................................23  
4.15. Typical power down current (IPD) and power save current (IPS)............................................24  
5. Functional Description.....................................................................................................26  
5.1.  
5.2.  
Program Memory – OTP .....................................................................................................26  
Boot Up...............................................................................................................................26  
5.2.1. Timing charts for reset conditions.............................................................................27  
5.3.  
5.4.  
Data Memory – SRAM ........................................................................................................28  
Oscillator and clock.............................................................................................................28  
5.4.1. Internal High RC oscillator and Internal Low RC oscillator ......................................28  
5.4.2. IHRC calibration .....................................................................................................28  
5.4.3. IHRC Frequency Calibration and System Clock......................................................29  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 3 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
PMS154B  
8bit IO-Type Controller  
5.4.4. External Crystal Oscillator.......................................................................................30  
5.4.5. System Clock and LVR levels.................................................................................32  
5.5.  
5.6.  
5.7.  
5.8.  
16-bit Timer (Timer16).........................................................................................................32  
Watchdog Timer..................................................................................................................34  
Interrupt Controller ..............................................................................................................35  
Power-Save and Power-Down ............................................................................................38  
5.8.1. Power-Save mode (“stopexe)................................................................................38  
5.8.2. Power-Down mode (“stopsys”)................................................................................39  
5.8.3. Wake-up.................................................................................................................40  
5.9.  
IO Pins................................................................................................................................41  
5.10. Reset ..................................................................................................................................42  
5.10.1. Reset......................................................................................................................42  
5.10.2. LVR reset ...............................................................................................................42  
5.11. VDD/2 Bias Voltage Generator............................................................................................42  
5.12. Comparator.........................................................................................................................43  
5.12.1. Internal reference voltage (Vinternal R)........................................................................44  
5.12.2. Using the comparator .............................................................................................46  
5.12.3. Using the comparator and band-gap 1.20V ............................................................47  
5.13. 8-bit Timer with PWM generation (Timer2, Timer3).............................................................48  
5.13.1. Using the Timer2 to generate periodical waveform .................................................49  
5.13.2. Using the Timer2 to generate 8-bit PWM waveform................................................50  
5.13.3. 51  
5.13.4. Using the Timer2 to generate 6-bit PWM waveform................................................52  
5.14. 11-bit PWM generation........................................................................................................53  
5.14.1. PWM Waveform .....................................................................................................53  
5.14.2. Hardware and Timing Diagram ...............................................................................53  
5.14.3. Equations for 11-bit PWM Generator......................................................................54  
6. IO Registers.......................................................................................................................55  
6.1.  
6.2.  
6.3.  
6.4.  
6.5.  
6.6.  
6.7.  
6.8.  
6.9.  
ACC Status Flag Register (flag), IO address = 0x00 ...........................................................55  
Stack Pointer Register (sp), IO address = 0x02...................................................................55  
Clock Mode Register (clkmd), IO address = 0x03................................................................55  
Interrupt Enable Register (inten), IO address = 0x04...........................................................56  
Interrupt Request Register (intrq), IO address = 0x05 .........................................................56  
Timer 16 mode Register (t16m), IO address = 0x06............................................................57  
External Oscillator setting Register (eoscr, write only), IO address = 0x0a..........................57  
Interrupt Edge Select Register (integs), IO address = 0x0c.................................................58  
Port A Digital Input Enable Register (padier), IO address = 0x0d ........................................58  
6.10. Port B Digital Input Enable Register (pbdier), IO address = 0x0e ........................................58  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 4 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
PMS154B  
8bit IO-Type Controller  
6.11. Port A Data Registers (pa), IO address = 0x10 ...................................................................58  
6.12. Port A Control Registers (pac), IO address = 0x11..............................................................58  
6.13. Port A Pull-High Registers (paph), IO address = 0x12.........................................................58  
6.14. Port B Data Registers (pb), IO address = 0x14 ...................................................................59  
6.15. Port B Control Registers (pbc), IO address = 0x15..............................................................59  
6.16. Port B Pull-High Registers (pbph), IO address = 0x16.........................................................59  
6.17. MISC Register (misc), IO address = 0x08 ...........................................................................59  
6.18. Timer2 Control Register (tm2c), IO address = 0x1c.............................................................60  
6.19. Timer2 Counter Register (tm2ct), IO address = 0x1d ..........................................................60  
6.20. Timer2 Scalar Register (tm2s), IO address = 0x17..............................................................60  
6.21. Timer2 Bound Register (tm2b), IO address = 0x09 .............................................................61  
6.22. Timer3 Control Register (tm3c), IO address = 0x32 ............................................................61  
6.23. Timer3 Counter Register (tm3ct), IO address = 0x33 ..........................................................61  
6.24. Timer3 Scalar Register (tm3s), IO address = 0x34..............................................................62  
6.25. Timer3 Bound Register (tm3b), IO address = 0x35 .............................................................62  
6.26. Comparator Control Register (gpcc), IO address = 0x18.....................................................62  
6.27. Comparator Selection Register (gpcs), IO address = 0x19..................................................63  
6.28. PWMG0 control Register (pwmg0c), IO address = 0x20 .....................................................63  
6.29. PWMG0 Scalar Register (pwmg0s), IO address = 0x21......................................................63  
6.30. PWMG0 Counter Upper Bound High Register (pwmg0cubh), IO address = 0x24 ...............63  
6.31. PWMG0 Counter Upper Bound Low Register (pwmg0cubl), IO address = 0x25 .................64  
6.32. PWMG0 Duty Value High Register (pwmg0dth), IO address = 0x22 ...................................64  
6.33. PWMG0 Duty Value Low Register (pwmg0dtl), IO address = 0x23 .....................................64  
7. Instructions .......................................................................................................................65  
7.1.  
7.2.  
7.3.  
7.4.  
7.5.  
7.6.  
7.7.  
7.8.  
7.9.  
Data Transfer Instructions...................................................................................................66  
Arithmetic Operation Instructions ........................................................................................69  
Shift Operation Instructions .................................................................................................71  
Logic Operation Instructions................................................................................................72  
Bit Operation Instructions....................................................................................................74  
Conditional Operation Instructions.......................................................................................76  
System control Instructions .................................................................................................78  
Summary of Instructions Execution Cycle ...........................................................................79  
Summary of affected flags by Instructions...........................................................................80  
7.10. BIT definition.......................................................................................................................80  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 5 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
PMS154B  
8bit IO-Type Controller  
8. Code Options ....................................................................................................................81  
9. Special Notes ....................................................................................................................82  
9.1.  
9.2.  
Warning...............................................................................................................................82  
Using IC..............................................................................................................................82  
9.2.1. IO pin usage and setting.........................................................................................82  
9.2.2. Interrupt..................................................................................................................83  
9.2.3. System clock switching...........................................................................................83  
9.2.4. Watchdog ...............................................................................................................83  
9.2.5. TIMER time out.......................................................................................................84  
9.2.6. IHRC.......................................................................................................................84  
9.2.7. LVR ........................................................................................................................84  
9.2.8. Program writing ......................................................................................................84  
9.3.  
Using ICE............................................................................................................................85  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 6 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
PMS154B  
8bit IO-Type Controller  
Revision History:  
Revision  
Date  
Description  
0.00  
2016/08/09 Preliminary version  
1. Add Section 1.4: PMS154B-1J16A & PMS154B-M10 Package Information  
2. Add Chapter 3: MSOP10 & QFN pin assignment and description  
1. Updated company address & Tel No.  
0.01  
2016/11/23  
2. Amend Section 1.1, 1.2, 1.3  
3. Add PMS154B-S08 & PMS154B-U06 Package Information  
4. Add Chapter 3: SOP8 & SOT23-6 pin assignment and description  
5. Open 32KHz EOSC mode  
6. Amend Section 4.1 DC/AC Characteristics: VIH / VIL  
7. Amend Section 4.3 to Section 4.14  
8. Add Section 4.15 Typical power down current (IPD) and power save current (IPS)  
9. Add Section 5.2.1 Timing charts for reset conditions  
10. Amend Table 2: Three Oscillator Circuits provided by PMS154B  
11. Amend Section 5.4.3, 5.4.4 and 5.4.5  
12. Amend Section 5.6 Watchdog Timer  
13. Amend Section 5.7 Interrupt Controller  
14. Amend Section 5.8.1, 5.8.2 and 5.8.3  
15. Amend Table 6: Differences in wake-up sources between Power-Save mode  
and Power-Down mode  
16. Amend Fig. 9: Hardware diagram of comparator  
17. Amend Section 5.12.2 and 5.12.3  
18. Amend Fig. 17: Hardware Diagram of 11-bit PWM Generator 0 (PWMG0)  
19. Amend Section 5.14.3 Equations for 11-bit PWM Generator  
20. Amend Section 6.3 Clock Mode Register  
1.02  
2018/11/27  
21. Amend Section 6.9 Port A Digital Input Enable Register  
22. Amend Section 6.10 Port B Digital Input Enable Register  
23. Amend Section 6.17 MISC Register  
24. Delete Section 6.18 MISC2 Register  
25. Amend Section 6.27Comparator Selection Register  
26. Amend Section 6.29 PWMG0 Scalar Register  
27. Amend Section 6.31 PWMG0 Counter Upper Bound Low Register  
28. Delete the Symbol “pc0” in Chapter 7  
29. Amend Section 7.8 Summary of Instructions Execution Cycle and delete 9.2.8  
30. Amend the instruction “cneqsn a, I” in Section 7.9  
31. Move Section 9.2.9 BIT definition to Section 7.10  
32. Add Chapter 8 Code Options  
33. Updated the link in Section 9.1  
34. Amend Section 9.2.1 IO pin usage and setting  
35. Amend Section 9.2.5 TIMER time out  
36. Add Section 9.2.6 IHRC  
37. Amend 9.2.7 and 9.2.8  
38. Amend 9.3 Using ICE  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 7 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
PMS154B  
8bit IO-Type Controller  
Major Differences between PMS154 and PMS154B  
Item  
Function  
PMS154  
PMS154B  
1
Operating voltage range  
2.2V ~ 3.6V  
2.2V ~ 5.5V  
4.0V, 3.5V, 3.0V, 2.75V,  
2.5V, 2.2V, 2.0V, 1.8V  
2
3
LVR levels  
2.75V, 2.5V, 2.2V  
Watchdog timeout period  
4096, 16384, 65536, 262144TILRC 8192, 16384, 65536, 262144TILRC  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 8 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
PMS154B  
8bit IO-Type Controller  
1. Features  
1.1. Special Features  
General purpose series  
Not supposed to use in AC RC step-down powered or high EFT requirement applications.  
PADAUK assumes no liability if such kind of applications can not pass the safety regulation tests.  
Operating temperature range: -20°C ~ 70°C  
1.2. System Features  
2KW OTP program memory  
128 Bytes data RAM  
One hardware 16-bit timer  
Two hardware 8-bit timer with PWM generator  
One hardware 11-bit PWM generator  
Provide one hardware comparator  
14 IO pins with optional pull-high resistor  
Three different IO driving capability groups to meet different application requirement  
Optional IO driving capability for each port: normal drive and low drive  
Every IO pin can be configured to enable wake-up function  
Built-in half VDD bias voltage generator to provide maximum 4x10 dots LCD display  
Clock sources: External crystal oscillator, internal high RC oscillator and internal low RC oscillator  
For every wake-up enabled IO, two optional wake-up speed are supported: normal and fast  
Eight levels of LVR: 4.0V, 3.5V, 3.0V, 2.75V, 2.5V, 2.2V, 2.0V, 1.8V  
Two external interrupt pins  
1.3. CPU Features  
One processing unit operating mode  
Most instructions are 1T execution cycle  
Programmable stack pointer and adjustable stack level  
Direct and indirect addressing modes for data access. Data memories are available for use as an index pointer of  
Indirect addressing mode  
IO space and memory space are independent  
1.4. Package Information  
PMS154B-S16: SOP16 (150mil)  
PMS154B-D16: DIP16 (300mil)  
PMS154B-1J16A: QFN3*3-16pin (0.5 pitch)  
PMS154B-S14: SOP14 (150mil)  
PMS154B-M10: MSOP10 (118mil)  
PMS154B-S08: SOP8 (150mil)  
PMS154B-U06: SOT23-6 (60mil)  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 9 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
 
 
 
