PAM8610

更新时间:2025-07-13 07:39:59
品牌:PAM
描述:10W Stereo Class-D Audio Power Amplifier with DC Volume Control

PAM8610 概述

10W Stereo Class-D Audio Power Amplifier with DC Volume Control 10W立体声D类音频功率放大器直流音量控制

PAM8610 数据手册

通过下载PAM8610数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
PAM8610  
10W Stereo Class-D Audio Power Amplifier with DC Volume Control  
Key Features  
General Description  
The PAM8610 is a 10W (per channel) stereo  
class-D audio amplifier with DC Volume Control  
which offers low THD+N (0.1%), low EMI, and  
g o o d P S R R t h u s h i g h - q u a l i t y s o u n d  
reproduction. The 32 steps DC volume control  
has a +32dB to -75dB range.  
n
10W@10%THD / Channel Output into a 8Ω  
Load at 13V  
Low Noise: -90dB  
n
n
n
n
n
Over 90% Efficiency  
32Step DC Volume Control from -75dB to 32dB  
With Shutdown/Mute/Fade Function  
Over Current , Thermal and Short-Circuit  
Protection  
Low THD+N  
Low Quiescent Current  
Pop noise suppression  
Small Package Outlines: Thin 40-pin QFN  
6mm*6mm Package  
Pb-Free Package (RoHS Compliant)  
The PAM8610 runs off of a 7V to 15V supply at  
much higher efficiency than competitors’ Ics.  
n
n
n
The PAM8610 only requires very few external  
components, significantly saving cost and board  
space.  
n
n
The PAM8610 is available in a 40pin QFN  
6mm*6mm package.  
Applications  
n
n
n
n
n
Flat monitor /LCD TVS  
Multi-media speaker System  
DVD players, game machines  
Boom Box  
Music instruments  
Typical Application  
1μF  
1μF  
1μF  
1μF  
10μF  
10μF  
1μF  
1μF  
VCLAMPR  
RINN  
RINP  
GND  
RINN  
RINP  
GND  
1μF  
SHUTDOWN  
SD  
1μF  
AGND  
AVDD  
GND  
1μF  
V2P5  
AVCC  
VREF  
GND  
VCC  
VOLUME  
REFGND  
VOLUME  
10μF  
100nF  
PAM8610  
MUTE  
MUTE  
AGND  
GND  
AGND1  
GND  
120K  
ROSC  
COSC  
FADE  
LINP  
LINN  
FADE  
LINP  
LINN  
1μF  
220pF  
GND  
GND  
1μF  
VCLAMPL  
1μF  
1μF  
1μF  
1μF  
1μF  
10μF  
10μF  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
08/2008 Rev 1.2  
1
PAM8610  
10W Stereo Class-D Audio Power Amplifier with DC Volume Control  
Block Diagram  
BSRN  
PVCCR  
ROUTN  
PGNDR  
Driver  
_
+
PAM  
Modulation  
-
RINN  
RINP  
+
_
+
-
BSRP  
PVCCR  
+
Driver  
ROUTP  
PGNDR  
VOLUME  
FADE  
Gain  
Adjust  
Feedback  
System  
AVCC  
AGND  
ROSC  
COSC  
osc  
on/off  
Depop  
Short Circuit  
Protection  
AVDD  
SD  
Thermal  
Biases &  
References  
LDO  
V2P5  
BSLN  
MUTE  
PVCCL  
LOUTN  
Driver  
_
+
PGNDL  
BSLP  
PAM  
Modulation  
LINN  
LINP  
-
+
_
+
-
PVCCL  
+
Driver  
LOUTP  
PGNDL  
Feedback  
System  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
08/2008 Rev 1.2  
2
PAM8610  
10W Stereo Class-D Audio Power Amplifier with DC Volume Control  
Pin Configuration & Marking Information  
Top View  
6mm*6mm QFN  
40  
39 38 37  
32  
36  
34 33  
31  
35  
30  
29  
28  
VCLAMPR  
SD  
RINN  
RINP  
AVDD  
1
2
X: Internal Code  
A: Assembly Code  
T: Testing Code  
Y: Year  
AGND  
3
4
27  
26  
25  
24  
V2P5  
AVCC  
VREF  
VOLUME  
REFGND  
5
PAM8610  
XATYWWLL  
MUTE  
AGND  
6
WW: Week  
LL: Internal Code  
AGND1  
7
23  
22  
ROSC  
COSC  
FADE  
LINP  
8
9
21  
VCLAMPL  
LINN  
10  
16  
13 14  
20  
15  
17  
19  
18  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
08/2008 Rev 1.2  
3
PAM8610  
10W Stereo Class-D Audio Power Amplifier with DC Volume Control  
Pin Descriptions  
Pin Number  
Name  
RINN  
RINP  
AVDD  
VREF  
Function  
Negative differential audio input for right channel  
Positive differential audio input for right channel  
5V Analog VDD  
1
2
3
4
5
Analog reference for gain control section  
VOLUME DC voltage that sets the gain of the amplifier  
Ground for gain control circuitry. Connect to AGND. If using a DAC to control the  
6
7
REFGND  
volume, connect the DAC ground to this terminal.  
AGND1  
FADE  
Analog GND  
Input for controlling volume ramp rate when cycling SD or during power-up. A  
logic low on this pin places the amplifier in fade mode. A logic high on this pin  
allows a quick transition to the desired volume setting.  
Positive differential audio input for left channel  
8
9
LINP  
LINN  
10  
Negative differential audio input for left channel  
11,20  
12,19  
13,14  
15  
PGNDL  
PVCCL  
LOUTN  
BSLN  
Power ground for left channel H-bridge  
Power supply for left channel H-bridge, not connected to PVCCR or AVCC.  
Class-D 1/2-H-bridge negative output for left channel  
Bootstrap I/O for left channel, negative high-side FET  
Bootstrap I/O for left channel, positive high-side FET  
Class-D 1/2-H-bridge positive output for left channel  
16  
BSLP  
17,18  
21  
LOUTP  
VCLAMPL Internally generated voltage supply for left channel bootstrap capacitors.  
I/O for charge/discharging currents onto capacitor for ramp generator triangle  
22  
COSC  
wave biased at V2P5  
23  
24,28  
25  
ROSC  
AGND  
MUTE  
AVCC  
Current setting resistor for ramp generator. Nominally equal to 1/8*VCC  
Analog GND  
A logic high on this pin disables the outputs and a logic low enables the outputs.  
High-voltage analog power supply (7V to 15V)  
26  
2.5V Reference for analog cells, as well as reference for unused audio input  
when using single-ended inputs.  
27  
29  
V2P5  
SD  
Shutdown signal for IC (low= shutdown, high =operational). TTL logic levels with  
compliance to VCC.  
30  
VCLAMPR Internally generated voltage supply for right channel bootstrap capacitors.  
31,40  
32,39  
33,34  
35  
PGNDR  
PVCCR  
ROUTP  
BSRP  
Power ground for right channel H-bridge  
Power supply for right channel H-bridge, not connected to PVCCL or AVCC.  
Class-D 1/2-H-bridge positive output for right channel  
Bootstrap I/O for right channel, positive high-side FET  
Bootstrap I/O for right channel, negative high-side FET  
Class-D 1/2-H-bridge negative output for right channel  
36  
BSRN  
37,38  
ROUTN  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
08/2008 Rev 1.2  
4
PAM8610  
10W Stereo Class-D Audio Power Amplifier with DC Volume Control  
Absolute Maximum Ratings  
These are stress ratings only and functional operation is not implied. Exposure to absolute  
maximum ratings for prolonged time periods may affect device reliability. All voltages are with  
respect to ground.  