PMS154B  
8bit IO-Type Controller  
2. General Description and Block Diagram  
The PMS154B is an IO-Type, fully static, OTP-based CMOS 8-bit microcontroller; it employs RISC architecture  
and most the instructions are executed in one cycle except that few instructions are two cycles that handle  
indirect memory access. 2KW OTP program memory and 128 bytes data SRAM are inside, one hardware 16-bit  
timer, two hardware 8-bit timers with PWM generation (Timer2, Timer3) and one hardware 11-bit timers with  
PWM generation (PWMG0) is also included, PMS154B also supports one hardware comparator and VDD/2 bias  
voltage generator for LCD display application.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 10 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit IO-Type Controller  
3. Pin Definition and Functional Description  
PB4/TM2PWM/PG0PWM  
PB5/TM3PWM/PG0PWM  
PB6/TM3PWM/CIN2-  
PB7/TM3PWM/CIN3-  
VDD  
PB3  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
PB2/TM2PWM  
PB1  
PB0/INT1/COM1  
GND  
PA7/X1  
11 PA0/INT0/COM2/CO/PG0PWM  
PA6/X1  
PA4/COM3/CIN+/CIN4-  
10  
9
PA5/PRST#  
PA3/TM2PWM/COM4/CIN1-  
PMS154B-S16: SOP16 (150mil)  
PMS154B-D16: DIP16 (300mil)  
PB5/TM3PWM/PG0PWM  
PB6/TM3PWM/CIN2-  
PB7/TM3PWM/CIN3-  
VDD  
PB2/TM2PWM  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
PB1  
PB0/INT1/COM1  
GND  
PA7/X1  
PA0/INT0/COM2/CO/PG0PWM  
PA4/COM3/CIN+/CIN4-  
PA3/TM2PWM/COM4/CIN1-  
PA6/X1  
PA5/PRST#  
8
PMS154B-S14: SOP14(150mil)  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 11 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit IO-Type Controller  
PMS154B-M10: MSOP10 (118mil)  
Pin & Buffer  
Type  
Pin Name  
Description  
This pin can be used as:  
(1) Bit 7 of port A. It can be configured as digital input or two-state output, with  
pull-up resistor by software independently  
IO  
PA7 /  
X1  
ST /  
(2) X1 when crystal oscillator is used  
CMOS /  
Analog  
When this pin is configured as crystal oscillator function, please use bit 7 of  
register padier to disable the digital input to prevent current leakage. This pin can  
be used to wake-up system during sleep mode; however, wake-up function is also  
disabled if bit 7 of padier register is “0”.  
This pin can be used as:  
(1) Bit 6 of port A. It can be configured as digital input or two-state output, with  
pull-up resistor by software independently.  
IO  
PA6 /  
X2  
ST /  
(2) X2 when crystal oscillator is used.  
CMOS /  
Analog  
When this pin is configured as crystal oscillator function, please use bit 6 of  
register padier to disable the digital input to prevent current leakage. This pin can  
be used to wake-up system during sleep mode; however, wake-up function is also  
disabled if bit 6 of padier register is “0”.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 12 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
PMS154B  
8bit IO-Type Controller  
Pin & Buffer  
Type  
Pin Name  
Description  
This pin can be used as:  
(1) Bit 5 of port A. It can be configured as digital input or open-drain output, with  
pull-up resistor.  
IO  
PA5 /  
(2) Hardware reset.  
ST /  
PRST#  
This pin can be used to wake-up system during sleep mode; however, wake-up  
function is also disabled if bit 5 of padier register is “0”.  
Please put 33Ω resistor in series to have high noise immunity when this pin is in  
input mode.  
CMOS  
This pin can be used as:  
(1) Bit 4 of port A. It can be configured as digital input or two-state output, with  
pull-up resistor by software independently  
IO  
PA4 /  
CIN+ /  
COM3 /  
CIN4-  
(2) Plus input source of comparator.  
ST /  
(3) Minus input source 4 of comparator.  
CMOS /  
Analog  
(4) COM3 to provide (1/2 VDD) for LCD display  
When this pin is configured as analog input, please use bit 4 of register padier to  
disable the digital input to prevent current leakage. This pin can be used to  
wake-up system during sleep mode; however, wake-up function is also disabled if  
bit 4 of padier register is “0”.  
This pin can be used as:  
(1) Bit 3 of port A. It can be configured as digital input or two-state output, with  
pull-up resistor by software independently.  
IO  
PA3 /  
TM2PWM /  
COM4 /  
CIN1-  
(2) Minus input source 1 of comparator.  
ST /  
(3) Output of 8-bit Timer2 (TM2)  
CMOS /  
Analog  
(4) COM4 to provide (1/2 VDD) for LCD display  
When this pin is configured as analog input, please use bit 3 of register padier to  
disable the digital input to prevent current leakage. This pin can be used to  
wake-up system during sleep mode; however, wake-up function is also disabled if  
bit 3 of padier register is “0”.  
This pin can be used as:  
(1) Bit 0 of port A. It can be configured as digital input or two-state output, with  
pull-up resistor by software independently.  
(2) External interrupt line 0. Both rising edge and falling edge are accepted to  
request interrupt service.  
PA0 /  
INT0 /  
IO  
ST /  
(3) Output of comparator  
PG0PWM /  
CO /  
CMOS /  
Analog  
(4) Output of 11-bit PWM generator PWMG0  
(5) COM2 to provide (1/2 VDD) for LCD display  
COM2  
When this pin is configured as analog input, please use bit 0 of register padier to  
disable the digital input to prevent current leakage. This pin can be used to  
wake-up system during sleep mode; however, wake-up function is also disabled if  
bit 0 of padier register is “0”.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 13 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
PMS154B  
8bit IO-Type Controller  
Pin & Buffer  
Type  
Pin Name  
Description  
This pin can be used as:  
(1) Bit 7 of port B. It can be configured as digital input or two-state output, with  
pull-up resistor by software independently.  
IO  
PB7 /  
TM3PWM /  
CIN3-  
(2) Minus input source 3 of comparator.  
ST /  
(3) Output of 8-bit timer Timer3 (TM3)  
CMOS /  
Analog  
When this pin is configured as analog input, please use bit 7 of register pbdier to  
disable the digital input to prevent current leakage. This pin can be used to  
wake-up system during sleep mode; however, wake-up function is also disabled if  
bit 7 of pbdier register is “0”.  
This pin can be used as:  
(1) Bit 6 of port B. It can be configured as digital input or two-state output, with  
pull-up resistor by software independently.  
IO  
PB6 /  
TM3PWM /  
CIN2-  
(2) Minus input source 2 of comparator.  
ST /  
(3) Output of 8-bit timer Timer3 (TM3)  
CMOS /  
Analog  
When this pin is configured as analog input, please use bit 6 of register pbdier to  
disable the digital input to prevent current leakage. This pin can be used to  
wake-up system during sleep mode; however, wake-up function is also disabled if  
bit 6 of pbdier register is “0”.  
This pin can be used as:  
(1) Bit 5 of port B. It can be configured as digital input or two-state output, with  
pull-up resistor by software independently.  
IO  
PB5 /  
(2) Output of 8-bit timer Timer3 (TM3)  
ST /  
TM3PWM /  
PG0PWM  
(3) Output of 11-bit PWM generator PWMG0  
CMOS /  
Analog  
When this pin is configured as analog input, please use bit 5 of register pbdier to  
disable the digital input to prevent current leakage. This pin can be used to  
wake-up system during sleep mode; however, wake-up function is also disabled if  
bit 5 of pbdier register is “0”.  
This pin can be used as:  
(1) Bit 4 of port B. It can be configured as digital input or two-state output, with  
pull-up resistor by software independently.  
IO  
PB4 /  
(2) Output of 8-bit timer Timer2 (TM2)  
ST /  
TM2PWM /  
PG0PWM  
(3) Output of 11-bit PWM generator PWMG0  
CMOS /  
Analog  
When this pin is configured as analog input, please use bit 4 of register pbdier to  
disable the digital input to prevent current leakage. This pin can be used to  
wake-up system during sleep mode; however, wake-up function is also disabled if  
bit 4 of pbdier register is “0”.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 14 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
PMS154B  
8bit IO-Type Controller  
Pin & Buffer  
Type  
Pin Name  
Description  
This pin can be used as:  
(1) Bit 3 of port B. It can be configured as digital input or two-state output, with  
pull-up resistor by software independently.  
IO  
ST /  
PB3  
When this pin is configured as analog input, please use bit 3 of register pbdier to  
disable the digital input to prevent current leakage. This pin can be used to  
wake-up system during sleep mode; however, wake-up function is also disabled if  
bit 3 of pbdier register is “0”.  
CMOS /  
This pin can be used as:  
(1) Bit 2 of port B. It can be configured as digital input or two-state output, with  
pull-up resistor by software independently.  
IO  
PB2 /  
ST /  
(2) Output of 8-bit timer Timer2 (TM2)  
TM2PWM  
CMOS /  
Analog  
When this pin is configured as analog input, please use bit 2 of register pbdier to  
disable the digital input to prevent current leakage. This pin can be used to  
wake-up system during sleep mode; however, wake-up function is also disabled if  
bit 2 of pbdier register is “0”.  
This pin can be used as:  
(1) Bit 1 of port B. It can be configured as digital input or two-state output, with  
pull-up resistor by software independently.  
IO  
ST /  
PB1  
When this pin is configured as analog input, please use bit 1 of register pbdier to  
disable the digital input to prevent current leakage. This pin can be used to  
wake-up system during sleep mode; however, wake-up function is also disabled if  
bit 1 of pbdier register is “0”.  
CMOS /  
Analog  
This pin can be used as:  
(1) Bit 0 of port A. It can be configured as digital input or two-state output, with  
pull-up resistor by software independently.  
IO  
(2) External interrupt line 1. Both rising edge and falling edge are accepted to  
request interrupt service.  
PB0 /  
INT1 /  
COM1  
ST /  
CMOS /  
Analog  
(3) COM1 to provide (1/2 VDD) for LCD display  
When this pin is configured as analog input, please use bit 0 of register pbdier to  
disable the digital input to prevent current leakage. This pin can be used to  
wake-up system during sleep mode; however, wake-up function is also disabled if  
bit 0 of pbdier register is “0”.  
VDD  
GND  
Positive power  
Ground  
Notes: IO: Input/ Output; ST: Schmitt Trigger input; Analog: Analog input pin; CMOS: CMOS voltage level  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 15 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
PMS154B  
8bit IO-Type Controller  
4. Device Characteristics  
4.1. DC/AC Characteristics  
All data are acquired under the conditions of VDD=3.3V, fSYS=2MHz unless noted.  
Symbol  
VDD  
Description  
Operating Voltage  
Min  
2.2*  
-5  
Typ  
Max  
5.5  
5
Unit  
V
Conditions(Ta=25oC)  
* Subject to LVR tolerance  
Low Voltage Reset tolerance  
%
LVR%  
System clock (CLK)* =  
IHRC/2  
0
0
0
8M  
4M  
2M  
VDD 3.5V  
VDD 2.5V  
VDD 2.2V  
IHRC/4  
fSYS  
Hz  
IHRC/8  
ILRC  
70K  
0.3  
12  
VDD = 3V  
fSYS=IHRC/16=1MIPS@3V  
fSYS=ILRC=70KHz@3V  
fSYS=EOSC=32KHz@3V  
mA  
uA  
uA  
IOP  
IPD  
IPS  
Operating Current  
10  
Power Down Current  
(by stopsys command)  
Power Save Current  
(by stopexe command)  
*Disable IHRC  
0.5  
uA  
fSYS= 0Hz, VDD =3.3V  
5
uA  
VDD =3.3V  
0.2VDD  
0.1VDD  
VDD  
PA5  
VIL  
VIH  
Input low voltage for IO lines  
0
Others IO  
V
Input high voltage for IO lines  
IO lines sink current (normal)  
*PA0,PA3,PA4,PB2,PB5,PB6  
*PA6,PA7,PB0,PB1,PB3,PB4,PB7  
*PA5  
0.7 VDD  
10  
6
mA VDD=3.3V, VOL=0.33V  
mA VDD=3.3V, VOL=0.33V  
IOL  
5
IO lines sink current (low)  
*PA5  
5
2
*Others  
IO lines drive current (normal)  
IO lines drive current (low)  
Input voltage  
-5  
IOH  
VIN  
mA VDD=3.3V, VOH=2.97V  
V
-1.6  
-0.3  
VDD+0.3  
1
VDD +0.3VIN-0.3  
mA  
IINJ (PIN) Injected current on pin  
RPH  
Pull-high Resistance  
200  
16*  
VDD=3.3V  
@25oC  
15.84*  
15.20*  
16.16*  
16.80*  
fIHRC  
Frequency of IHRC after calibration *  
MHz  
V
DD =2V~5.5V,  
16*  
-20oC <Ta<70oC*  
VDD = 3.3V  
tINT  
Interrupt pulse width  
30  
ns  
V
In power-down mode  
VDR  
RAM data retention voltage*  
1.5  
Symbol  
Description  
Min  
Typ  
Max  
Unit  
TILRC  
Conditions(Ta=25oC)  
misc[1:0]=00 (default)  
misc[1:0]=01  
8192  
tWDT  
Watchdog timeout period  
16384  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 16 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
PMS154B  
8bit IO-Type Controller  
65536  
misc[1:0]=10  
misc[1:0]=11  
262144  
System boot-up period from  
power-on for Normal boot-up  
System boot-up period from  
power-on for Fast boot-up  
Wake-up time period for fast  
wake-up  
47  
780  
45  
ms  
us  
tSBP  
@ VDD =5V  
Where TILRC is the time  
period of ILRC  
tWUP  
TILRC  
Wake-up time period for normal  
wake-up  
3000  
tRST  
External reset pulse width  
120  
us  
mV  
V
CPos Comparator offset*  
-
±10  
±20  
VDD-1.5  
500  
CPcm Comparator input common mode*  
CPspt Comparator response time**  
0
100  
2.5  
20  
ns  
Both rising and falling  
VDD = 3.3V  
Stable time to change comparator  
CPmc  
mode  
7.5  
us  
CPcs Comparator current consumption  
uA  
*These parameters are for design reference, not tested for every chip.  
4.2. Absolute Maximum Ratings  
Supply Voltage ............................................  
2.2V ~ 5.5V (Maximum Rating: 5.5V)  
*If VDD is over the maximum rating, it may lead to a permanent damage of IC.  
Input Voltage …………………………………..  
Operating Temperature ………………………  
Storage Temperature …………………………  
Junction Temperature ………………………..  
-0.3V ~ VDD + 0.3V  
-20°C ~ 70°C  
-50°C ~ 125°C  
150°C  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 17 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit IO-Type Controller  
4.3. Typical IHRC Frequency vs. VDD (calibrated to 16MHz)  
4.4. Typical ILRC Frequency vs. VDD  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 18 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
PMS154B  
8bit IO-Type Controller  
4.5. Typical IHRC Frequency vs. Temperature (calibrated to 16MHz)  
4.6. Typical ILRC Frequency vs. Temperature  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 19 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
PMS154B  
8bit IO-Type Controller  
4.7. Typical Operating Current vs. VDD and CLK=IHRC/n  
Conditions: ON: IHRC; OFF: Band-gap, LVR, T16 modules, ILRC modules;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
4.8. Typical Operating Current vs. VDD and CLK=ILRC/n  
Conditions: ON: ILRC; OFF: Band-gap, LVR, T16 modules, IHRC modules;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 20 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
PMS154B  
8bit IO-Type Controller  
4.9. Typical Operating Current vs. VDD and CLK=32KHz EOSC / n  
Conditions: ON: EOSC; OFF: Band-gap, LVR, T16 modules, IHRC, ILRC modules;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
4.10.Typical Operating Current vs. VDD and CLK=1MHz EOSC / n  
Conditions: ON: EOSC; OFF: Band-gap, LVR, T16 modules, IHRC, ILRC modules;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 21 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
PMS154B  
8bit IO-Type Controller  
4.11.Typical Operating Current vs. VDD and CLK=4MHz EOSC / n  
Conditions: ON: EOSC; OFF: Band-gap, LVR, T16 modules, IHRC, ILRC modules;  
IO: PA0:0.5Hz output toggle and no loading, others: input and no floating  
4.12.Typical IO pull high resistance  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 22 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
PMS154B  
8bit IO-Type Controller  
4.13.Typical IO input high/low threshold voltage (VIH/VIL)  
4.14.Typical IO driving current (IOH) and sink current (IOL)  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 23 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
PMS154B  
8bit IO-Type Controller  
4.15.Typical power down current (IPD) and power save current (IPS)  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 24 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit IO-Type Controller  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 25 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
PMS154B  
8bit IO-Type Controller  
5. Functional Description  
5.1. Program Memory – OTP  
The OTP (One Time Programmable) program memory is used to store the program instructions to be  
executed. The OTP program memory may contains the data, tables and interrupt entry. After reset, the initial  
address 0x000 is reserved for system using, so the program will start from 0x001 which is GOTO FPPA0  
instruction usually. The interrupt entry is 0x010 if used, the last 16 addresses are reserved for system using,  
like checksum, serial number, etc. The OTP program memory for PMS154B is a 2KW that is partitioned as  
Table 1. The OTP memory from address 0x7E8 to 0x7FF is for system using, address space from 0x002 to  
0x00F and from 0x011 to 0x7E7 is user program space.  
Address  
0x000  
0x001  
0x002  
Function  
System Using  
GOTO FPPA0 instruction  
User program  
0x00F  
0x010  
0x011  
User program  
Interrupt entry address  
User program  
0x7E7  
0x7E8  
User program  
System Using  
0x7FF  
System Using  
Table 1: Program Memory Organization  
5.2. Boot Up  
POR (Power-On-Reset) is used to reset PMS154B when power up. The boot up time can be optional fast or  
normal. Time for fast boot-up is about 45 ILRC clock cycles whereas 3000 ILRC clock cycles for normal  
boot-up. Customer must ensure the stability of supply voltage after power up no matter which option is  
chosen, the power up sequence is shown in the Fig. 1 and tSBP is the boot up time.  
VDD  
t
SBP  
POR  
Program  
Execution  
Boot up from Power-On Reset  
Fig. 1 Power Up Sequence  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 26 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
 
PMS154B  
8bit IO-Type Controller  
5.2.1. Timing charts for reset conditions  
LVR level  
VDD  
LVR  
SBP  
t
Program  
Execution  
Boot up from LVR detection  
VDD  
t
SBP  
WD  
Time Out  
Program  
Execution  
Boot up from Watch Dog Time Out  
VDD  
Reset#  
t
SBP  
Program  
Execution  
Boot up from Reset Pad reset  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 27 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit IO-Type Controller  
5.3. Data Memory – SRAM  
The access of data memory can be byte or bit operation. Besides data storage, the SRAM data memory is  
also served as data pointer of indirect access method and the stack memory.  
The stack memory is defined in the data memory. The stack pointer is defined in the stack pointer register;  
the depth of stack memory of each processing unit is defined by the user. The arrangement of stack memory  
fully flexible and can be dynamically adjusted by the user.  
For indirect memory access mechanism, the data memory is used as the data pointer to address the data  
byte. All the data memory could be the data pointer; it’s quite flexible and useful to do the indirect memory  
access. All the 128 bytes data memory of PMS154B can be accessed by indirect access mechanism.  
5.4. Oscillator and clock  
There are three oscillator circuits provided by PMS154B: external crystal oscillator (EOSC), internal high RC  
oscillator (IHRC) and internal low RC oscillator (ILRC), and these three oscillators are enabled or disabled by  
registers eoscr.7, clkmd.4 and clkmd.2 independently. User can choose one of these three oscillators as  
system clock source and use clkmd register to target the desired frequency as system clock to meet different  
applications.  
Oscillator Module  
EOSC  
Enable / Disable  
eoscr.7  
IHRC  
clkmd.4  
ILRC  
clkmd.2  
Table2: Three Oscillator Circuits provided by PMS154B  
5.4.1. Internal High RC oscillator and Internal Low RC oscillator  
After boot-up, the IHRC and ILRC oscillators are enabled. The frequency of IHRC can be calibrated to  
eliminate process variation by ihrcr register; normally it is calibrated to 16MHz. Please refer to the  
measurement chart for IHRC frequency verse VDD and IHRC frequency verse temperature.  
The frequency will vary by process, supply voltage and temperature, please refer to DC specification and do  
not use for accurate timing application.  
5.4.2. IHRC calibration  
The IHRC frequency may be different chip by chip due to manufacturing variation, PMS154B provide the  
IHRC frequency calibration to eliminate this variation, and this function can be selected when compiling  
user’s program and the command will be inserted into user’s program automatically. The calibration  
command is shown as below:  
.ADJUST_IC SYSCLK=IHRC/(p1), IHRC=(p2)MHz, VDD=(p3)V  
Where,  
p1=2, 4, 8, 16, 32; In order to provide different system clock.  
p2=16 ~ 18; In order to calibrate the chip to different frequency, 16MHz is the usually one.  
p3=2.2 ~ 5.5; In order to calibrate the chip under different supply voltage.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 28 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
 