Supply Voltage VDD.........................-0.3V to16.5V  
Input Voltage Range VI:  
Junction Temperature Range,TJ......-40°C to 125°C  
Storage Temperature.....................-65°C to150°C  
Lead Temperature1,6mm(1/16 inch) from case for  
5 seconds.................................................260°C  
MUTE,VREF,VOLUME,FADE................0V to 6.0V  
SD....................................................-0.3V to VDD  
RINN,RINP,LINN,LINP......................-0.3V to 6.0V  
Recommended Operating Conditions  
Supply Voltage (VDD)............................7V to 15V  
Maximum Volume Control Pins, Input Pins  
Voltage................................................0V to 5.0V  
High Level Input Voltage: SD.................2.0V to VDD  
MUTE, FADE...2.0V to 5V  
Low Level Input Voltage: SD...................0 to 0.3V  
MUTE, FADE.....0 to 0.3V  
Ambient Operating Temperature......-20°C to 85°C  
Thermal Information  
Parameter  
Package  
Symbol  
Maximum  
Unit  
Thermal Resistance  
(Junction to Case)  
Thermal Resistance  
(Junction to Ambient)  
QFN 6mm*6mm  
θJC  
7.6  
°C/W  
QFN 6mm*6mm  
θJA  
18.1  
The Exposed PAD must be soldered to a thermal land on the PCB.  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
08/2008 Rev 1.2  
5
PAM8610  
10W Stereo Class-D Audio Power Amplifier with DC Volume Control  
Electrical Characteristic  
TA=25°C,VDD=12V,RL=8Ω (unless otherwise noted)  
Parameter  
Symbol condition  
MIN  
TYP MAX Units  
Supply Voltage  
VDD  
7.0  
12  
5
15  
V
THD+N=0.1%,f=1kHz,RL=8Ω  
THD+N=1.0%,f=1kHz,RL=8Ω  
THD+N=10%,f=1kHz,RL=8Ω,  
VDD=13V  
8
Continuous Output Power  
Po  
W
10  
15  
0.1  
20  
4
THD+N=10%,f=1kHz,RL=4Ω( Not e )  
Total Harmonic Distortion plus  
Noise  
THD+N  
IDD  
PO=5W, f=1kHz, RL =8Ω  
(no load)  
%
Quiescent Current  
Supply Quiescent Current in  
shutdown mode  
30  
10  
mA  
μA  
ISD  
SHUTDOWN=0V  
VCC=12V  
IO=1A  
High side  
Low side  
Total  
200  
200  
400  
Drain-source on-state  
resistance  
rds(on)  
mΩ  
TJ=25  
Power Supply Ripple Rejection  
Ratio  
1VPP ripple, f=1kHz, Inputs  
ac-coupled to ground  
PSRR  
-60  
dB  
Oscillator Frequency  
Output Integrated Noise Floor  
Crosstalk  
fOSC  
Vn  
ROSC=120kΩ,CO S C =220pF  
20Hz to 22 kHz, A-weighting  
PO=3W, RL=8Ω, f=1kHz  
Maximum output at THD+N< 0.5%,  
f=1kHz  
250  
-90  
-80  
kHz  
dB  
CS  
dB  
Signal to Noise Ratio  
SNR  
80  
30  
dB  
Output offset voltage  
|VOS  
|
INN and INP connected together  
mV  
(measured differentially)  
2.5V Bias voltage  
V2P5  
AVDD  
OTS  
OTH  
No Load  
2.5  
5
V
V
Internal Analog supply Voltage  
Over Temperature Shutdown  
Thermal Hysteresis  
VDD=7V to 15V  
5.5  
150  
40  
°C  
°C  
Note: Heat sink is required for high power output.  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
08/2008 Rev 1.2  
6
PAM8610  
10W Stereo Class-D Audio Power Amplifier with DC Volume Control  
Table 1. DC Volume Control  
Step  
1
Volume  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
2.8  
2.9  
3.0  
3.1  
Gain (dB)  
-75  
-40  
-30  
-20  
-10  
-5  
Rf (kΩ)  
0.40  
Ri (kΩ)  
200.00  
199.60  
198.74  
196.08  
188.10  
179.78  
166.67  
147.53  
122.51  
116.98  
111.35  
105.63  
99.88  
94.13  
88.42  
82.79  
77.26  
71.88  
66.67  
61.65  
56.85  
52.29  
47.96  
43.89  
40.08  
36.51  
33.20  
30.14  
27.31  
24.70  
22.32  
20.13  
2
1.26  
3
3.92  
4
11.90  
5
20.22  
6
33.33  
7
0
52.47  
8
5
77.49  
9
10  
83.02  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
11  
88.65  
12  
94.37  
13  
100.12  
105.87  
111.58  
117.21  
122.74  
128.12  
133.33  
138.35  
143.15  
147.71  
152.04  
156.11  
159.92  
163.49  
166.80  
169.86  
172.69  
175.30  
177.68  
179.87  
200.00  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
Note:  
Volume: DC voltage on Volume pin  
Rf: Internal pre-amplifier feedback resistance  
Ri: Internal pre-amplifier input resistance  
Calculation Gain=20log (5XRf/Ri), there is one dB tolerance from device to device.  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
08/2008 Rev 1.2  
7
PAM8610  
10W Stereo Class-D Audio Power Amplifier with DC Volume Control  
Typical Performance Characteristics  
VDD=12V,RL=8Ω, Gv=24dB,ΤΑ=25°C, unless otherwise noted.  
1. THD+N vs. Power  
4. THD+N vs Frequency  
100  
50  
10  
5
20  
10  
5
VDD=15V  
VDD=12V  
2
1
2
1
Po=3W  
Po=5W  
VDD=7V  
%
%
0.5  
Po=1W  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.02  
0.01  
0.04  
20  
10m  
20m  
50m 100m 200m  
500m  
1
2
5
10  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k 20k  
W
5. THD+N vs Frequency (Po=1W)  
2. THD+N vs. Power  
100  
50  
10  
5
20  
10  
5
f=10kHz  
f=500Hz  
2
1
2
1
%
%
VDD=12V  
VDD=7V  
0.5  
0.5  
0.2  
0.2  
0.1  
f=100Hz  
0.05  
0.1  
0.02  
0.01  
VDD=15V  
0.06  
20  
10m  
20m  
50m 100m 200m  
500m  
1
2
5
10  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k 20k  
W
3. THD+N vs. Power  
6. THD+N vs Frequency (Po=3W)  
100  
50  
10  
5
20  
10  
5
2
1
2
1
Gv=32dB  
%
%
0. 5  
Gv=18dB  
Gv=32dB  
0.5  
0.2  
0. 2  
0. 1  
0.1  
0.05  
Gv=12dB  
Gv=18dB  
0. 05  
0. 03  
0.02  
0.01  
Gv=12dB  
10m  
20m  
50m 100m 200m  
500m  
1
2
5
10  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k 20k  
W
Power Analog Microelectronics,Inc  
www.poweranalog.com  
08/2008 Rev 1.2  
8
PAM8610  
10W Stereo Class-D Audio Power Amplifier with DC Volume Control  
Typical Performance Characteristics  
VDD=12V,RL=4Ω, Gv=24dB,ΤΑ=25°C, unless otherwise noted.  
7. THD+N vs. Power  
10. THD+N vs Frequency  
10  
5
100  
50  
VDD=15V  
VDD=12V  
20  
10  
5
2
1
Po=1W  
2
1
VDD=7V  
%
%
Po=3W  
0. 5  
0.5  
0.2  
0.1  
0. 2  
0. 1  
0.05  
0.02  
0.01  
Po=5W  
0.05  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20k  
20k  
20k  
10m  
20m  
50m 100m 200m  
500m  
W
1
2
5
10  
20 30  
11. THD+N vs Frequency (Po=1W)  
8. THD+N vs. Power  
10  
5
100  
50  
20  
10  
5
2
1
f=10kHz  
f=500Hz  
f=100Hz  
VDD=7V  
2
1
%
%
0.5  
VDD=15V  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.02  
0.01  
VDD=12V  
0.05  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k  
10m  
20m  
50m 100m 200m  
500m  
W
1
2
5
10  
20  
9. THD+N vs. Power  
12. THD+N vs Frequency (Po=3W)  
10  
5
100  
50  
20  
10  
5
2
1
2
1
Gv=18dB  
Gv=32dB  
Gv=12dB  
0.5  
%
%
Gv=32dB  
0. 5  
0.2  
0.1  
0. 2  
0. 1  
Gv=12dB  
0.05  
0.05  
Gv=18dB  
0.02  
0.01  
0.02  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
10m  
20m  
50m 100m 200m  
500m  
W
1
2
5
10  
20  
Hz  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
08/2008 Rev 1.2  
9
PAM8610  
10W Stereo Class-D Audio Power Amplifier with DC Volume Control  
Typical Performance Characteristics  
VDD=12V,RL=8Ω, Gv=24dB,ΤΑ=25°C, unless otherwise noted.  