 
PMS154B  
8bit IO-Type Controller  
5.4.3. IHRC Frequency Calibration and System Clock  
During compiling the user program, the options for IHRC calibration and system clock are shown as Table 3:  
SYSCLK  
○ Set IHRC / 2  
Set IHRC / 4  
Set IHRC / 8  
CLKMD  
IHRCR  
Calibrated  
Calibrated  
Calibrated  
Description  
= 34h (IHRC / 2)  
= 14h (IHRC / 4)  
= 3Ch (IHRC / 8)  
IHRC calibrated to 16MHz, CLK=8MHz (IHRC/2)  
IHRC calibrated to 16MHz, CLK=4MHz (IHRC/4)  
IHRC calibrated to 16MHz, CLK=2MHz (IHRC/8)  
IHRC calibrated to 16MHz, CLK=1MHz (IHRC/16)  
IHRC calibrated to 16MHz, CLK=0.5MHz (IHRC/32)  
IHRC calibrated to 16MHz, CLK=ILRC  
Set IHRC / 16 = 1Ch (IHRC / 16) Calibrated  
Set IHRC / 32 = 7Ch (IHRC / 32) Calibrated  
○ Set ILRC  
○ Disable  
= E4h (ILRC / 1)  
No change  
Calibrated  
No Change IHRC not calibrated, CLK not changed  
Table 3: Options for IHRC Frequency Calibration  
Usually, .ADJUST_IC will be the first command after boot up, in order to set the target operating frequency  
whenever stating the system. The program code for IHRC frequency calibration is executed only one time that  
occurs in writing the codes into OTP memory; after then, it will not be executed again. If the different option for  
IHRC calibration is chosen, the system status is also different after boot. The following shows the status of  
PMS154B for different option:  
(1) . ADJUST_IC SYSCLK=IHRC/2, IHRC=16MHz, VDD=5V  
After boot, CLKMD = 0x34:  
IHRC frequency is calibrated to 16MHz@VDD=5V and IHRC module is enabled  
System CLK = IHRC/2 = 8MHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
(2) .ADJUST_IC SYSCLK=IHRC/4, IHRC=16MHz, VDD=3.3V  
After boot, CLKMD = 0x14:  
IHRC frequency is calibrated to 16MHz@VDD=3.3V and IHRC module is enabled  
System CLK = IHRC/4 = 4MHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
(3) .ADJUST_IC SYSCLK=IHRC/8, IHRC=16MHz, VDD=2.5V  
After boot, CLKMD = 0x3C:  
IHRC frequency is calibrated to 16MHz@VDD=2.5V and IHRC module is enabled  
System CLK = IHRC/8 = 2MHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
(4) .ADJUST_IC SYSCLK=IHRC/16, IHRC=16MHz, VDD=2.2V  
After boot, CLKMD = 0x1C:  
IHRC frequency is calibrated to 16MHz@VDD=2.2V and IHRC module is enabled  
System CLK = IHRC/16 = 1MHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
(5) .ADJUST_IC SYSCLK=IHRC/32, IHRC=16MHz, VDD=5V  
After boot, CLKMD = 0x7C:  
IHRC frequency is calibrated to 16MHz@VDD=5V and IHRC module is enabled  
System CLK = IHRC/32 = 500KHz  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 29 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit IO-Type Controller  
(6) .ADJUST_IC SYSCLK=ILRC, IHRC=16MHz, VDD=5V  
After boot, CLKMD = 0xE4:  
IHRC frequency is calibrated to 16MHz@VDD=5V and IHRC module is disabled  
System CLK = ILRC  
Watchdog timer is disabled, ILRC is enabled, PA5 is in input mode  
(7) .ADJUST_IC DISABLE  
After boot, CLKMD is not changed (Do nothing):  
IHRC is not calibrated and IHRC module is disabled. Band-gap is not calibrated.  
System CLK = ILRC or IHRC/64 (by Boot-up time)  
Watchdog timer is enabled, ILRC is enabled, PA5 is in input mode  
5.4.4. External Crystal Oscillator  
If crystal oscillator is used, a crystal or resonator is required between X1 and X2. Fig. 2 shows the hardware  
connection under this application; the range of operating frequency of crystal oscillator can be from 32 KHz  
to 4MHz, depending on the crystal placed on; higher frequency oscillator than 4MHz is NOT supported.  
(Select driving current for oscillator)  
Eoscr[6:5]  
(Enable crystal oscillator)  
Eoscr.7  
C1  
PA7/X1  
System clock = EOSC  
PA6/X2  
C2  
The values of C1 and C2 should depend on  
the specification of crystal.  
Fig. 2: Connection of crystal oscillator  
Besides crystal, external capacitor and options of PMS154B should be fine tuned in eoscr (0x0a) register to  
have good sinusoidal waveform. The eoscr.7 is used to enable crystal oscillator module, eoscr.6 and eoscr.5  
are used to set the different driving current to meet the requirement of different frequency of crystal  
oscillator:  
eoscr.[6:5]=01 : Low driving capability, for lower frequency, ex: 32KHz crystal oscillator  
eoscr.[6:5]=10 : Middle driving capability, for middle frequency, ex: 1MHz crystal oscillator  
eoscr.[6:5]=11 : High driving capability, for higher frequency, ex: 4MHz crystal oscillator  
Table 4 shows the recommended values of C1 and C2 for different crystal oscillator; the measured start-up  
time under its corresponding conditions is also shown. Since the crystal or resonator had its own  
characteristic, the capacitors and start-up time may be slightly different for different type of crystal or  
resonator, please refer to its specification for proper values of C1 and C2.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 30 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit IO-Type Controller  
Measured  
Frequency  
C1  
C2  
Conditions  
(eoscr[6:5]=11)  
Start-up time  
6ms  
4MHz  
1MHz  
32KHz  
4.7pF  
10pF  
22pF  
4.7pF  
10pF  
22pF  
11ms  
(eoscr[6:5]=10)  
(eoscr[6:5]=01)  
450ms  
Table 4: Recommend values of C1 and C2 for crystal and resonator oscillators  
When using the crystal oscillator, user must pay attention to the stable time of oscillator after enabling it, the  
stable time of oscillator will depend on frequency, crystal type, external capacitor and supply voltage. Before  
switching the system to the crystal oscillator, user must make sure the oscillator is stable; the reference  
program is shown as below:  
void  
{
FPPA0 (void)  
. ADJUST_IC SYSCLK=IHRC/16, IHRC=16MHz, VDD=5V  
// If Band-gap is not calibrated, it can use “. ADJUST_IC  
DISABLE”  
...  
$
$
EOSCR Enable, 4Mhz;  
T16M EOSC, /1, BIT13;  
// EOSCR = 0b110_00000;  
// T16 receive 2^14=16384 clocks of crystal EOSC  
// Intrq.T16 =>1, crystal EOSC Is stable  
WORD  
stt16  
count  
=
0;  
count;  
Intrq.T16 =  
0;  
while(!Intrq.T16) NULL;  
Clkmd = 0xB4;  
// count fm 0x0000 to 0x2000, then set INTRQ.T16  
// IHRC switch to EOSC, not disable IHRC  
Clkmd.4 = 0;  
...  
// disable IHRC  
}
Please notice that the crystal oscillator should be fully turned off before entering the power-down mode, in  
order to avoid unexpected wakeup event.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 31 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
PMS154B  
8bit IO-Type Controller  
5.4.5. System Clock and LVR levels  
The clock source of system clock comes from IHRCILRC or EOSC, the hardware diagram of system clock  
in the PMS154B is shown as Fig. 3.  
clkmd[7:5]  
÷2, ÷4, ÷8,  
÷16, ÷32, ÷64  
IHRC  
M
U
System  
clock  
CLK  
X
÷1, ÷4, ÷16  
ILRC  
÷1, ÷2, ÷4, ÷8  
EOSC  
Fig. 3: Options of System Clock  
User can choose different operating system clock depends on its requirement; the selected operating system clock  
should be combined with supply voltage and LVR level to make system stable. The LVR level will be checked during  
compilation, and the lowest LVR levels can be chosen for different operating frequencies. Please refer to Section  
4.1.  
5.5. 16-bit Timer (Timer16)  
PMS154B provide a 16-bit hardware timer (Timer16/T16) and its clock source may come from system clock  
(CLK), internal high RC oscillator (IHRC), internal low RC oscillator (ILRC) , external crystal oscillator (EOSC),  
PA0 or PA4. Before sending clock to the 16-bit counter, a pre-scaling logic with divided-by-1, 4, 16 or 64 is  
selectable for wide range counting. The 16-bit counter performs up-counting operation only, the counter initial  
values can be stored from data memory by issuing the stt16 instruction and the counting values can be  
loaded to data memory by issuing the ldt16 instruction. The interrupt request from Timer16 will be triggered  
by the selected bit which comes from bit[15:8] of this 16-bit counter, rising edge or falling edge can be  
optional chosen by register integs.4. The hardware diagram of Timer16 is shown as Fig. 4.  
Fig. 4: Hardware diagram of Timer16  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 32 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
PMS154B  
8bit IO-Type Controller  
There are three parameters to define the Timer16 using; 1st parameter is used to define the clock source of  
Timer16, 2nd parameter is used to define the pre-scalar and the 3rd one is to define the interrupt source.  
T16M IO_RW  
0x06  
$ 7~5:  
$ 4~3:  
$ 2~0:  
STOP, SYSCLK, X, PA4_F, IHRC, EOSC, ILRC, PA0_F  
/1, /4, /16, /64  
// 1st par.  
// 2nd par.  
// 3rd par.  
BIT8, BIT9, BIT10, BIT11, BIT12, BIT13, BIT14, BIT15  
User can choose the proper parameters of T16M to meet system requirement, examples as below:  
$
T16M  
SYSCLK, /64, BIT15;  
// choose (SYSCLK/64) as clock source, every 2^16 clock to set INTRQ.2=1  
// if system clock SYSCLK = IHRC / 2 = 8 MHz  
// SYSCLK/64 = 8 MHz/64 = 8 uS, about every 524 mS to generate INTRQ.2=1  
$
$
T16M  
PA0, /1, BIT8;  
// choose PA0 as clock source, every 2^9 to generate INTRQ.2=1  
// receiving every 512 times PA0 to generate INTRQ.2=1  
T16M  
STOP;  
// stop Timer16 counting  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 33 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
PMS154B  
8bit IO-Type Controller  
5.6. Watchdog Timer  
The watchdog timer (WDT) is a counter with clock coming from ILRC. WDT can be cleared by power-on-reset  
or by command wdreset at any time. There are four different timeout periods of watchdog timer can be  
chosen by setting the misc register, it is:  
8k ILRC clock period when misc[1:0]=00 (default)  
16k ILRC clock period when misc[1:0]=01  
64k ILRC clock period when misc[1:0]=10  
256k ILRC clock period when misc[1:0]=11  
The frequency of ILRC may drift a lot due to the variation of manufacture, supply voltage and temperature;  
user should reserve guard band for safe operation. Besides, the watchdog period will also be shorter than  
expected after Reset or Wakeup events. It is suggested to clear WDT by wdreset command after these  
events to ensure enough clock periods before WDT timeout.  
When WDT is timeout, PMS154B will be reset to restart the program execution. The relative timing diagram of  
watchdog timer is shown as Fig. 5.  
VDD  
t
SBP  
WD  
Time Out  
Program  
Execution  
Watch Dog Time Out Sequence  
Fig. 5: Sequence of Watch Dog Time Out  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 34 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit IO-Type Controller  
5.7. Interrupt Controller  
The hardware diagram of interrupt controller is shown as Fig. 6, there are total 7 interrupt sources for  
PMS154B: PA0, PB0, Timer16, Comparator, Timer2, Timer3, PWM Generator 0. Among them, every  
interrupt request line to CPU has its own corresponding interrupt control bit to enable or disable it. All the  
interrupt request flags are set by hardware and cleared by writing intrq register. When the request flags are  
set, it can be rising edge, falling edge or both, depending on the setting of register integs. All the interrupt  
request lines are also controlled by engint instruction (enable global interrupt) to enable interrupt operation  
and disgint instruction (disable global interrupt) to disable it.  
Fig. 6: Hardware diagram of Interrupt controller  
The stack memory for interrupt is shared with data memory and its address is specified by stack register sp.  
Since the program counter is 16 bits width, the bit 0 of stack register sp should be kept 0. Moreover, user can  
use pushaf / popaf instructions to store or restore the values of ACC and flag register to / from stack  
memory. Since the stack memory is shared with data memory, the stack position and level are arranged by  
the compiler in Mini-C project. When defining the stack level in ASM project, users should arrange their  
locations carefully to prevent address conflicts.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 35 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit IO-Type Controller  
Once the interrupt occurs, its operation will be:  
The program counter will be stored automatically to the stack memory specified by register sp.  
New sp will be updated to sp+2.  
Global interrupt will be disabled automatically.  
The next instruction will be fetched from address 0x010.  
During the interrupt service routine, the interrupt source can be determined by reading the intrq register.  
Note: Even if INTEN=0, INTRQ will be still triggered by the interrupt source.  
After finishing the interrupt service routine and issuing the reti instruction to return back, its operation will be:  
The program counter will be restored automatically from the stack memory specified by register sp.  
New sp will be updated to sp-2.  
Global interrupt will be enabled automatically.  
The next instruction will be the original one before interrupt.  
User must reserve enough stack memory for interrupt, two bytes stack memory for one level interrupt and four  
bytes for two levels interrupt. For interrupt operation, the following sample program shows how to handle the  
interrupt, noticing that it needs four bytes stack memory to handle interrupt and pushaf.  
void  
{
FPPA0  
(void)  
...  
$
INTEN PA0;  
// INTEN =1; interrupt request when PA0 level changed  
// clear INTRQ  
INTRQ  
ENGINT  
...  
=
0;  
// global interrupt enable  
DISGINT  
...  
// global interrupt disable  
}
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 36 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
PMS154B  
8bit IO-Type Controller  
void Interrupt (void)  
// interrupt service routine  
{
PUSHAF  
// store ALU and FLAG register  
// If INTEN.PA0 will be opened and closed dynamically,  
// user can judge whether INTEN.PA0 =1 or not.  
// Example: If (INTEN.PA0 && INTRQ.PA0) {…}  
// If INTEN.PA0 is always enable,  
// user can omit the INTEN.PA0 judgement to speed up interrupt service routine.  
If (INTRQ.PA0)  
{
// Here for PA0 interrupt service routine  
INTRQ.PA0 = 0;  
...  
// Delete corresponding bit (take PA0 for example)  
}
...  
// X : INTRQ = 0;  
// It is not recommended to use INTRQ = 0 to clear all at the end of  
the  
// interrupt service routine.  
// It may accidentally clear out the interrupts that have just occurred  
// and are not yet processed.  
POPAF  
// restore ALU and FLAG register  
}
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 37 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
PMS154B  
8bit IO-Type Controller  
5.8. Power-Save and Power-Down  
There are three operational modes defined by hardware: ON mode, Power-Save mode and Power-Down  
modes. ON mode is the state of normal operation with all functions ON, Power-Save mode (“stopexe”) is the  
state to reduce operating current and CPU keeps ready to continue, Power-Down mode (“stopsys”) is used  
to save power deeply. Therefore, Power-Save mode is used in the system which needs low operating power  
with wake-up occasionally and Power-Down mode is used in the system which needs power down deeply  
with seldom wake-up. Table 5 shows the differences in oscillator modules between Power-Save mode  
(“stopexe”) and Power-Down mode (“stopsys”).  
Differences in oscillator modules between STOPSYS and STOPEXE  
IHRC  
Stop  
ILRC  
Stop  
STOPSYS  
STOPEXE  
No Change  
No Change  
Table 5: Differences in oscillator modules between STOPSYS and STOPEXE  
5.8.1. Power-Save mode (“stopexe”)  
Using “stopexe” instruction to enter the Power-Save mode, only system clock is disabled, remaining all the  
oscillator modules be active. For CPU, it stops executing; however, for Timer16, counter keep counting if its  
clock source is not the system clock. The wake-up sources for “stopexe” can be IO-toggle or Timer16  
counts to set values when the clock source of Timer16 is IHRC or ILRC modules. , or wakeup by comparator  
when setting GPCC.7=1 and GPCS.6=1 to enable the comparator wakeup function at the same time. Wake-up from  
input pins can be considered as a continuation of normal execution, the detail information for Power-Save  
mode shown below:  
IHRC oscillator modules: No change, keep active if it was enabled  
ILRC oscillator modules: must remain enabled, need to start with ILRC when be wakening up  
System clock: Disable, therefore, CPU stops execution  
OTP memory is turned off  
Timer16, Timer2, Timer3: Stop counting if system clock is selected or the corresponding oscillator  
module is disabled; otherwise, it keeps counting.  
Wake-up sources: IO toggle in digital mode (PxDIER bit is 1) or Timer16 or Timer2 or Timer3 or  
comparator.  
An example shows how to use Timer16 to wake-up from “stopexe”:  
$ T16M IHRC, /1, BIT8  
// Timer16 setting  
WORD  
STT16  
stopexe;  
count  
count;  
=
0;  
The initial counting value of Timer16 is zero and the system will be woken up after the Timer16 counts 256  
IHRC clocks.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 38 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
PMS154B  
8bit OTP IO IO Controller  
5.8.2. Power-Down mode (“stopsys”)  
Power-Down mode is the state of deeply power-saving with turning off all the oscillator modules. By using  
the “stopsys” instruction, this chip will be put on Power-Down mode directly. It is recommend to set  
GPCC.7=0 to disable the comparator before the command “stopsys”. Before entering Power-Down mode,  
the internal low-frequency oscillator (ILRC) must be enabled to wake up the system, that is, before issuing  
the stopsys command, the bit 2 of the CLKMD register must be set to 1. The following shows the internal  
status of PMS154B in detail when “stopsys” command is issued:  
All the oscillator modules are turned off  
OTP memory is turned off  
The contents of SRAM and registers remain unchanged  
Wake-up sources: IO toggle in digital mode (PxDIER bit is 1)  
Wake-up from input pins can be considered as a continuation of normal execution. To minimize power  
consumption, all the I/O pins should be carefully manipulated before entering power-down mode. The  
reference sample program for power down is shown as below:  
CMKMD  
=
0xF4;  
0;  
//  
//  
Change clock from IHRC to ILRC, disable watchdog timer  
disable IHRC  
CLKMD.4 =  
while (1)  
{
STOPSYS;  
if (…) break;  
//  
//  
//  
enter power-down  
if wakeup happen and check OK, then return to high speed,  
else stay in power-down mode again.  
}
CLKMD  
=
0x34;  
//  
Change clock from ILRC to IHRC/2  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 39 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit OTP IO IO Controller  
5.8.3. Wake-up  
After entering the Power-Down or Power-Save modes, the PMS154B can be resumed to normal operation  
by toggling IO pins, Timer16, Timer2 and Timer3 interrupt is available for Power-Save mode ONLY. Table 6  
shows the differences in wake-up sources between STOPSYS and STOPEXE.  
Differences in wake-up sources between STOPSYS and STOPEXE  
IO Toggle  
Yes  
TimerInterrupt  
STOPSYS  
STOPEXE  
No  
Yes  
Yes  
Table 6: Differences in wake-up sources between Power-Save mode and Power-Down mode  
When using the IO pins to wake-up the PMS154B, registers pxdier should be properly set to enable the  
wake-up function for every corresponding pin. The time for normal wake-up is about 3000 ILRC clocks  
counting from wake-up event; fast wake-up can be selected to reduce the wake-up time by misc register,  
and the time for fast wake-up is about 45 ILRC clocks from IO toggling.  
Suspend mode  
Wake-up mode  
Wake-up time (tWUP) from IO toggle  
STOPEXE suspend  
or  
STOPSYS suspend  
45 * TILRC,  
Where TILRC is the time period of ILRC  
Fast wake-up  
STOPEXE suspend  
or  
STOPSYS suspend  
3000 * TILRC  
,
Normal wake-up  
Where TILRC is the clock period of ILRC  
Please notice that when Fast boot-up is selected, no matter which wake-up mode is selected in misc.5, the  
wake-up mode will be forced to be FAST. If Normal boot-up is selected, the wake-up mode is determined by  
misc.5.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 40 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit OTP IO IO Controller  
5.9. IO Pins  
Other than PA5, all the pins can be independently set into two states output or input by configuring the data  
registers (pa/pb), control registers (pac/pbc) and pull-high registers (paph/pbph) . All these pins have  
Schmitt-trigger input buffer and output driver with CMOS level. When it is set to output low, the pull-up resistor  
is turned off automatically. If user wants to read the pin state, please notice that it should be set to input mode  
before reading the data port; if user reads the data port when it is set to output mode, the reading data comes  
from data register, NOT from IO pad. As an example, Table 7 shows the configuration table of bit 0 of port A.  
The hardware diagram of IO buffer is also shown as Fig. 7.  
pa.0 pac.0 paph.0  
Description  
Input without pull-up resistor  
X
X
0
1
1
0
0
1
1
1
0
1
X
0
1
Input with pull-up resistor  
Output low without pull-up resistor  
Output high without pull-up resistor  
Output high with pull-up resistor  
Table 7: PA0 Configuration Table  
RD pull-high latch  
WR pull-high latch  
D
Q
(weak P-MOS)  
pull-high  
latch  
D
D
Q
Data  
latch  
Q1  
PAD  
WR data latch  
RD control latch  
Q
WR control latch  
Control  
latch  
M
U
X
RD Port  
Data Bus  
padier.x  
Wakeup module  
Interrupt module  
Analog Module  
Fig. 7: Hardware diagram of IO buffer  
Other than PA5, all the IO pins have the same structure; PA5 can be open-drain ONLY when setting to output  
mode (without Q1). When PMS154B put in power-down or power-save mode, every pin can be used to  
wake-up system by toggling its state. Therefore, those pins needed to wake-up system must be set to input  
mode and set the corresponding bits of registers pxdier to high. The same reason, padier.0 should be set to  
high when PA0 is used as external interrupt pin.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 41 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit OTP IO IO Controller  
5.10. Reset  
5.10.1. Reset  
There are many causes to reset the PMS154B, once reset is asserted, all the registers in PMS154B will be  
set to default values, system should be restarted once abnormal cases happen, or by jumping program  
counter to address 0x0. The data memory is in uncertain state when reset comes from power-up and LVR;  
however, the content will be kept when reset comes from PRST# pin or WDT timeout.  
5.10.2. LVR reset  
By code option, there are many different levels of LVR for reset. Usually, user selects LVR reset level to be  
in conjunction with operating frequency and supply voltage.  
5.11. VDD/2 Bias Voltage Generator  
This function can be enabled by bit 4 of misc register. Those pins which are defined to output VDD/2  
voltage are PB0, PA0, PA4 and PA3 during input mode, being used as COM function for LCD application. If  
user  
wants to output VDD, VDD/2, GND three levels voltage, the corresponding pins must be set to  
output-high for VDD, enabling VDD/2 bias voltage with input mode for VDD/2, and  
correspondingly, Fig.8 shows how to use this function.  
output-low for GND  
VDD  
VDD/2  
GND  
Pin set to output high  
Pin set to input  
Pin set to output low  
Fig. 8: Using VDD/2 bias voltage generator  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 42 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
 