13. Power Supply Ripple Rejection  
16. Noise Floor  
+0  
+0  
-10  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-20  
-30  
-40  
-50  
-60  
d
B
V
d
-70  
-80  
B
-90  
-100  
-110  
-120  
-130  
-140  
-100  
10  
-150  
20  
20  
50 100 200  
500 1k  
Hz  
2k  
5k 10k 20k  
50k 100k  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Hz  
14. Crosstalk  
T
17. CMRR  
+0  
-10  
-20  
-30  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
d
B
r
L to R  
d
-40  
-50  
-60  
-70  
B
A
R to L  
-100  
20  
-80  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20k  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Hz  
15. Frequency Response (Vo=1.0Vrms)  
18. Efficiency vs Power  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
+5  
+4  
+3  
+2  
+1  
+0  
-1  
d
B
r
A
-2  
-3  
-4  
-5  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k 30k  
0
1
2
3
4
5
6
7
8
9
10  
Hz  
Output Power(W)  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
08/2008 Rev 1.2  
10  
PAM8610  
10W Stereo Class-D Audio Power Amplifier with DC Volume Control  
Typical Performance Characteristics  
VDD=12V,RL=8Ω, Gv=24dB,ΤΑ=25°C, unless otherwise noted.  
19. Output Power vs Supply Voltage  
21.Gain vs DC voltage  
18  
16  
14  
THD+N=10%  
12  
10  
8
6
THD+N=1%  
4
2
0
0
0.4  
0.8  
1.2  
1.6  
2
2.4  
2.8  
7
8
9
10  
11  
12  
13  
14  
15  
Volum e Voltage (V)  
Supply Voltage (V)  
22.Power Dissipation vs. Output Power  
20. Quesicent Current vs Supply Voltage  
25  
4
3.5  
3
20  
15  
10  
5
2.5  
2
1.5  
1
0.5  
0
0
7
8
9
10  
11  
Supply Voltage (V)  
12  
13  
14  
15  
0
3
6
Output Power (W)  
9
12  
Two channels driven  
Note:  
PCB information for power dissipation measurement.  
1. The PCB size is 74mm*68mm with 1.2mm thickness,  
two layers and Fr4.  
2. 16 vias at the thermal land on the PCB with 0.5mm  
diameter.  
3. The size of exposed copper is 10mm*10mm with  
3oz thickness.  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
08/2008 Rev 1.2  
11  
PAM8610  
10W Stereo Class-D Audio Power Amplifier with DC Volume Control  
Test Setup for Performance Testing  
PAM8610 Demo Board  
Load  
AP  
+OUT  
Input  
Low Pass  
AP System One  
Analyzer  
AP System One  
Generator  
Filter  
-OUT  
GND  
AUX-0025  
VDD  
Power Supply  
Notes  
1. The AP AUX-0025 low pass filter is necessary for class-D amplifier measurement with AP analyzer.  
2. Two 22μH inductors are used in series with load resistor to emulate the small speaker for efficiency  
measurement.  
Application Information  
Power and Heat Dissipation  
If the rated workable junction temperature is  
150°C, the relationship between ambient  
temperature and permitted Ploss is shown in below  
diagram.  
Choose speakers that are able to stand large  
output power from the PAM8610. Otherwise,  
speaker may suffer damage.  
10  
9
8
7
6
5
4
3
2
1
0
Heat dissipation is very important when the  
device works in full power operation. Two factors  
affect the heat dissipation, the efficiency of the  
device that determines the dissipation power, and  
the thermal resistance of the package that  
determines the heat dissipation capability.  
In operation, some of power is dissipated to the  
resistors.  
Power Dissipation: Ploss=(Po*(1-η)/η)*2  
0
20  
40  
60  
80  
100  
The PAM8610’s efficiency is 90% with 10W ouput  
and 8Ω load. The dissipation power is 2.22W.  
Ta  
Thermal resistance of junction to ambient of the  
QFN package is 18.1°C/W and the junction  
temperature Tj=Ploss*θjA+Ta, where Ta is ambient  
temperature. If the ambient temperature is 85°C,  
the QFN’s junction temperature  
From the diagram, it can be found that when the  
device works at 10W/8Ω load the dissipation  
power is 1.1W per channel, 2.2W total, the  
permitted ambient temperature is over 100°C.  
This is proven by actual test. The PAM8610 can  
work in full output power under 85°C ambient  
temperature.  