 
PMS154B  
8bit OTP IO IO Controller  
5.12. Comparator  
One hardware comparator is built inside the PMS154B; Fig. 9 shows its hardware diagram. It can compare  
signals between two pins or with either internal reference voltage Vinternal R or internal band-gap reference  
voltage. The two signals to be compared, one is the plus input and the other one is the minus input. For the  
minus input of comparator can be PA3, PA4, Internal band-gap 1.20V, PB6, PB7 or Vinternal R selected by bit  
[3:1] of gpcc register, and the plus input of comparator can be PA4 or Vinternal R selected by bit 0 of gpcc  
register.  
The comparator result can be selected through gpcs.7 to forcibly output to PA0 whatever input or output  
state. It can be a direct output or sampled by Timer2 clock (TM2_CLK) which comes from Timer2 module.  
The output polarity can be also inverted by setting gpcc.4 register. The comparator output can be used to  
request interrupt service or read through gpcc.6.  
16 stages  
VDD  
8R  
8R  
8R  
gpcs.5=1  
gpcs.4=0  
R
R
R
R
gpcs.4=1  
gpcs.5=0  
gpcs[3:0]  
MUX  
Vinternal R  
gpcc[3:1]  
PA3/CIN1-  
PA4/CIN4-  
Band-gap  
000  
001 M  
To request interrupt  
gpcc.6  
gpcc.4  
010 U  
011 X  
100  
X
O
R
-
PB6/CIN2-  
PB7/CIN3-  
M
U
X
101  
+
D
F
F
To  
PA0  
0
Timer 2  
clock  
MUX  
PA4/CIN+  
gpcc.0  
1
TM2_CLK  
gpcc.5  
gpcs.7  
Fig. 9: Hardware diagram of comparator  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 43 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit OTP IO IO Controller  
5.12.1. Internal reference voltage (Vinternal R  
)
The internal reference voltage Vinternal R is built by series resistance to provide different level of reference  
voltage, bit 4 and bit 5 of gpcs register are used to select the maximum and minimum values of Vinternal R and  
bit [3:0] of gpcs register are used to select one of the voltage level which is deivided-by-16 from the defined  
maximum level to minimum level. Fig. 10 to Fig. 13 shows four conditions to have different reference voltage  
Vinternal R. By setting the gpcs register, the internal reference voltage Vinternal R can be ranged from (1/32)*VDD  
to (3/4)*VDD.  
Case 1 : gpcs.5=0 & gpcs.4=0  
16 stages  
VDD  
8R  
8R  
8R  
gpcs.4=0  
gpcs.4=1  
gpcs.5=1  
R
R
R
R
gpcs.5=0  
MUX  
gpcs[3:0]  
V internal R = (3/4) VDD ~ (1/4) VDD + (1/32) VDD  
@ gpcs[3:0] = 1111 ~ gpcs[3:0] = 0000  
1
4
(n+1)  
32  
V internal R  
=
*
VDD +  
*
VDD, n = gpcs[3:0] in decimal  
Fig. 10: Vinternal R hardware connection if gpcs.5=0 and gpcs.4=0  
Case 2 : gpcs.5=0 & gpcs.4= 1  
16 stages  
VDD  
8R  
8R  
8R  
gpcs.4=0  
gpcs.4=1  
gpcs.5=1  
R
R
R
R
gpcs.5=0  
MUX  
gpcs[3:0]  
V internal R = (2/3) VDD ~ (1/24) VDD  
@ gpcs[3:0] = 1111 ~ gpcs[3:0] = 0000  
(n+1)  
V internal R  
=
*
VDD, n = gpcs[3:0] in decimal  
24  
Fig. 11: Vinternal R hardware connection if gpcs.5=0 and gpcs.4=1  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 44 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit OTP IO IO Controller  
Case 3 : gpcs.5=1 & gpcs.4= 0  
16 stages  
VDD  
8R  
8R  
8R  
gpcs.5=1  
gpcs.4=0  
gpcs.4=1  
R
R
R
R
gpcs.5=0  
MUX  
gpcs[3:0]  
V internal R = (3/5) VDD ~ (1/5) VDD + (1/40) VDD  
@ gpcs[3:0] = 1111 ~ gpcs[3:0] = 0000  
1
5
(n+1)  
40  
V internal R  
=
*
VDD +  
*
VDD, n = gpcs[3:0] in decimal  
Fig. 12: Vinternal R hardware connection if gpcs.5=1 and gpcs.4=0  
Case 4 : gpcs.5=1 & gpcs.4=1  
16 stages  
VDD  
8R  
8R  
8R  
gpcs.4=0  
gpcs.4=1  
gpcs.5=1  
R
R
R
R
gpcs.5=0  
MUX  
gpcs[3:0]  
V internal R = (1/2) VDD ~ (1/32) VDD  
@ gpcs[3:0] = 1111 ~ gpcs[3:0] = 0000  
(n+1)  
V internal R  
=
*
VDD, n = gpcs[3:0] in decimal  
32  
Fig. 13: Vinternal R hardware connection if gpcs.5=1 and gpcs.4=1  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 45 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
PMS154B  
8bit OTP IO IO Controller  
5.12.2. Using the comparator  
Case 1:  
Choosing PA3 as minus input and Vinternal R with (18/32)*VDD voltage level as plus input. Vinternal R is  
configured as the above Figure “gpcs[5:4] = 2b’00” and gpcs [3:0] = 4b’1001 (n=9) to have Vinternal R  
(1/4)*VDD + [(9+1)/32]*VDD = [(9+9)/32]*VDD = (18/32)*VDD.  
=
gpcs  
gpcc  
padier  
= 0b0_0_00_1001;  
= 0b1_0_0_0_000_0;  
= 0bxxxx_0_xxx;  
// Vinternal R = VDD*(18/32)  
// enable comp, - input: PA3, + input: Vinternal R  
// disable PA3 digital input to prevent leakage current  
or  
$ GPCS VDD*18/32;  
$ GPCC Enable, N_PA3, P_R;  
PADIER = 0bxxxx_0_xxx;  
// - input: N_xx+ input: P_R(Vinternal R)  
Case 2:  
Choosing Vinternal R as minus input with (22/40)*VDD voltage level and PA4 as plus input, the comparator  
result will be inversed and then output to PA0. Vinternal R is configured as the above Figure “gpcs[5:4] =  
2b’10” and gpcs [3:0] = 4b’1101 (n=13) to have Vinternal R = (1/5)*VDD + [(13+1)/40]*VDD = [(13+9)/40]*VDD  
(22/40)*VDD.  
=
gpcs  
gpcc  
padier  
= 0b1_0_10_1101;  
= 0b1_0_0_1_011_1;  
= 0bxxxx_0_xxx;  
// output to PA0, Vinternal R = VDD*(22/40)  
// Inverse output, - input: Vinternal R, + input: PA4  
// disable PA4 digital input to prevent leakage current  
or  
$ GPCS Output, VDD*22/40;  
$ GPCC Enable, Inverse, N_R, P_PA4; // - input: N_R(Vinternal R)+ input: P_xx  
PADIER = 0bxxx_0_xxxx;  
Note: When selecting output to PA0 output, GPCS will affect the PA3 output function in ICE. Though the IC  
is fine, be careful to avoid this error during emulation.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 46 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit OTP IO IO Controller  
5.12.3. Using the comparator and band-gap 1.20V  
The internal band-gap module provides a stable 1.20V output, and it can be used to measure the external  
supply voltage level. The band-gap 1.20V is selected as minus input of comparator and Vinternal R is selected  
as plus input, the supply voltage of Vinternal R is VDD, the VDD voltage level can be detected by adjusting the  
voltage level of Vinternal R to compare with band-gap. If N (gpcs[3:0] in decimal) is the number to let Vinternal R  
closest to band-gap 1.20 volt, the supply voltage VDD can be calculated by using the following equations:  
For using Case 1: VDD = [ 32 / (N+9) ] * 1.20 volt ;  
For using Case 2: VDD = [ 24 / (N+1) ] * 1.20 volt ;  
For using Case 3: VDD = [ 40 / (N+9) ] * 1.20 volt ;  
For using Case 4: VDD = [ 32 / (N+1) ] * 1.20 volt ;  
Case 1:  
$ GPCS VDD*12/40;  
// 4.0V * 12/40 = 1.2V  
$ GPCC Enable, BANDGAP, P_R; // - input: BANDGAP, + input: P_R(Vinternal R  
)
….  
if (GPC_Out)  
// or GPCC.6  
{
// when VDD4V  
}
else  
{
}
// when VDD4V  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 47 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit OTP IO IO Controller  
5.13. 8-bit Timer with PWM generation (Timer2, Timer3)  
Two 8-bit hardware timer (Timer2/TM2Timer3/TM3) with PWM generation is implemented in the PMS154B,  
Timer2 is used as the example to describe its function due to these two 8-bit timers are the same. Please  
refer to Fig. 14 shown its hardware diagram, the clock sources of Timer2 may come from system clock,  
internal high RC oscillator (IHRC) or, internal low RC oscillator (ILRC), external crystal oscillator (EOSC),  
PA0, PA4, PB0 or comparator. Bit[7:4] of register tm2c are used to select the clock source of Timer2. Please  
notice that if IHRC is selected for Timer2 clock source, the clock sent to Timer2 will keep running when using  
ICE in halt state. According to the setting of register tm2c[3:2], Timer2 output can be selectively output to  
PB2, PA3 or PB4(Timer3 count output can be selected as PB5, PB6 or PB7). At this point, regardless of  
whether PX.x is the input or output state, Timer2( or Timer3) signal will be forced to output. A clock  
pre-scaling module is provided with divided-by-1, 4, 16, and 64 options, controlled by bit [6:5] of tm2s  
register; one scaling module with divided-by-1~31 is also provided and controlled by bit [4:0] of tm2s register.  
In conjunction of pre-scaling function and scaling function, the frequency of Timer2 clock (TM2_CLK) can be  
wide range and flexible.  
The Timer2 counter performs 8-bit up-counting operation only; the counter values can be set or read back by  
tm2ct register. The 8-bit counter will be clear to zero automatically when its values reach for upper bound  
register, the upper bound register is used to define the period of timer or duty of PWM. There are two  
operating modes for Timer2: period mode and PWM mode; period mode is used to generate periodical  
output waveform or interrupt event; PWM mode is used to generate PWM output waveform with optional  
6-bit or 8-bit PWM resolution, Fig. 15 shows the timing diagram of Timer2 for both period mode and PWM  
mode.  
TM2_CLK  
tm2s.7  
tm2c.1  
tm2c[7:4]  
tm2s[6:5] tm2s[4:0]  
edge to  
interrupt  
CLK,  
M
U
X
IHRC,  
ILRC,  
EOSC  
Cmp,  
PA0,  
Pre-  
scalar  
÷
1, 4,  
16, 64  
Scalar  
8-bit  
up  
counter  
tm2ct[7:0]  
÷
1 ~ 31  
X
O
R
D
E
M
U
X
PB4  
PB2  
~PA0,  
PB0,  
~PB0,  
PA4,  
PA3  
upper  
bound  
register  
~PA4  
tm2c.0  
tm2b[7:0]  
tm2c[3:2]  
Fig. 14: Timer2 hardware diagram  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 48 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit OTP IO IO Controller  
Time out and  
Interrupt request  
Time out and  
Interrupt request  
Time out and  
Interrupt request  
Counter  
0xFF  
bound  
Counter  
0xFF  
Counter  
0x3F  
bound  
bound  
Time  
Time  
Time  
Time  
Time  
Event Trigger  
Event Trigger  
Event Trigger  
Output-pin  
Output-pin  
Output-pin  
Time  
Mode 0 – Period Mode  
Mode 1 – 8-bit PWM Mode  
Mode 1 – 6-bit PWM Mode  
Fig. 15: Timing diagram of Timer2 in period mode and PWM mode (tm2c.1=1)  
5.13.1. Using the Timer2 to generate periodical waveform  
If periodical mode is selected, the duty cycle of output is always 50%; its frequency can be summarized as  
below:  
Frequency of Output = Y ÷ [2 × (K+1) × S1 × (S2+1) ]  
Where,  
Y = tm2c[7:4] : frequency of selected clock source  
K = tm2b[7:0] : bound register in decimal  
S1 = tm2s[6:5] : pre-scalar (1, 4, 16, 64)  
S2 = tm2s[4:0] : scalar register in decimal (1 ~ 31)  
Example 1:  
tm2c = 0b0001_1000, Y=8MHz  
tm2b = 0b0111_1111, K=127  
tm2s = 0b0_00_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ [ 2 × (1271) × 1 × (01) ] = 31.25KHz  
Example 2:  
Example 3:  
tm2c = 0b0001_1000, Y=8MHz  
tm2b = 0b0111_1111, K=127  
tm2s[7:0] = 0b0_11_11111, S1=64 , S2 = 31  
frequency = 8MHz ÷ ( 2 × (1271) × 64 × (311) ) =15.25Hz  
tm2c = 0b0001_1000, Y=8MHz  
tm2b = 0b0000_1111, K=15  
tm2s = 0b0_00_00000, S1=1, S2=0  
frequency = 8MHz ÷ ( 2 × (151) × 1 × (01) ) = 250KHz  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 49 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit OTP IO IO Controller  
Example 4:  
tm2c = 0b0001_1000, Y=8MHz  
tm2b = 0b0000_0001, K=1  
tm2s = 0b0_00_00000, S1=1, S2=0  
frequency = 8MHz ÷ ( 2 × (11) × 1 × (01) ) =2MHz  
The sample program for using the Timer2 to generate periodical waveform to PA3 is shown as below:  
void FPPA0 (void)  
{
. ADJUST_IC  
SYSCLK=IHRC/2, IHRC=16MHz, VDD=5V  
tm2ct = 0x00;  
tm2b = 0x7f;  
tm2s = 0b0_00_00001;  
tm2c = 0b0001_10_0_0;  
//  
//  
8-bit PWM, pre-scalar = 1, scalar = 2  
system clock, output=PA3, period mode  
while(1)  
{
nop;  
}
}
5.13.2. Using the Timer2 to generate 8-bit PWM waveform  
If 8-bit PWM mode is selected, it should set tm2c[1]=1 and tm2s[7]=0, the frequency and duty cycle of  
output waveform can be summarized as below:  
Frequency of Output = Y ÷ [256 × S1 × (S2+1) ]  
Duty of Output = [( K1 ) ÷ 256]×100%  
Where,  
Y = tm2c[7:4] : frequency of selected clock source  
K = tm2b[7:0] : bound register in decimal  
S1= tm2s[6:5] : pre-scalar (1, 4, 16, 64)  
S2 = tm2s[4:0] : scalar register in decimal (1 ~ 31)  
Example 1:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0111_1111, K=127  
tm2s = 0b0_00_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 256 × 1 × (0+1) ) = 31.25KHz  
duty of output = [(127+1) ÷ 256] × 100% = 50%  
Example 2:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0111_1111, K=127  
tm2s = 0b0_11_11111, S1=64, S2=31  
frequency of output = 8MHz ÷ ( 256 × 64 × (31+1) ) = 15.25Hz  
duty of output = [(127+1) ÷ 256] × 100% = 50%  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 50 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit OTP IO IO Controller  
Example 3:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b1111_1111, K=255  
tm2s = 0b0_00_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 256 × 1 × (0+1) ) = 31.25KHz  
duty of output = [(255+1) ÷ 256] × 100% = 100%  
Example 4:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0000_1001, K = 9  
tm2s = 0b0_00_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 256 × 1 × (0+1) ) = 31.25KHz  
duty of output = [(9+1) ÷ 256] × 100% = 3.9%  
The sample program for using the Timer2 to generate PWM waveform from PA3 is shown as below:  
void  
{
FPPA0 (void)  
.ADJUST_IC SYSCLK=IHRC/2, IHRC=16MHz, VDD=5V  
wdreset;  
tm2ct = 0x00;  
tm2b = 0x7f;  
tm2s = 0b0_00_00001;  
//  
//  
8-bit PWM, pre-scalar = 1, scalar = 2  
system clock, output=PA3, PWM mode  
tm2c = 0b0001_10_1_0;  
while(1)  
{
nop;  
}
}
5.13.3.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 51 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit OTP IO IO Controller  
5.13.4. Using the Timer2 to generate 6-bit PWM waveform  
If 6-bit PWM mode is selected, it should set tm2c[1]=1 and tm2s[7]=1, the frequency and duty cycle of  
output waveform can be summarized as below:  
Frequency of Output = Y ÷ [64 × S1 × (S2+1) ]  
Duty of Output = [( K1 ) ÷ 64] × 100%  
Where, tm2c[7:4] = Y : frequency of selected clock source  
tm2b[7:0] = K : bound register in decimal  
tm2s[6:5] = S1 : pre-scalar (1, 4, 16, 64)  
tm2s[4:0] = S2 : scalar register in decimal (1 ~ 31)  
Example 1:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0001_1111, K=31  
tm2s = 0b1_00_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 64 × 1 × (0+1) ) = 125KHz  
duty = [(31+1) ÷ 64] × 100% = 50%  
Example 2:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0001_1111, K=31  
tm2s = 0b1_11_11111, S1=64, S2=31  
frequency of output = 8MHz ÷ ( 64 × 64 × (31+1) ) = 61.03Hz  
duty of output = [(31+1) ÷ 64] × 100% = 50%  
Example 3:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0011_1111, K=63  
tm2s = 0b1_00_00000, S1=1, S2=0  
frequency of output = 8MHz ÷ ( 64 × 1 × (0+1) ) = 125KHz  
duty of output = [(63+1) ÷ 64] × 100% = 100%  
Example 4:  
tm2c = 0b0001_1010, Y=8MHz  
tm2b = 0b0000_0000, K=0  
tm2s = 0b1_00_00000, S1=1, S2=0  
frequency = 8MHz ÷ ( 64 × 1 × (0+1) ) = 125KHz  
duty = [(0+1) ÷ 64] × 100% =1.5%  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 52 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit OTP IO IO Controller  
5.14. 11-bit PWM generation  
5.14.1. PWM Waveform  
A PWM output waveform (Fig. 16) has a time-base (TPeriod = Time of Period) and a time with output high  
level (Duty Cycle). The frequency of the PWM output is the inverse of the period (fPWM = 1/TPeriod), the  
resolution of the PWM is the clock count numbers for one period (N bits resolution, 2N × Tclock = TPeriod).  
Period  
Duty Cycle  
clock  
‧‧‧‧‧‧‧  
N bit resolution  
Fig. 16: PWM Output Waveform  
5.14.2. Hardware and Timing Diagram  
Fig. 17 shows the hardware diagram of 11-bit Timer. The clock source can be IHRC or system clock.  
Depending on the setting of register PWMC, PWM can be optionally output to PA0, PB4 or PB5. At this  
point, PWM signal will be forced to output regardless of whether PX.x is the input or output state.. The  
period of PWM waveform is defined in the PWM upper bond high and low registers, the duty cycle of PWM  
waveform is defined in the PWM duty high and low registers.  
Fig. 17: Hardware Diagram of 11-bit PWM Generator 0 (PWMG0)  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 53 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
 