Tj=2.22*18.1+85=125°C  
which is lower than 150°C rated junction  
temperature.  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
08/2008 Rev 1.2  
12  
PAM8610  
10W Stereo Class-D Audio Power Amplifier with DC Volume Control  
Heat Dissipation in PCB design  
Consideration for EMI  
Generally, class-D amplifiers are high efficiency  
and need no heat sink. For high power ones that  
has high dissipation power, the heat sink may also  
not necessary if the PCB is carefully designed to  
achieve good heat dissipation by the PCB itself.  
Filters are not required if the traces from the  
amplifier to the speakers are short (<20cm). But  
most applications require a ferrite bead filter as  
shown in below figure. The ferrite bead filter  
reduces EMI of around 1MHz and higher to meet  
t h e F C C a n d C E ' s r e q u i r e m e n t s . I t i s  
recommended to use a ferrite bead with very low  
impedances at low frequencies and high  
impedance at high frequencies (above 1MHz).  
Dual-Side PCB  
To achieve good heat dissipation, the PCB’s  
copper plate should be thicker than 0.035mm and  
the copper plate on both sides of the PCB should  
be utilized for heat sink.  
Ferrite Bead  
OUTP  
The thermal pad on the bottom of the device  
should be soldered to the plate of the PCB, and  
via holes, usually 9 to 16, should be drilled in the  
PCB area under the device and deposited copper  
on the vias should be thick enough so that the  
heat can be dissipated to the other side of the  
plate. There should be no insulation mask on the  
other side of the copper plate. It is better to drill  
more vias on the PCB around the device if  
possible.  
200pF  
Ferrite Bead  
OUTN  
200pF  
The EMI characteristics are as follows after  
employing the ferrite bead.  
Vertical Polarization  
4-layer PCB  
If it is 4-layer PCB, the two middle layers of  
grounding and power can be employed for heat  
dissipation, isolating them into serval islands to  
avoid short between ground and power.  
Horizontal Polarization  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
08/2008 Rev 1.2  
13  
PAM8610  
10W Stereo Class-D Audio Power Amplifier with DC Volume Control  
Volume Control  
Shutdown Operation  
A DC volume control section is integrated in  
PAM8610, controlling via VREF, VOLUME and  
VREFGND terminals. The voltage on VOLUME  
pin, without exceeding VREF, determines internal  
amplifier gain as listed in Table 1.  
The PAM8610 employs a shutdown operation  
mode to reduce supply current to the absolute  
minimum level during periods of non-use to save  
power. The SD input terminal should be held high  
during normal operation when the amplifier is in  
use. Pulling SD low causes the outputs to mute  
and the amplifier to enter a low-current state. SD  
should never be left unconnected to prevent the  
amplifier from unpredictable operation.  
If a resistor divider is used to fix gain of the  
amplifier, the VREF terminal can be directly  
connected to AVDD and the resistor divider  
connected across VREF and REFGND. For fixed  
gain, the resistor divider values are calculated to  
center the voltage given in the Table 1.  
For the best power-off pop performance, the  
amplifier should be set in shutdown mode prior to  
removing the power supply voltage.  
FADE Operation  
Internal 2.5V Bias Generator Capacitor  
Selection  
The FADE terminal is a logic input that controls  
the operation of the volume control circuitry  
during transitions to and from the shutdown state  
and during power-up.  
The internal 2.5V bias generator (V2P5) provides  
the internal bias for the preamplifier stage. The  
external input capacitors and this internal  
reference allow the inputs to be biased within the  
optimal common-mode range of the input  
preamplifiers.  
A logic low on this terminal will set the amplifier in  
fade mode. During power-up or recovery from the  
shutdown state (a logic high is applied to the SD  
terminal), the volume is smoothly ramped up from  
the mute state, -75dB, to the desired volume set  
by the voltage on the volume control terminal.  
Conversely, the volume is smoothly ramped down  
from the current state to the mute state when a  
logic low is applied to the SD terminal. A logic high  
on this pin disables the volume fade effect during  
transitions to and from the shutdown state and  
during power-up. During power-up or recovery  
from the shutdown state (a logic high is applied to  
the SD terminal), the transition from the mute  
state, -75dB, to the desired volume setting is less  
than 1ms. Conversely, the volume ramps down  
from current state to the mute state within 1ms  
when a logic low is applied to the SD terminal.  