PMS154B  
8bit OTP IO IO Controller  
0x7FF  
Counter_Bound[10:0]  
11-bit  
Counter  
Duty[10:0]  
Time  
Output  
Time  
Output Timing Diagram for 11-bit PWM generation  
Fig. 18: Output Timing Diagram of 11-bit PWM Generator  
5.14.3. Equations for 11-bit PWM Generator  
If FIHRC is the frequency of IHRC oscillator and IHRC is the chosen clock source for 11-bit PWM generator,  
the PWM frequency and duty cycle in time will be:  
Frequency of PWM Output = FIHRC ÷ [P × (K + 1) × CB ]  
Duty Cycle of PWM Output (in time) = (1/FIHRC) * [ DB10_1 + DB0 * 0.5 + 0.5]  
Where,  
pwms[6:5] = P ; pre-scalar  
pwms[4:0] = K ; scalar  
Duty_Bound[10:1] = { pwmgxdth [7:0], pwmgxdtl[7:6]} = DB10_1; duty bound  
Duty_Bound[0] = pwmgxdtl[5] = DB0  
Counter_Bound[10:1] = { pwmgxcubh [7:0], pwmgxcubl [7:6]} = CB; counter bount  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 54 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit OTP IO IO Controller  
6. IO Registers  
6.1. ACC Status Flag Register (flag), IO address = 0x00  
Bit  
7 - 4  
3
Reset R/W  
Description  
-
-
-
Reserved. These four bits are “1” when read.  
R/W OV (Overflow). This bit is set whenever the sign operation is overflow.  
AC (Auxiliary Carry). There are two conditions to set this bit, the first one is carry out of low  
R/W nibble in addition operation, and the other one is borrow from the high nibble into low nibble  
in subtraction operation.  
2
-
C (Carry). There are two conditions to set this bit, the first one is carry out in addition  
R/W operation, and the other one is borrow in subtraction operation. Carry is also affected by  
shift with carry instruction.  
1
0
-
-
Z (Zero). This bit will be set when the result of arithmetic or logic operation is zero;  
R/W  
Otherwise, it is cleared.  
6.2. Stack Pointer Register (sp), IO address = 0x02  
Bit  
Reset R/W  
Description  
Stack Pointer Register. Read out the current stack pointer, or write to change the stack  
pointer. Please notice that bit 0 should be kept 0 due to program counter is 16 bits.  
7 - 0  
-
R/W  
6.3. Clock Mode Register (clkmd), IO address = 0x03  
Bit  
Reset R/W  
Description  
System clock selection:  
Type 0, clkmd[3]=0  
Type 1, clkmd[3]=1  
000: IHRC/4  
001: IHRC/2  
010: reserved  
011: EOSC/4  
100: EOSC/2  
101: EOSC  
000: IHRC/16  
001: IHRC/8  
010: ILRC/16 (ICE does NOT Support.)  
011: IHRC/32  
7 - 5  
111 R/W  
100: IHRC/64  
101: EOSC/8  
110: ILRC/4  
Others: reserved  
111: ILRC (default)  
4
3
1
0
R/W IHRC oscillator Enable. 0 / 1: disable / enable  
Clock Type Select. This bit is used to select the clock type in bit [7:5].  
0 / 1: Type 0 / Type 1  
RW  
ILRC Enable. 0 / 1: disable / enable  
2
1
R/W  
If ILRC is disabled, watchdog timer is also disabled.  
1
0
1
0
R/W Watch Dog Enable. 0 / 1: disable / enable  
R/W Pin PA5/PRST# function. 0 / 1: PA5 / PRST#  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 55 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
 
 
PMS154B  
8bit OTP IO IO Controller  
6.4. Interrupt Enable Register (inten), IO address = 0x04  
Bit  
Reset R/W  
Description  
7
-
-
-
-
-
-
-
-
R/W Enable interrupt from Timer3. 0 / 1: disable / enable.  
R/W Enable interrupt from Timer2. 0 / 1: disable / enable.  
R/W Enable interrupt from PWMG0. 0 / 1: disable / enable.  
R/W Enable interrupt from comparator. 0 / 1: disable / enable.  
R/W Reserved.  
6
5
4
3
2
R/W Enable interrupt from Timer16 overflow. 0 / 1: disable / enable.  
R/W Enable interrupt from PB0. 0 / 1: disable / enable.  
R/W Enable interrupt from PA0. 0 / 1: disable / enable.  
1
0
6.5. Interrupt Request Register (intrq), IO address = 0x05  
Bit  
Reset R/W  
Description  
Interrupt Request from Timer3, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
7
-
-
-
R/W  
R/W  
R/W  
Interrupt Request from Timer2, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
6
5
Interrupt Request from PWMG0, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
Interrupt Request from comparator, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
4
3
2
-
-
-
R/W  
-
Reserved.  
Interrupt Request from Timer16, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
R/W  
Interrupt Request from pin PB0, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
1
0
-
-
R/W  
R/W  
Interrupt Request from pin PA0, this bit is set by hardware and cleared by software.  
0 / 1: No request / Request  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 56 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
PMS154B  
8bit OTP IO IO Controller  
6.6. Timer 16 mode Register (t16m), IO address = 0x06  
Bit  
Reset R/W  
Description  
Timer Clock source selection  
000: Timer 16 is disabled  
001: CLK (system clock)  
010: reserved  
7 - 5  
000 R/W 011: PA4 falling edge (from external pin)  
100: IHRC  
101: EOSC  
110: ILRC  
111: PA0 falling edge (from external pin)  
Internal clock divider.  
00: /1  
4 - 3  
00  
R/W 01: /4  
10: /16  
11: /64  
Interrupt source selection. Interrupt event happens when selected bit is changed.  
0 : bit 8 of Timer16  
1 : bit 9 of Timer16  
2 : bit 10 of Timer16  
2 - 0  
000 R/W 3 : bit 11 of Timer16  
4 : bit 12 of Timer16  
5 : bit 13 of Timer16  
6 : bit 14 of Timer16  
7 : bit 15 of Timer16  
6.7. External Oscillator setting Register (eoscr, write only), IO address = 0x0a  
Bit  
Reset R/W  
Description  
7
0
WO Enable external crystal oscillator. 0 / 1 : Disable / Enable  
External crystal oscillator selection.  
00 : reserved  
6 - 5  
00  
WO 01 : Low driving capability, for lower frequency, ex: 32KHz crystal oscillator  
10 : Middle driving capability, for middle frequency, ex: 1MHz crystal oscillator  
11 : High driving capability, for higher frequency, ex: 4MHz crystal oscillator  
4 - 1  
0
-
-
Reserved. Please keep 0 for future compatibility.  
0
WO Power-down the Band-gap and LVR hardware modules. 0 / 1: normal / power-down.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 57 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
PMS154B  
8bit OTP IO IO Controller  
6.8. Interrupt Edge Select Register (integs), IO address = 0x0c  
Bit  
Reset R/W  
Description  
7 - 5  
-
WO Reserved.  
Timer16 edge selection.  
WO 0 : rising edge to trigger interrupt  
1 : falling edge to trigger interrupt  
PB0 edge selection.  
4
0
00 : both rising edge and falling edge to trigger interrupt  
WO 01 : rising edge to trigger interrupt  
10 : falling edge to trigger interrupt  
11 : reserved.  
3 - 2  
00  
00  
PA0 edge selection.  
00 : both rising edge and falling edge to trigger interrupt  
WO 01 : rising edge to trigger interrupt  
10 : falling edge to trigger interrupt  
11 : reserved.  
1 - 0  
6.9. Port A Digital Input Enable Register (padier), IO address = 0x0d  
Bit  
Reset R/W  
Description  
Enable PA7~PA3 wake up event. 1 / 0: enable / disable.  
These bits can be set to low to disable wake up from PA7~PA3 toggling.  
Reserved.  
7 - 3 11111 WO  
2 - 1  
0
-
-
Enable PA0 wake up event and interrupt request. 1 / 0: enable / disable.  
This bit can be set to low to disable wake up from PA0 toggling and interrupt request from  
this pin.  
1
WO  
6.10.Port B Digital Input Enable Register (pbdier), IO address = 0x0e  
Bit  
Reset R/W  
Description  
Enable PB7~PB0 wake up event. 1 / 0: enable / disable.  
These bits can be set to low to disable wake up from PB7~PB0 toggling.  
7 - 0  
FF WO  
6.11.Port A Data Registers (pa), IO address = 0x10  
Bit  
Reset R/W  
Description  
7 - 0 8’h00 R/W Data registers for Port A.  
6.12.Port A Control Registers (pac), IO address = 0x11  
Bit  
Reset R/W  
Description  
Port A control registers. This register is used to define input mode or output mode for each  
corresponding pin of port A. 0 / 1: input / output.  
7 - 0 8’h00 R/W  
6.13.Port A Pull-High Registers (paph), IO address = 0x12  
Bit  
Reset R/W  
Description  
Port A pull-high registers. This register is used to enable the internal pull-high device on  
each corresponding pin of port A. 0 / 1 : disable / enable  
7 - 0 8’h00 R/W  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 58 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
 