The selection of the capacitor value on the V2P5  
terminal is critical for achieving the best device  
performance. During startup or recovery from  
shutdown state, the V2P5 capacitor determines  
the rate at which the amplifier starts up. When the  
voltage on the V2P5 capacitor equals 0.75 x  
V2P5, or 75% of its final value, the device turns  
on and the class-D outputs start switching. The  
startup time is not critical for the best de-pop  
performance since any heard pop sound is the  
result of the class-D output switching-on other  
than that of the startup time. However, at least a  
0.47µF capacitor is recommended for the V2P5  
capacitor.  
MUTE Operation  
Another function of the V2P5 capacitor is to filter  
high frequency noise on the internal 2.5V bias  
generator.  
The MUTE pin is an input for controlling the output  
state of the PAM8610. A logic high on this pin  
disables the outputs and low enables the outputs.  
This pin may be used as a quick disable or enable  
of the outputs without a volume fade.  
Power Supply Decoupling, CS  
The PAM8610 is a high-performance CMOS audio  
amplifier that requires adequate power supply  
decoupling to ensure the output total harmonic  
distortion (THD) as low as possible. Power supply  
decoupling also prevents oscillations caused by  
long lead between the amplifier and the speaker.  
The optimum decoupling is achieved by using two  
capacitors of different types that target different  
types of noise on the power supply leads. For  
higher frequency transients, spikes, or digital  
For power saving, the SD pin should be used to  
reduce the quiescent current to the absolute  
minimum level. The volume will fade, increasing  
or decreasing slowly, when leaving or entering the  
shutdown state if the FADE terminal is held low. If  
the FADE terminal is held high, the outputs will  
transit very quickly. Refer to the FADE operation  
section.  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
08/2008 Rev 1.2  
14  
PAM8610  
10W Stereo Class-D Audio Power Amplifier with DC Volume Control  
hash on the line, a good low equivalent-series-  
Differential Input  
resistance (ESR) ceramic capacitor, typically 1μF,  
is recommended, placing as close as possible to  
the device’s VCC lead. To filter lower-frequency  
noises, a large aluminum electrolytic capacitor of  
10μF or greater is recommended, placing near the  
audio power amplifier. The 10μF capacitor also  
serves as a local storage capacitor for supplying  
current during large signal transients on the  
amplifier outputs.  
The differential input stage of the amplifier  
eliminates noises that appear on the two input  
lines of the channel. To use the PAM8610 with a  
differential source, connect the positive lead of  
the audio source to the INP input and the negative  
lead from the audio source to the INN input. To  
use the PAM8610 with a single-ended source, ac-  
ground the INP input through a capacitor equal in  
value to the input capacitor on INN and apply the  
audio source to the INN input. In a single-ended  
input application, the INP input should be ac-  
grounded at the audio source other than at the  
device input for best noise performance.  
Selection of COSC and ROSC  
The switching frequency is determined by the  
values of components connected to ROSC (pin  
23) and COSC (pin 22) and calculated as follows:  
Using low-ESR Capacitors  
fOSC = 2π / (ROSC * COSC  
)
L o w - E S R c a p a c i t o r s a r e r e c o m m e n d e d  
throughout this application section. A real (with  
respect to ideal) capacitor can be modeled simply  
as a resistor in series with an ideal capacitor. The  
voltage drop across this resistor minimizes the  
beneficial effects of the capacitor in the circuit.  
The lower the equivalent value of this resistance  
the more the real capacitor behaves as an ideal  
capacitor.  
The frequency may varies from 225kHz to 275kHz  
by adjusting the values of ROSC and COSC. The  
recommended values are CO S C = 220pF,  
ROSC=120kΩ for a switching frequency of 250kHz.  
BSN and BSP Capacitors  
The full H-bridge output stages use NMOS  
transistors only. They therefore require bootstrap  
capacitors for the high side of each output to turn  
on correctly. A at least 220nF ceramic capacitor,  
rated for at least 25V, must be connected from  
each output to its corresponding bootstrap input.  
Specifically, one 220nF capacitor must be  
connected from xOUTP to xBSP, and another  
220nF capacitor from xOUTN to xBSN. It is  
recommended to use 1ꢀF BST capacitor to  
replace 220nF (pin15, pin16, pin35 and pin36)  
for lower than 100Hz applications.  