 
 
 
PMS154B  
8bit OTP IO IO Controller  
6.14.Port B Data Registers (pb), IO address = 0x14  
Bit  
Reset R/W  
Description  
7 - 0 8’h00 R/W Data registers for Port B.  
6.15.Port B Control Registers (pbc), IO address = 0x15  
Bit  
Reset R/W  
Description  
Port B control registers. This register is used to define input mode or output mode for each  
corresponding pin of port B. 0 / 1: input / output.  
7 - 0 8’h00 R/W  
6.16.Port B Pull-High Registers (pbph), IO address = 0x16  
Bit  
Reset R/W  
Description  
Port B pull-high registers. This register is used to enable the internal pull-high device on  
each corresponding pin of port B. 0 / 1 : disable / enable  
7 - 0 8’h00 R/W  
6.17.MISC Register (misc), IO address = 0x08  
Bit  
Reset R/W  
Description  
7 - 6  
-
-
Reserved. (keep 0 for future compatibility)  
Enable fast Wake up. Fast wake-up is NOT supported when EOSC is enabled.  
0: Normal wake up.  
5
4
0
WO  
The wake-up time is 3000 ILRC clocks (Not for fast boot-up)  
1: Fast wake up.  
The wake-up time is 45 ILRC clocks.  
Enabled VDD/2 for LCD application.  
0 / 1 : disabled / enabled (ICE cannot be dynamically switched)  
0
WO  
If Code Option selects LCD output, but MISC.4 does not set to 1, then the VDD/2 bias  
cannot be output on the IC. However, the emulator is always OK. Two above phenomena  
are different.  
3
2
-
-
Reserved.  
Disable LVR function.  
0 / 1 : Enable / Disable  
Watch dog time out period  
00: 8192 ILRC clock period  
0
WO  
1 - 0  
00  
WO 01: 16384 ILRC clock period  
10: 65536 ILRC clock period  
11: 262144 ILRC clock period  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 59 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
 
 
PMS154B  
8bit OTP IO IO Controller  
6.18.Timer2 Control Register (tm2c), IO address = 0x1c  
Bit Reset  
R/W  
Description  
Timer2 clock selection.  
0000 : disable  
0001 : CLK  
0010 : IHRC  
0011 : EOSC  
0100 : ILRC  
0101 : comparator output  
1000 : PA0 (rising edge)  
1001 : ~PA0 (falling edge)  
1010 : PB0 (rising edge)  
1011 : ~PB0 (falling edge)  
1100 : PA4 (rising edge)  
1101 : ~PA4 (falling edge)  
Others: reserved  
7 - 4  
0000 R/W  
Notice: In ICE mode and IHRC is selected for Timer2 clock, the clock sent to Timer2  
does NOT be stopped, Timer2 will keep counting when ICE is in halt state.  
Timer2 output selection.  
00 : disable  
3 - 2  
00  
R/W 01 : PB2  
10 : PA3  
11 : PB4  
Timer2 mode selection.  
0 / 1 : period mode / PWM mode  
Enable to inverse the polarity of Timer2 output.  
0 / 1: disable / enable  
1
0
0
0
R/W  
R/W  
6.19.Timer2 Counter Register (tm2ct), IO address = 0x1d  
Bit  
Reset R/W  
Description  
7 - 0  
0x00 R/W Bit [7:0] of Timer2 counter register.  
6.20.Timer2 Scalar Register (tm2s), IO address = 0x17  
Bit  
Reset R/W  
Description  
PWM resolution selection.  
1 : 6-bit  
7
0
WO 0 : 8-bit  
Timer2 clock pre-scalar.  
00 : ÷ 1  
6 - 5  
00  
WO 01 : ÷ 4  
10 : ÷ 16  
11 : ÷ 64  
4 - 0 00000 WO Timer2 clock scalar.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 60 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
 
PMS154B  
8bit OTP IO IO Controller  
6.21.Timer2 Bound Register (tm2b), IO address = 0x09  
Bit  
Reset R/W  
Description  
7 - 0  
0x00 WO Timer2 bound register.  
6.22.Timer3 Control Register (tm3c), IO address = 0x32  
Bit Reset  
R/W  
Description  
Timer3 clock selection.  
0000 : disable  
0001 : CLK  
0010 : IHRC  
0011 : EOSC  
0100 : ILRC  
0101 : comparator output  
1000 : PA0 (rising edge)  
1001 : ~PA0 (falling edge)  
1010 : PB0 (rising edge)  
1011 : ~PB0 (falling edge)  
1100 : PA4 (rising edge)  
1101 : ~PA4 (falling edge)  
Others: reserved  
7 - 4  
0000 R/W  
Notice: In ICE mode and IHRC is selected for Timer3 clock, the clock sent to Timer3  
does NOT be stopped, Timer3 will keep counting when ICE is in halt state.  
Timer3 output selection.  
00 : disable  
3 - 2  
00  
R/W 01 : PB5  
10 : PB6  
11 : PB7  
Timer3 mode selection.  
0 / 1 : period mode / PWM mode  
Enable to inverse the polarity of Timer3 output.  
0 / 1: disable / enable  
1
0
0
0
R/W  
R/W  
6.23.Timer3 Counter Register (tm3ct), IO address = 0x33  
Bit  
Reset R/W  
0x00 R/W Bit [7:0] of Timer2 counter register.  
Description  
7 - 0  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 61 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
 
PMS154B  
8bit OTP IO IO Controller  
6.24.Timer3 Scalar Register (tm3s), IO address = 0x34  
Bit  
Reset R/W  
Description  
PWM resolution selection.  
7
0
WO 0 : 8-bit  
1 : 6-bit  
Timer3 clock pre-scalar.  
00 : ÷ 1  
6 - 5  
00  
WO 01 : ÷ 4  
10 : ÷ 16  
11 : ÷ 64  
4 - 0 00000 WO Timer3 clock scalar.  
6.25.Timer3 Bound Register (tm3b), IO address = 0x35  
Bit  
Reset R/W  
0x00 WO Timer3 bound register.  
Description  
7 - 0  
6.26.Comparator Control Register (gpcc), IO address = 0x18  
Bit  
Reset R/W  
Description  
Enable comparator.  
0 / 1 : disable / enable  
7
0
R/W  
When this bit is set to enable, please also set the corresponding analog input pins to be  
digital disable to prevent IO leakage.  
Comparator result of comparator.  
6
5
4
-
RO 0: plus input < minus input  
1: plus input > minus input  
Select whether the comparator result output will be sampled by TM2_CLK?  
R/W 0: result output NOT sampled by TM2_CLK  
1: result output sampled by TM2_CLK  
Inverse the polarity of result output of comparator.  
R/W 0: polarity is NOT inversed.  
1: polarity is inversed.  
0
0
Selection the minus input (-) of comparator.  
000 : PA3  
001 : PA4  
010 : Internal 1.20 volt band-gap reference voltage  
3 - 1  
000  
R/W  
011 : Vinternal R  
100 : PB6 (not for EV5)  
101: PB7 (not for EV5)  
11X: reserved  
Selection the plus input (+) of comparator.  
R/W 0 : Vinternal R  
0
0
1 : PA4  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 62 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
 
PMS154B  
8bit OTP IO IO Controller  
6.27.Comparator Selection Register (gpcs), IO address = 0x19  
Bit  
Reset R/W  
Description  
Comparator output enable (to PA0).  
0 / 1 : disable / enable  
7
0
WO  
(Please avoid this situation: GPCS will affect the PA3 output function when selecting  
output to PA0 in ICE.)  
Reserved.  
6
5
4
-
-
0
0
WO Selection of high range of comparator.  
WO Selection of low range of comparator.  
Selection the voltage level of comparator.  
3 - 0  
0000  
WO  
0000 (lowest) ~ 1111 (highest)  
6.28.PWMG0 control Register (pwmg0c), IO address = 0x20  
Bit  
7
Reset  
R/W  
R/W  
RO  
Description  
0
-
Enable PWMG0 generator. 0 / 1: disable / enable.  
Output status of PWMG0 generator.  
6
5
0
R/W  
Enable to inverse the polarity of PWMG0 generator output. 0 / 1 : disable / enable.  
PWMG0 counter reset.  
4
0
R/W  
Writing “1” to clear PWMG0 counter.  
Select PWM output pin for PWMG0.  
000: none  
001: PB5  
3 - 1  
0
0
R/W  
R/W  
011: PA0  
100: PB4  
Others: reserved  
0
Clock source of PWMG0 generator. 0: CLK*2, 1: IHRC*2  
6.29.PWMG0 Scalar Register (pwmg0s), IO address = 0x21  
Bit  
Reset  
R/W  
Description  
PWMG0 interrupt mode.  
7
0
R/W 0: Generate interrupt when counter matches the duty value  
1: Generate interrupt when counter is 0  
PWMG0 clock pre-scalar.  
00 : ÷1  
R/W 01 : ÷4  
10 : ÷16  
6 - 5  
4 - 0  
0
0
11 : ÷64  
R/W PWMG0 clock divider  
6.30.PWMG0 Counter Upper Bound High Register (pwmg0cubh), IO address = 0x24  
Bit  
Reset  
R/W  
Description  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 63 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
 
 
PMS154B  
8bit OTP IO IO Controller  
7 - 0  
-
WO  
Bit[10:3] of PWMG0 counter upper bound.  
6.31.PWMG0 Counter Upper Bound Low Register (pwmg0cubl), IO address = 0x25  
Bit  
Reset  
R/W  
WO  
-
Description  
Bit[2:1] of PWMG0 counter upper bound.  
Reserved  
7 - 6  
5 - 0  
-
-
6.32.PWMG0 Duty Value High Register (pwmg0dth), IO address = 0x22  
Bit  
Reset  
-
R/W  
WO  
Description  
7 - 0  
Duty values bit[10:3] of PWMG0.  
6.33.PWMG0 Duty Value Low Register (pwmg0dtl), IO address = 0x23  
Bit  
Reset  
R/W  
WO  
-
Description  
7 - 5  
4 - 0  
-
-
Duty values bit [2:0] of PWMG0.  
Reserved  
Note: It’s necessary to write PWMG0 Duty_Value Low Register before writing PWMG0 Duty_Value High Register.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 64 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
 
PMS154B  
8bit OTP IO IO Controller  
7. Instructions  
Symbol  
Description  
ACC  
a
Accumulator ( Abbreviation of accumulator )  
Accumulator ( Symbol of accumulator in program )  
sp  
flag  
I
Stack pointer  
ACC status flag register  
Immediate data  
&
Logical AND  
|
Logical OR  
^
Movement  
Exclusive logic OR  
+
Add  
OV  
Z
Subtraction  
NOT (logical complement, 1’s complement)  
NEG (2’s complement)  
Overflow (The operational result is out of range in signed 2’s complement number system)  
Zero (If the result of ALU operation is zero, this bit is set to 1)  
Carry (The operational result is to have carry out for addition or to borrow carry for subtraction  
in unsigned number system)  
C
Auxiliary Carry (If there is a carry out from low nibble after the result of ALU operation, this bit is  
set to 1)  
AC  
IO.n  
M.n,  
The bit of register  
Only addressed in 0~0x3F (0~63) is allowed  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 65 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit OTP IO IO Controller  
7.1. Data Transfer Instructions  
mov  
mov  
mov  
mov  
mov  
a, I  
Move immediate data into ACC.  
Example: mov a, 0x0f;  
Result: a ← 0fh;  
Affected flags: NZ NC NAC NOV  
M, a  
a, M  
Move data from ACC into memory  
Example: mov  
MEM, a;  
Result: MEM ← a  
Affected flags: NZ NC NAC NOV  
Move data from memory into ACC  
Example: mov  
a, MEM ;  
Result: a ← MEM; Flag Z is set when MEM is zero.  
Affected flags: YZ NC NAC NOV  
a, IO  
Move data from IO into ACC  
Example: mov  
a, pa ;  
Result: a ← pa; Flag Z is set when pa is zero.  
Affected flags: YZ NC NAC NOV  
IO, a  
Move data from ACC into IO  
Example: mov  
Result: pa ← a  
pa, a;  
Affected flags: NZ NC NAC NOV  
Move 16-bit counting values in Timer16 to memory in word.  
Example: ldt16 word;  
ldt16 word  
Result:  
word ← 16-bit timer  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
word  
T16val ;  
// declare a RAM word  
clear  
clear  
stt16  
lb@ T16val ;  
hb@ T16val ;  
T16val ;  
// clear T16val (LSB)  
// clear T16val (MSB)  
// initial T16 with 0  
set1  
t16m.5 ;  
// enable Timer16  
set0  
ldt16  
….  
t16m.5 ;  
T16val ;  
// disable Timer 16  
// save the T16 counting value to T16val  
------------------------------------------------------------------------------------------------------------------------  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 66 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit OTP IO IO Controller  
stt16 word  
Store 16-bit data from memory in word to Timer16.  
Example: stt16 word;  
Result:  
16-bit timer ←word  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
word  
T16val ;  
// declare a RAM word  
mov  
mov  
mov  
mov  
stt16  
a, 0x34 ;  
lb@ T16val , a ; // move 0x34 to T16val (LSB)  
a, 0x12 ;  
hb@ T16val , a ; // move 0x12 to T16val (MSB)  
T16val ;  
// initial T16 with 0x1234  
----------------------------------------------------------------------------------------------------------------------  
idxm a, index Move data from specified memory to ACC by indirect method. It needs 2T to execute this  
instruction.  
Example: idxm a, index;  
Result:  
a ← [index], where index is declared by word.  
Affected flags: NZ NC NAC NOV  
Application Example:  
-----------------------------------------------------------------------------------------------------------------------  
word  
RAMIndex ;  
// declare a RAM pointer  
mov  
mov  
mov  
mov  
a, 0x5B ;  
// assign pointer to an address (LSB)  
// save pointer to RAM (LSB)  
lb@RAMIndex, a ;  
a, 0x00 ;  
// assign 0x00 to an address (MSB), should be 0  
hb@RAMIndex, a ; // save pointer to RAM (MSB)  
idxm  
a, RAMIndex ; // move memory data in address 0x5B to ACC  
------------------------------------------------------------------------------------------------------------------------  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 67 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
PMS154B  
8bit OTP IO IO Controller  
Idxm index, a Move data from ACC to specified memory by indirect method. It needs 2T to execute this  
instruction.  
Example: idxm index, a;  
Result:  
[index] ← a; where index is declared by word.  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
word  
RAMIndex ;  
// declare a RAM pointer  
mov  
mov  
mov  
mov  
a, 0x5B ;  
// assign pointer to an address (LSB)  
// save pointer to RAM (LSB)  
lb@RAMIndex, a ;  
a, 0x00 ;  
// assign 0x00 to an address (MSB), should be 0  
hb@RAMIndex, a ; // save pointer to RAM (MSB)  
mov  
idxm  
a, 0xA5 ;  
RAMIndex, a ;  
// move 0xA5 to memory in address 0x5B  
------------------------------------------------------------------------------------------------------------------------  
Exchange data between ACC and memory  
xch  
M
Example: xch MEM ;  
Result:  
MEM ← a , a ← MEM  
Affected flags: NZ NC NAC NOV  
Move the ACC and flag register to memory that address specified in the stack pointer.  
Example: pushaf;  
pushaf  
Result:  
[sp] ← {flag, ACC};  
sp ← sp + 2 ;  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
.romadr 0x10 ;  
// ISR entry address  
pushaf ;  
// put ACC and flag into stack memory  
// ISR program  
// ISR program  
popaf ;  
reti ;  
// restore ACC and flag from stack memory  
------------------------------------------------------------------------------------------------------------------------  
Restore ACC and flag from the memory which address is specified in the stack pointer.  
Example: popaf;  
popaf  
Result:  
sp ← sp - 2  
{Flag, ACC} ← [sp] ;  
Affected flags: YZ YC YAC YOV  
;
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 68 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
PMS154B  
8bit OTP IO IO Controller  
7.2. Arithmetic Operation Instructions  
add  
add  
add  
a, I  
Add immediate data with ACC, then put result into ACC  
Example: add a, 0x0f ;  
Result: a ← a + 0fh  
Affected flags: YZ YC YAC YOV  
a, M  
M, a  
Add data in memory with ACC, then put result into ACC  
Example: add  
a, MEM ;  
Result: a ← a + MEM  
Affected flags: YZ YC YAC YOV  
Add data in memory with ACC, then put result into memory  
Example: add  
MEM, a;  
Result: MEM ← a + MEM  
Affected flags: YZ YC YAC YOV  
addc a, M  
addc M, a  
Add data in memory with ACC and carry bit, then put result into ACC  
Example: addc  
a, MEM ;  
Result: a ← a + MEM + C  
Affected flags: YZ YC YAC YOV  
Add data in memory with ACC and carry bit, then put result into memory  
Example: addc  
MEM, a ;  
Result: MEM ← a + MEM + C  
Affected flags: YZ YC YAC YOV  
addc  
addc  
a
Add carry with ACC, then put result into ACC  
Example: addc  
a ;  
Result: a ← a + C  
Affected flags: YZ YC YAC YOV  
M
Add carry with memory, then put result into memory  
Example: addc  
MEM ;  
Result: MEM ← MEM + C  
Affected flags: YZ YC YAC YOV  
nadd a, M  
nadd M, a  
Add negative logic (2’s complement) of ACC with memory  
Example: nadd  
a, MEM ;  
Result: a a + MEM  
Affected flags: YZ YC YAC YOV  
Add negative logic (2’s complement) of memory with ACC  
Example: nadd  
MEM, a ;  
Result: MEM MEM + a  
Affected flags: YZ YC YAC YOV  
sub  
sub  
a, I  
Subtraction immediate data from ACC, then put result into ACC.  
Example: sub  
a, 0x0f;  
Result: a ← a - 0fh ( a + [2’s complement of 0fh] )  
Affected flags: YZ YC YAC YOV  
a, M  
Subtraction data in memory from ACC, then put result into ACC  
Example: sub  
Result: a ← a - MEM ( a + [2’s complement of M] )  
Affected flags: YZ YC YAC YOV  
a, MEM ;  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 69 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit OTP IO IO Controller  
sub  
M, a  
Subtraction data in ACC from memory, then put result into memory  
Example: sub  
MEM, a;  
Result: MEM ← MEM - a ( MEM + [2’s complement of a] )  
Affected flags: YZ YC YAC YOV  
subc a, M  
subc M, a  
Subtraction data in memory and carry from ACC, then put result into ACC  
Example: subc  
a, MEM;  
Result: a ← a – MEM - C  
Affected flags: YZ YC YAC YOV  
Subtraction ACC and carry bit from memory, then put result into memory  
Example: subc  
MEM, a ;  
Result: MEM ← MEM – a - C  
Affected flags: YZ YC YAC YOV  
subc  
subc  
inc  
a
Subtraction carry from ACC, then put result into ACC  
Example: subc  
a;  
Result: a ← a - C  
Affected flags: YZ YC YAC YOV  
M
Subtraction carry from the content of memory, then put result into memory  
Example: subc  
MEM;  
Result: MEM ← MEM - C  
Affected flags: YZ YC YAC YOV  
M
Increment the content of memory  
Example: inc  
MEM ;  
Result: MEM ← MEM + 1  
Affected flags: YZ YC YAC YOV  
dec  
M
Decrement the content of memory  
Example: dec  
MEM;  
Result: MEM ← MEM - 1  
Affected flags: YZ YC YAC YOV  
clear  
M
Clear the content of memory  
Example: clear  
Result: MEM ← 0  
Affected flags: NZ NC NAC NOV  
MEM ;  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 70 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
PMS154B  
8bit OTP IO IO Controller  
7.3. Shift Operation Instructions  
sr  
a
Shift right of ACC, shift 0 to bit 7  
Example: sr a ;  
Result: a (0,b7,b6,b5,b4,b3,b2,b1) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a(b0)  
Affected flags: NZ YC NAC NOV  
Shift right of ACC with carry bit 7 to flag  
src  
sr  
a
Example: src a ;  
Result: a (c,b7,b6,b5,b4,b3,b2,b1) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a(b0)  
Affected flags: NZ YC NAC NOV  
Shift right the content of memory, shift 0 to bit 7  
Example: sr MEM ;  
M
Result: MEM(0,b7,b6,b5,b4,b3,b2,b1) ← MEM(b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM(b0)  
Affected flags: NZ YC NAC NOV  
Shift right of memory with carry bit 7 to flag  
src  
sl  
M
Example: src MEM ;  
Result: MEM(c,b7,b6,b5,b4,b3,b2,b1) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM(b0)  
Affected flags: NZ YC NAC NOV  
Shift left of ACC shift 0 to bit 0  
a
Example: sl a ;  
Result: a (b6,b5,b4,b3,b2,b1,b0,0) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a (b7)  
Affected flags: NZ YC NAC NOV  
Shift left of ACC with carry bit 0 to flag  
slc  
sl  
a
Example: slc a ;  
Result: a (b6,b5,b4,b3,b2,b1,b0,c) ← a (b7,b6,b5,b4,b3,b2,b1,b0), C ← a(b7)  
Affected flags: NZ YC NAC NOV  
Shift left of memory, shift 0 to bit 0  
M
Example: sl MEM ;  
Result: MEM (b6,b5,b4,b3,b2,b1,b0,0) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM(b7)  
Affected flags: NZ YC NAC NOV  
Shift left of memory with carry bit 0 to flag  
slc  
M
Example: slc MEM ;  
Result: MEM (b6,b5,b4,b3,b2,b1,b0,C) ← MEM (b7,b6,b5,b4,b3,b2,b1,b0), C ← MEM (b7)  
Affected flags: NZ YC NAC NOV  
Swap the high nibble and low nibble of ACC  
swap  
a
Example: swap  
Result: a (b3,b2,b1,b0,b7,b6,b5,b4) ← a (b7,b6,b5,b4,b3,b2,b1,b0)  
Affected flags: NZ NC NAC NOV  
a ;  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 71 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit OTP IO IO Controller  
7.4. Logic Operation Instructions  
and  
and  
and  
or  
a, I  
a, M  
M, a  
a, I  
Perform logic AND on ACC and immediate data, then put result into ACC  
Example: and a, 0x0f ;  
Result: a ← a & 0fh  
Affected flags: YZ NC NAC NOV  
Perform logic AND on ACC and memory, then put result into ACC  
Example: and  
a, RAM10 ;  
Result: a ← a & RAM10  
Affected flags: YZ NC NAC NOV  
Perform logic AND on ACC and memory, then put result into memory  
Example: and  
MEM, a ;  
Result: MEM ← a & MEM  
Affected flags: YZ NC NAC NOV  
Perform logic OR on ACC and immediate data, then put result into ACC  
Example: or  
a, 0x0f ;  
Result: a ← a | 0fh  
Affected flags: YZ NC NAC NOV  
or  
a, M  
Perform logic OR on ACC and memory, then put result into ACC  
Example: or  
a, MEM ;  
Result: a ← a | MEM  
Affected flags: YZ NC NAC NOV  
or  
M, a  
a, I  
Perform logic OR on ACC and memory, then put result into memory  
Example: or  
MEM, a ;  
Result: MEM ← a | MEM  
Affected flags: YZ NC NAC NOV  
xor  
xor  
Perform logic XOR on ACC and immediate data, then put result into ACC  
Example: xor  
a, 0x0f ;  
Result: a ← a ^ 0fh  
Affected flags: YZ NC NAC NOV  
IO, a  
Perform logic XOR on ACC and IO register, then put result into IO register  
Example: xor  
pa, a ;  
Result: pa ← a ^ pa ; // pa is the data register of port A  
Affected flags: NZ NC NAC NOV  
xor  
xor  
a, M  
M, a  
Perform logic XOR on ACC and memory, then put result into ACC  
Example: xor  
a, MEM ;  
Result: a ← a ^ RAM10  
Affected flags: YZ NC NAC NOV  
Perform logic XOR on ACC and memory, then put result into memory  
Example:  
xor  
MEM, a ;  
Result:  
MEM ← a ^ MEM  
Affected flags: YZ NC NAC NOV  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 72 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit OTP IO IO Controller  
not  
a
Perform 1’s complement (logical complement) of ACC  
Example: not a ;  
Result: a a  
Affected flags: YZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
not  
a, 0x38 ;  
a ;  
// ACC=0X38  
// ACC=0XC7  
------------------------------------------------------------------------------------------------------------------------  
Perform 1’s complement (logical complement) of memory  
not  
M
Example: not  
MEM ;  
Result: MEM MEM  
Affected flags: YZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
mov  
not  
a, 0x38 ;  
mem, a ;  
mem ;  
// mem = 0x38  
// mem = 0xC7  
------------------------------------------------------------------------------------------------------------------------  
Perform 2’s complement of ACC  
neg  
a
Example: neg  
a;  
Result: a a  
Affected flags: YZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
neg  
a, 0x38 ;  
a ;  
// ACC=0X38  
// ACC=0XC8  
------------------------------------------------------------------------------------------------------------------------  
Perform 2’s complement of memory  
neg  
M
Example: neg  
MEM;  
Result: MEM MEM  
Affected flags: YZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
mov  
not  
a, 0x38 ;  
mem, a ;  
mem ;  
// mem = 0x38  
// mem = 0xC8  
------------------------------------------------------------------------------------------------------------------------  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 73 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
PMS154B  
8bit OTP IO IO Controller  
comp  
a, M  
Compare ACC with the content of memory  
Example: comp a, MEM;  
Result: Flag will be changed by regarding as ( a - MEM )  
Affected flags: YZ YC YAC YOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
mov  
comp  
mov  
mov  
mov  
comp  
a, 0x38 ;  
mem, a ;  
a, mem ; // Z flag is set  
a, 0x42 ;  
mem, a ;  
a, 0x38 ;  
a, mem ; // C flag is set  
------------------------------------------------------------------------------------------------------------------------  
Compare ACC with the content of memory  
comp  
M, a  
Example: comp  
Result: Flag will be changed by regarding as ( MEM - a )  
Affected flags: YZ YC YAC YOV  
MEM, a;  
7.5. Bit Operation Instructions  
set0 IO.n  
set1 IO.n  
set0 M.n  
set1 M.n  
Set bit n of IO port to low  
Example: set0 pa.5 ;  
Result:  
set bit 5 of port A to low  
Affected flags: NZ NC NAC NOV  
Set bit n of IO port to high  
Example: set1 pa.5 ;  
Result:  
set bit 5 of port A to high  
Affected flags: NZ NC NAC NOV  
Set bit n of memory to low  
Example: set0 MEM.5 ;  
Result:  
set bit 5 of MEM to low  
Affected flags: NZ NC NAC NOV  
Set bit n of memory to high  
Example: set1 MEM.5 ;  
Result:  
set bit 5 of MEM to high  
Affected flags: NZ NC NAC NOV  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 74 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit OTP IO IO Controller  
swapc IO.n  
Swap the nth bit of IO port with carry bit  
Example: swapc IO.0;  
Result: C ← IO.0 , IO.0 ← C  
When IO.0 is a port to output pin, carry C will be sent to IO.0;  
When IO.0 is a port from input pin, IO.0 will be sent to carry C;  
Affected flags: NZ YC NAC NOV  
Application Example1 (serial output) :  
------------------------------------------------------------------------------------------------------------------------  
...  
set1  
...  
pac.0 ;  
// set PA.0 as output  
set0  
swapc  
set1  
swapc  
...  
flag.1 ;  
pa.0 ;  
// C=0  
// move C to PA.0 (bit operation), PA.0=0  
// C=1  
flag.1 ;  
pa.0 ;  
// move C to PA.0 (bit operation), PA.0=1  
------------------------------------------------------------------------------------------------------------------------  
Application Example2 (serial input) :  
------------------------------------------------------------------------------------------------------------------------  
...  
set0  
...  
pac.0 ;  
// set PA.0 as input  
swapc  
src  
pa.0 ;  
a ;  
// read PA.0 to C (bit operation)  
// shift C to bit 7 of ACC  
swapc  
src  
pa.0 ;  
a ;  
// read PA.0 to C (bit operation)  
// shift new C to bit 7, old C  
...  
------------------------------------------------------------------------------------------------------------------------  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 75 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
PMS154B  
8bit OTP IO IO Controller  
7.6. Conditional Operation Instructions  
ceqsn a, I  
Compare ACC with immediate data and skip next instruction if both are equal.  
Flag will be changed like as (a ← a - I)  
Example: ceqsn  
a, 0x55 ;  
MEM ;  
inc  
goto  
error ;  
Result: If a=0x55, then “goto error”; otherwise, “inc MEM”.  
Affected flags: YZ YC YAC YOV  
Compare ACC with memory and skip next instruction if both are equal.  
Flag will be changed like as (a ← a - M)  
ceqsn a, M  
cneqsn a, M  
cneqsn a, I  
Example: ceqsn  
a, MEM;  
Result: If a=MEM, skip next instruction  
Affected flags: YZ YC YAC YOV  
Compare ACC with memory and skip next instruction if both are not equal.  
Flag will be changed like as (a ← a - M)  
Example: cneqsn  
a, MEM;  
Result: If a≠MEM, skip next instruction  
Affected flags: YZ YC YAC YOV  
Compare ACC with immediate data and skip next instruction if both are no equal.  
Flag will be changed like as (a ← a - I)  
Example: cneqsn  
a,0x55 ;  
MEM ;  
error ;  
inc  
goto  
Result: If a≠0x55, then “goto error”; Otherwise, “inc MEM”.  
Affected flags: YZ YC YAC YOV  
Check IO bit and skip next instruction if it’s low  
t0sn IO.n  
t1sn IO.n  
Example: t0sn  
pa.5;  
Result: If bit 5 of port A is low, skip next instruction  
Affected flags: NZ NC NAC NOV  
Check IO bit and skip next instruction if it’s high  
Example: t1sn  
pa.5 ;  
Result: If bit 5 of port A is high, skip next instruction  
Affected flags: NZ NC NAC NOV  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 76 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit OTP IO IO Controller  
t0sn M.n  
t1sn M.n  
Check memory bit and skip next instruction if it’s low  
Example: t0sn MEM.5 ;  
Result: If bit 5 of MEM is low, then skip next instruction  
Affected flags: NZ NC NAC NOV  
Check memory bit and skip next instruction if it’s high  
Example: t1sn MEM.5 ;  
Result: If bit 5 of MEM is high, then skip next instruction  
Affected flags: NZ NC NAC NOV  
Increment ACC and skip next instruction if ACC is zero  
izsn  
dzsn  
izsn  
dzsn  
a
Example: izsn  
Result:  
a;  
a
a + 1,skip next instruction if a = 0  
Affected flags: YZ YC YAC YOV  
a
Decrement ACC and skip next instruction if ACC is zero  
Example: dzsn  
Result:  
a;  
A
A - 1,skip next instruction if a = 0  
Affected flags: YZ YC YAC YOV  
M
Increment memory and skip next instruction if memory is zero  
Example: izsn  
Result: MEM  
MEM;  
MEM + 1, skip next instruction if MEM= 0  
Affected flags: YZ YC YAC YOV  
M
Decrement memory and skip next instruction if memory is zero  
Example: dzsn  
Result: MEM  
Affected flags: YZ YC YAC YOV  
MEM;  
MEM - 1, skip next instruction if MEM = 0  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 77 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
PMS154B  
8bit OTP IO IO Controller  
7.7. System control Instructions  
call  
label  
Function call, address can be full range address space  
Example: call  
function1;  
pc + 1  
Result: [sp]  
pc  
sp  
function1  
sp + 2  
Affected flags: NZ NC NAC NOV  
goto label  
Go to specific address which can be full range address space  
Example: goto  
error;  
Result: Go to error and execute program.  
Affected flags: NZ NC NAC NOV  
Place immediate data to ACC, then return  
Example: ret 0x55;  
ret  
ret  
I
Result:  
A ← 55h  
ret ;  
Affected flags: NZ NC NAC NOV  
Return to program which had function call  
Example: ret;  
Result: sp ← sp - 2  
pc ← [sp]  
Affected flags: NZ NC NAC NOV  
reti  
Return to program that is interrupt service routine. After this command is executed, global  
interrupt is enabled automatically.  
Example: reti;  
Affected flags: NZ NC NAC NOV  
nop  
No operation  
Example: nop;  
Result: nothing changed  
Affected flags: NZ NC NAC NOV  
pcadd  
a
Next program counter is current program counter plus ACC.  
Example: pcadd a;  
Result: pc ← pc + a  
Affected flags: NZ NC NAC NOV  
Application Example:  
------------------------------------------------------------------------------------------------------------------------  
mov  
pcadd  
goto  
goto  
goto  
goto  
a, 0x02 ;  
a ;  
// PC <- PC+2  
// jump here  
err1 ;  
correct ;  
err2 ;  
err3 ;  
correct:  
// jump here  
------------------------------------------------------------------------------------------------------------------------  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 78 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit OTP IO IO Controller  
engint  
Enable global interrupt enable  
Example: engint;  
Result: Interrupt request can be sent to FPP0  
Affected flags: NZ NC NAC NOV  
Disable global interrupt enable  
disgint  
stopsys  
stopexe  
Example: disgint ;  
Result: Interrupt request is blocked from FPP0  
Affected flags: NZ NC NAC NOV  
System halt.  
Example: stopsys;  
Result: Stop the system clocks and halt the system  
Affected flags: NZ NC NAC NOV  
CPU halt. The oscillator module is still active to output clock, however, system clock is disabled  
to save power.  
Example: stopexe;  
Result: Stop the system clocks and keep oscillator modules active.  
Affected flags: NZ NC NAC NOV  
Reset the whole chip, its operation will be same as hardware reset.  
Example: reset;  
reset  
Result: Reset the whole chip.  
Affected flags: NZ NC NAC NOV  
Reset Watchdog timer.  
wdreset  
Example: wdreset ;  
Result: Reset Watchdog timer.  
Affected flags: NZ NC NAC NOV  
7.8. Summary of Instructions Execution Cycle  
goto, call, idxm, pcadd, ret, reti  
2T  
2T  
1T  
1T  
Condition is fulfilled.  
ceqsn, cneqsn,t0sn, t1sn, dzsn, izsn  
Condition is not fulfilled.  
Others  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 79 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit OTP IO IO Controller  
7.9. Summary of affected flags by Instructions  
Instruction  
mov a, I  
Z
-
C
-
AC OV Instruction  
Z
-
C
-
AC OV Instruction  
Z
Y
-
C
-
AC OV  
-
-
-
-
mov M, a  
mov IO, a  
idxm a, index  
pushaf  
-
-
-
-
mov a, M  
ldt16 word  
idxm index, a  
popaf  
-
-
-
-
mov a, IO  
stt16 word  
Y
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
xch  
M
-
-
-
-
-
-
-
-
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
add a, I  
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
Y
-
add a, M  
addc M, a  
sub a, I  
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
-
Y
Y
Y
Y
Y
-
add M, a  
addc a, M  
addc  
a
addc  
M
sub a, M  
sub M, a  
subc a, M  
subc M, a  
subc  
dec  
src  
a
subc  
clear  
M
M
inc  
sr a  
src  
sl  
M
M
M
a
sr  
M
-
Y
Y
-
-
-
-
-
-
sl  
a
-
-
-
slc  
a
-
-
-
M
-
-
-
slc  
and  
M
-
-
-
swap  
and  
a
-
-
-
and  
a, I  
Y
Y
Y
Y
Y
-
-
-
a, M  
Y
Y
-
-
-
M, a  
Y
Y
Y
Y
-
-
-
-
or a, I  
-
-
-
or a, M  
-
-
-
or M, a  
-
-
-
xor  
xor  
neg  
a, I  
-
-
-
xor  
not  
neg  
IO, a  
-
-
-
xor  
not  
a, M  
-
-
-
M, a  
a
-
-
-
a
Y
Y
-
-
-
-
M
-
-
-
-
-
-
M
-
-
-
set0 IO.n  
set1 M.n  
t0sn IO.n  
t1sn M.n  
-
-
-
set1 IO.n  
ceqsn a, I  
t1sn IO.n  
-
-
-
set0 M.n  
ceqsn a, M  
t0sn M.n  
-
-
-
-
-
-
-
Y
-
Y
-
Y
-
Y
-
Y
-
Y
-
Y
-
Y
-
-
-
-
-
-
-
-
-
izsn  
dzsn  
ret  
a
Y
Y
-
Y
Y
-
Y
Y
-
Y
Y
-
dzsn  
call  
a
Y
-
Y
-
Y
-
Y
-
izsn  
M
Y
-
Y
-
Y
-
Y
-
M
label  
goto label  
reti  
I
ret  
-
-
-
-
-
-
-
-
nop  
-
-
-
-
pcadd  
a
-
-
-
-
engint  
-
-
-
-
disgint  
-
-
-
-
stopsys  
-
-
-
-
-
-
-
-
stopexe  
-
Y
Y
-
-
-
Y
Y
-
-
Y
Y
-
reset  
-
-
-
-
nadd M, a  
cneqsn a, I  
nadd a, M  
wdreset  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
cneqsn a, M  
comp a, M  
swapc IO.n  
Y
Y
Y
Y
Y
Y
Y
Y
comp  
M, a  
7.10. BIT definition  
Bit defined: Only addressed at 0x00 ~ 0x3F.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 80 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
PMS154B  
8bit OTP IO IO Controller  
8. Code Options  
Option  
Selection  
Description  
Enable  
Disable  
4.0V  
Security Enable  
Security  
Security Disable  
Select LVR = 4.0V  
3.5V  
Select LVR = 3.5V  
3.0V  
Select LVR = 3.0V  
2.75V  
2.5V  
Select LVR = 2.75V  
LVR  
Select LVR = 2.5V  
2.2V  
Select LVR = 2.2V  
2.0V  
Select LVR = 2.0V  
1.8V  
Select LVR = 1.8V  
Slow  
Fast  
Please refer to tWUP and tSBP in Section 4.1  
Please refer to tWUP and tSBP in Section 4.1  
IO Low driving and sinking current  
IO Normal driving and sinking current  
Boot-up_Time  
Low  
Drive  
LCD2  
Normal  
Disable  
VDD/2 bias voltage generator disabled, PB0 PA[0,3,4] are normal IO pins  
(please refer to  
MISC.4)  
PB0_A034 VDD/2 bias voltage generator enabled, PB0 PA[0,3,4] are VDD/2 if input mode  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 81 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
PMS154B  
8bit OTP IO IO Controller  
9. Special Notes  
This chapter is to remind user who use PMS154B series IC in order to avoid frequent errors upon operation.  
9.1. Warning  
User must read all application notes of the IC by detail before using it. Please download the related  
application notes from the following link: http://www.padauk.com.tw/tw/technical/index.aspx  
9.2. Using IC  
9.2.1. IO pin usage and setting  
(1) IO pin as digital input  
When IO is set as digital input, the level of Vih and Vil would changes with the voltage and temperature.  
Please follow the minimum value of Vih and the maximum value of Vil.  
The value of internal pull high resistor would also changes with the voltage, temperature and pin  
voltage. It is not the fixed value.  
(2) If IO pin is set to be digital input and enable wake-up function  
Configure IO pin as input.  
Set corresponding bit to “1” in PXDIER.  
For those IO pins of PA that are not used, PADIER[1:2] should be set low in order to prevent them from  
leakage.  
(3) PA5 is set to be output pin  
PA5 can be set to be Open-Drain output pin only, output high requires adding pull-up resistor.  
(4) PA5 is set to be PRST# input pin  
Configure PA5 as input  
Set CLKMD.0=1 to enable PA5 as PRST# input pin  
(5) PA5 is set to be input pin and to connect with a push button or a switch by a long wire  
Needs to put a >10Ω resistor in between PA5 and the long wire  
Avoid using PA5 as input in such application.  
(6) PA7 and PA6 as external crystal oscillator  
Configure PA7 and PA6 as input  
Disable PA7 and PA6 internal pull-up resistor  
Configure PADIER register to set PA6 and PA7 as analog input  
EOSCR register bit [6:5] selects corresponding crystal oscillator frequency :  
01 : for lower frequency, ex : 32KHz  
10 : for middle frequency, ex : 455KHz, 1MHz  
11 : for higher frequency, ex : 4MHz  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 82 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
 