Short-circuit Protection  
The PAM8610 has short circuit protection circuitry  
on the outputs to prevent damage to the device  
when output-to-output shorts, output-to-GND  
shorts, or output-to-VCCshorts occur. Once a  
short-circuit is detected on the outputs, the output  
drive is immediately disabled. This is a latched  
fault and must be reset by cycling the voltage on  
the SD pin to a logic low and back to the logic high  
state for normal operation. This will clear the  
short-circuit flag and allow for normal operation if  
the short was removed. If the short was not  
removed, the protection circuitry will again  
activate.  
VCLAMP Capacitors  
To ensure that the maximum gate-to-source  
voltage for the NMOS output transistors not  
exceeded, two internal regulators are used to  
clamp the gate voltage. Two 1μF capacitors must  
be connected from VCLAMPL and VCLAMPR to  
ground and must be rated for at least 25V. The  
voltages at the VCLAMP terminals vary with VCC  
and may not be used to power any other circuitry.  
Thermal Protection  
Thermal protection on the PAM8610 prevents  
damage to the device when the internal die  
temperature exceeds 150°C. There is a 15  
degree tolerance on this trip point from device to  
device. Once the die temperature exceeds the set  
thermal point, the device enters into the shutdown  
state and the outputs are disabled. This is not a  
latched fault. The thermal fault is cleared once the  
temperature of the die is reduced by 40°C. The  
device begins normal operation at this point  
without external system intervention.  
Internal Regulated 5-V Supply (AVDD)  
The AVDD terminal is the output of an internally-  
generated 5V supply, used for the oscillator,  
preamplifier, and volume control circuitry. It  
requires a 0.1μF to 1μF capacitor, placed very  
close to the pin to Ground to keep the regulator  
stable. The regulator may not be used to power  
any external circuitry.  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
08/2008 Rev 1.2  
15  
PAM8610  
10W Stereo Class-D Audio Power Amplifier with DC Volume Control  
Ordering Information  
PAM8610 X X  
Shipping  
Package Type  
Part Number  
Marking  
Package Type  
Standard Package  
PAM8610  
PAM8610TR  
QFN 6mm*6mm  
3,000 units/Tape & Reel  
XATYWWLL  
Please consult PAM sales office or authorized distributors for more details.  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
08/2008 Rev 1.2  
16  
PAM8610  
10W Stereo Class-D Audio Power Amplifier with DC Volume Control  
Outline Dimension  
40pin QFN  
QFN  
Unit: Millimeter  
Power Analog Microelectronics,Inc  
www.poweranalog.com  
08/2008 Rev 1.2  
17  

PAM8610 相关器件

型号 制造商 描述 价格 文档
PAM8610TR PAM 10W Stereo Class-D Audio Power Amplifier with DC Volume Control 获取价格
PAM8615 PAM 16W/32W Stereo Class-D Audio Power Amplifier 获取价格
PAM8615RHR PAM 16W/32W Stereo Class-D Audio Power Amplifier 获取价格
PAM8615RHR DIODES 声道数:1-通道(单声道)或 2-通道(立体声);最小供电电压VCC:10V;最大供电电压VCC:26V;最大输出功率:32W x 1 @ 8 欧姆;16W x 2 @ 4 欧姆;架构:D 类;输入接口:消除爆音,短路和热保护;元器件封装:24-TSSOP Exposed Pad; 获取价格
PAM8620 PAM 15W Stereo Class-D Audio Power Amplifier with Power Limit 获取价格
PAM8620 DIODES 15W Stereo Class D with NCPL and Higher VDD 获取价格
PAM8620TR PAM 15W Stereo Class-D Audio Power Amplifier with Power Limit 获取价格
PAM8803 PAM 3W Filterless Stereo Class-D Audio Amplifier with Digital Volume Control 获取价格
PAM8803NHR PAM 3W Filterless Stereo Class-D Audio Amplifier with Digital Volume Control 获取价格
PAM8901 DIODES 25mW TRUE CAP FREE STEREO HEADPHONE AMPLIFIER 获取价格
Hi,有什么可以帮您? 在线客服 或 微信扫码咨询