 
PMS154B  
8bit OTP IO IO Controller  
Program EOSCR.7 =1 to enable crystal oscillator  
Ensure EOSC working well before switching from IHRC or ILRC to EOSC  
Note: Please read the PMC-APN013 carefully. According to PMC-APN013,, the crystal oscillator should  
be used reasonably. If the following situations happen to cause IC start-up slowly or non-startup, PADAUK  
Technology is not responsible for this: the quality of the user's crystal oscillator is not good, the usage  
conditions are unreasonable, the PCB cleaner leakage current, or the PCB layouts are unreasonable.  
9.2.2. Interrupt  
(1) When using the interrupt function, the procedure should be:  
Step1: Set INTEN register, enable the interrupt control bit  
Step2: Clear INTRQ register  
Step3: In the main program, using ENGINT to enable CPU interrupt function  
Step4: Wait for interrupt. When interrupt occurs, enter to Interrupt Service Routine  
Step5: After the Interrupt Service Routine being executed, return to the main program  
* Use DISGINT in the main program to disable all interrupts  
* When interrupt service routine starts, use PUSHAF instruction to save ALU and FLAG  
register. POPAF instruction is to restore ALU and FLAG register before RETI as below:  
void Interrupt (void)  
{
// Once the interrupt occurs, jump to interrupt service routine  
// enter DISGINT status automatically, no more interrupt is  
accepted  
PUSHAF;  
POPAF;  
}
// RETI will be added automatically. After RETI being executed, ENGINT status  
will be restored  
(2) INTEN and INTRQ have no initial values. Please set required value before enabling interrupt function.  
9.2.3. System clock switching  
System clock can be switched by CLKMD register. Please notice that, NEVER switch the system clock and  
turn off the original clock source at the same time. For example: When switching from clock A to clock B,  
please switch to clock B first; and after that turn off the clock A oscillator through CLKMD.  
Example : Switch system clock from ILRC to IHRC/2  
CLKMD  
=
0x36;  
0;  
// switch to IHRC, ILRC can not be disabled here  
CLKMD.2 =  
// ILRC can be disabled at this time  
ERROR: Switch ILRC to IHRC and turn off ILRC simultaneously  
CLKMD 0x50; // MCU will hang  
=
9.2.4. Watchdog  
Watchdog will be inactive once ILRC is disabled.  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 83 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
 
PMS154B  
8bit OTP IO IO Controller  
9.2.5. TIMER time out  
When select $ INTEGS BIT_R (default value) and T16M counter BIT8 to generate interrupt, if T16M  
counts from 0, the first interrupt will occur when the counter reaches to 0x100 (BIT8 from 0 to 1) and the  
second interrupt will occur when the counter reaches 0x300 (BIT8 from 0 to 1). Therefore, selecting BIT8 as  
1 to generate interrupt means that the interrupt occurs every 512 counts. Please notice that if T16M counter  
is restarted, the next interrupt will occur once Bit8 turns from 0 to 1.  
If select $ INTEGS BIT_F(BIT triggers from 1 to 0) and T16M counter BIT8 to generate interrupt, the T16M  
counter changes to an interrupt every 0x200/0x400/0x600/. Please pay attention to two differences with  
setting INTEGS methods.  
9.2.6. IHRC  
(1)  
The IHRC frequency calibration is performed when IC is programmed by the writer.  
Because the characteristic of the Epoxy Molding Compound (EMC) would some degrees affects the  
IHRC frequency (either for package or COB), if the calibration is done before molding process, the  
actual IHRC frequency after molding may be deviated or becomes out of spec. Normally , the  
frequency is getting slower a bit.  
(2)  
(3)  
(4)  
It usually happens in COB package or Quick Turnover Programming (QTP). And PADAUK would not  
take any responsibility for this situation.  
Users can make some compensatory adjustments according to their own experiences. For example,  
users can set IHRC frequency to be 0.5% ~ 1% higher and aim to get better re-targeting after molding.  
9.2.7. LVR  
User can set MISC.2 as “1” to disable LVR. However, VDD must be kept as exceeding the lowest working  
voltage of chip; Otherwise IC may work abnormally.  
9.2.8. Program writing  
There are 6 pins for using the writer to program: PA3, PA4, PA5, PA6, VDD, and GND.  
Please use PDK3S-P-002 to program and put the PMS154B-S14 to move down one space over the CN39.  
Put the PMS154B-M10 to move down three spaces over it. Put the PMS154B-S08 to move down four  
spaces over it. Other packages could be programmed by user’s way. All the left signs behind the jumper are  
the same (there are VDD, PA0(not required), PA3, PA4, PA5, PA6, PA7(not required), and GND).The  
following picture is shown:  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 84 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 
 
 
 
PMS154B  
8bit OTP IO IO Controller  
If user use PDK5S-P-003 or above to program, please follow the instruction.  
Special notes about voltage and current while Multi-Chip-Package(MCP) or On-Board Programming  
(1)PA5 (VPP) may be higher than 11V.  
(2)VDD may be higher than 6.5V, and its maximum current may reach about 20mA.  
(3)All other signal pins level (except GND) are the same as VDD..  
User should confirm when using this product in MCP or On-Board Programming, the peripheral circuit or  
components will not be destroyed or limit the above voltages.  
9.3. Using ICE  
(1) It is recommended to use PDK5S-I-S01/2(B) for emulation of PMS154B.  
(2) PDK5S-I-S01/2(B) supports PMS154B 1-FPPA MCU emulation work, the following items should be  
noted when using PDK5S-I-S01/2(B) to emulate PMS154B:  
PDK5S-I-S01/2(B) doesn’t support the instruction NADD/COMP of PMS154B.  
PDK5S-I-S01/2(B) doesn’t support SYSCLK=ILRC/16 of PMS154B.  
PDK5S-I-S01/2(B) doesn’t support the function MISC.LCD_Enable=1(open LCD) of PMS154B.  
PDK5S-I-S01/2(B) doesn’t support the dynamic setting of function misc.4 (Only fix to 0 or 1).  
PDK5S-I-S01/2(B) doesn’t support the function TM2.GPCRS/TM3.GPCRS of PMS154B  
The PA3 output function will be affected when GPCS selects output to PA0.  
Fast Wakeup time is different from PDK5S-I-S01/2(B): 128 SysClk, PMS154B: 45 ILRC  
Watch dog time out period is different from PDK5S-I-S01/2(B):  
WDT period  
misc[1:0]=00  
misc[1:0]=01  
misc[1:0]=10  
misc[1:0]=11  
PDK5S-I-S01/2(B)  
2048 * TILRC  
PMS154B  
8k * TILRC  
4096 * TILRC  
16k * TILRC  
64k * TILRC  
256k * TILRC  
16384 * TILRC  
256 * TILRC  
©Copyright 2018, PADAUK Technology Co. Ltd  
Page 85 of 85  
PDK-DS-PMS154B-EN-V102 – Nov. 27, 2018  
 

相关型号:

PMS154B-S08

8bit OTP Type IO Controller
PADAUK

PMS154B-S14

8bit OTP Type IO Controller
PADAUK

PMS154B-S16

8bit OTP Type IO Controller
PADAUK

PMS154B-U06

8bit OTP Type IO Controller
PADAUK

PMS154C

8bit OTP Type IO Controller
PADAUK

PMS154C-1J16A

8bit OTP Type IO Controller
PADAUK

PMS154C-D16

8bit OTP Type IO Controller
PADAUK

PMS154C-M10

8bit OTP Type IO Controller
PADAUK

PMS154C-S08

8bit OTP Type IO Controller
PADAUK

PMS154C-S14

8bit OTP Type IO Controller
PADAUK

PMS154C-S16

8bit OTP Type IO Controller
PADAUK

PMS154C-U06

8bit OTP Type IO Controller
PADAUK